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The best swimmers have a streamlined shape that ensures an attached flow pattern and a laminar boundary layer at rather large
values of the Reynolds number. Simple expressionsmay be obtained for the volumetric drag coefficient of an ideal body of revolution
under laminar unseparated flow conditions together with estimations of a critical value of the Reynolds number. A measure, the
capacity-efficiency factor, calculated for different organisms and underwater vehicles, shows that information about animal shapes
and locomotion is of utmost biological interest and could be useful to improve robot fish and underwater vehicles as well.

1. Introduction

From the hydromechanical point of view fish swimming is
a very complicated unsteady phenomenon. A description
of the diversity of fish locomotion and a classification of
swimmingmodes, categories, and styles can be found inBlake
[1]. Moreover, recent interest in robot fish requires answering
questions about optimal shape and the power necessary for
fish locomotion. This study focuses on the most simple esti-
mations of fish drag and power requirements during quasis-
teady motion when changes in body shape can be neglected.
This approach would not be very reliable in the case of
anguilliform propulsion, but it is acceptable for the carangi-
and thunniforms of the best swimmers (see [2–4]).

The best swimmers must have a small drag coefficient:

𝐶
𝑉

=
2𝑋

𝜌𝑈2
∞

𝑉2/3
, (1)

to achieve high underwater velocity. In this case a body of
volume 𝑉 moving at a constant speed 𝑈

∞
in a fluid with

density 𝜌 exhibits low drag 𝑋. Owing to the huge difference
in water and air densities, an underwater body has approxi-
mately 800 times larger drag than the same body moving in
air at the same velocity, since, at equal Reynolds numbers, the
drag coefficients are approximately equal. For large Reynolds

number the boundary layer thickness can be neglected and
fluid outside the thin layer can be treated as ideal and
incompressible. For underwater swimming the wave drag,
important for ships or animals moving on the water surface,
is negligible.

The total drag can be divided into pressure and friction
components.The pressure drag can be reduced almost to zero
when the boundary layer does not separate from the body
surface. In this case the d’Alembert paradox applies; that is, a
closed rigid body in unbounded flow of ideal incompressible
fluid has zero drag (see, e.g., [5]). Experiments with animals
that are good swimmers (like dolphins) have shown that
during gliding (inertial movement without manoeuvring and
shape change) they exhibit unseparated flow pattern (e.g.,
[6, 7]). Attached flow has also been observed around the
special-shaped body UA-2 [8]. Its UA-2c version is shown in
Figure 1.

To reduce friction, a laminar boundary layer must be
maintained as large as possible over the wetted surface.
Therefore, an ideal good swimmer must have an unseparated
laminar boundary layer over its whole surface. In this paper
the drag coefficient and the capacity characteristics of a
corresponding slender body of revolution (with a small ratio
ofmaximumdiameter𝐷 to length 𝐿) have been calculated for
different animals, human athletes, and submarines in order to
compare them in terms of swimming efficiency.
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Figure 1: Comparison of the shape UA-2c with the body of a
bottlenose dolphin [9].

2. Materials and Methods

2.1. Frictional Drag on a Slender Body of Revolution. To esti-
mate laminar frictional drag on a slender body of revolution,
the Mangler-Stepanov transformations (see, e.g., [5]), which
reduce the rotationally symmetric boundary layer equations
to a two-dimensional case, can be used. The following rela-
tions between coordinates 𝑥, 𝑦 for the rotationally symmetric
boundary layer (shown in Figure 2) and the corresponding
two-dimensional coordinates 𝑥, 𝑦 are valid (coordinates are
dimensionless based on the body length):

𝑥 = ∫

𝑥

0

𝑅
2
(𝜉) 𝑑𝜉, 𝑦 = 𝑅 (𝑥) 𝑦, (2)

where 𝑅(𝑥) is the dimensionless radius of the rotationally
symmetric body based on its length 𝐿.The flow velocity at the
outer edge of the boundary layer, the displacement thickness,
and the skin-friction coefficient are related as follows (see,
e.g., [5]):

𝑈 = 𝑈, 𝛿
∗
=

𝛿
∗

𝑅 (𝑥)
, 𝜏

𝑤
= 𝜏
𝑤
𝑅 (𝑥) . (3)

All the values in (3) are dimensionless, based on ambient flow
velocity 𝑈

∞
, body length 𝐿, and 0.5𝜌𝑈

2

∞
, respectively. These

equations are valid for an arbitrary rotationally symmetric
body provided that the thickness of the boundary layer is
small in comparison with the radius; that is, the flow is
unseparated. For a slender body, the coordinate 𝑥 can be
calculated along the body’s axis and the velocity 𝑈 can be
supposed to be equal to unity, neglecting the thickness of
the boundary layer and the pressure distribution peculiarities
(see, e.g., [10]). From the first equation of (3) the value of 𝑈
will also be equal to unity; that is, the rotationally symmetric
boundary layer on a slender body can be reduced to the
flat plate one [11]. According to the Blasius expression, the
equality holds 𝜏

𝑤
= 0.664(𝑥)

−1/2
𝑅
−1/2

𝐿
for a laminar flow,

v

u

x

y
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Figure 2: Boundary layer on a slender rotationally symmetric body.

where the Reynolds number 𝑅
𝐿

= 𝑈
∞

𝐿/] and 𝜐 is the
kinematic viscosity (see, e.g., [5]). Introducing the variable 𝑥,
using (2) and (3), the laminar skin-friction drag coefficients
of a slender rotationally symmetric body may be obtained as

𝐶
𝐿
=

2𝑋

𝜌𝑈2
∞

𝐿2
= 2𝜋∫

1

0

𝑅 (𝑥) 𝜏𝑤 (𝑥) 𝑑𝑥

=
4.172

√𝑅
𝐿

∫

1

0

𝑅
2
(𝑥) [∫

𝑥

0

𝑅
2
(𝜉) 𝑑𝜉]

−1/2

𝑑𝑥

= 8.344√
𝑉

𝜋𝐿3𝑅
𝐿

(4)

and using (1),

𝐶
𝑉

=
4.708

√𝑅
𝑉

, (5)

where the volumetric Reynolds number 𝑅
𝑉

= 𝑈
∞

𝑉
1/3

/].
Note that the volumetric frictional drag coefficient 𝐶

𝑉

does not depend on the slender body shape, provided its
volume remains constant (see also [11]). Anyway, this is valid
for laminar attached boundary layer and at limited 𝑅

𝑉
only.

In the next section the critical value of the Reynolds number
will be calculated. But in any case (5) is a reliable estimate for
the minimum possible drag on a rigid body of revolution.

2.2. Critical Values of the Reynolds Number. The laminar-to-
turbulent flow transition in the boundary layer influences
the skin-friction drag and depends onmany parameters such
as pressure gradient, surface roughness, and pulsations in
the ambient flow (e.g., [5]). Nevertheless, according to the
Tollmien-Schlichting-Lin theory (e.g., [12]), the boundary
layer on a flat plate remains laminar for any frequencies of
disturbances if

𝑅
∗
=

𝑈𝛿
∗

]
< 420. (6)

This inequality, taking into account the Blasius expression for
displacement thickness (e.g., [5]) 𝛿

∗

= 1.721(𝑥)
1/2

𝑅
−1/2

𝐿
, can

be rewritten as follows:

√𝑥𝑅
𝐿
< 244.04. (7)

In the previous section it has been shown that the boundary
layer around a slender body of revolution can be reduced to
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Figure 3: Minimal drag coefficients for different animals and vehicles. Typical shapes at different values of the thickness ratio 𝐷/𝐿.

that on a plate with the use of the Mangler-Stepanov trans-
formation. Given (2) and (7), the condition for the axisym-
metrical boundary layer to remain laminar can be written as
follows [13]:

𝑅
𝐿
∫

𝑥

0

𝑅
2
(𝜉) 𝑑𝜉 < 59558. (8)

If the boundary layer remains laminar over the entire surface,
the integral in (8) can be substituted by

∫

1

0

𝑅
2
(𝜉) 𝑑𝜉 =

𝑉

𝜋𝐿3
. (9)

Thus,

𝑅
𝐿
<

59558𝜋𝐿
3

𝑉
or 𝑅

𝑉
<

59558𝜋𝐿
2

𝑉2/3
. (10)

To calculate the critical values of the Reynolds numbers 𝑅
∗

𝐿

and𝑅
∗

𝑉
, corresponding to the right-hand parts of the inequal-

ities (10), information about the body shape is necessary.
Supposing the optimal body shape to be close to that of the
dolphin or UA-2c, the ratio 𝑉/𝐿

3 can be determined directly
after calculating the corresponding shape with the use of the
method proposed in Nesteruk [8]. Typical shapes for various
ratios 𝐷/𝐿 are shown in Figure 3. The ratio 𝑉/𝐿

3 can be
calculated from the following approximate expression:

𝑉

𝐿3
= 𝑘(

𝐷

𝐿
)

2

, (11)

with the values of parameter 𝑘 = 0.2574; 0.2998; 0.3335 for
𝐷/𝐿 = 0.1; 0.21; 0.3, respectively. To simplify the calculations,
the average value 𝑘 = 0.295 is used.

Both the forebody and the tail of the shape corresponding
to the smallest thickness ratio 𝐷/𝐿 = 0.1 are concave, while
for less slender bodies (𝐷/𝐿 = 0.21 and 𝐷/𝐿 = 0.3) only the
tail is concave (see Figure 3). Some fast-swimming fish have
a concave forebody too (e.g., the Mediterranean spearfish
Tetrapturus belone, Indo-Pacific sailfish Istiophorus platyp-
terus, black marlin Makaira indica, or swordfish Xiphias
gladius).

With the use of (10) and (11) the critical Reynolds number
can be estimated as follows:

𝑅
∗

𝐿
≈ 6.3 ⋅ 10

5 𝐿
2

𝐷2
or 𝑅

∗

𝑉
≈ 4.2 ⋅ 10

5 𝐿
4/3

𝐷4/3
. (12)

Equations (12) show that the boundary layer remains laminar
on slender bodies of revolution at rather large Reynolds
numbers and the critical value of the Reynolds number
increases with the diminishing of the thickness ratio 𝐷/𝐿.

2.3. Power Requirements for Swimming. The power balance
for steady swimming at maximum velocity 𝑈

𝑚
, when the

thrust is equal to the drag 𝑋, can be written as follows:

𝑞𝑚𝜂 = 𝑈
𝑚
𝑋 = 𝑈

𝑚
𝐶
𝑉
𝜌
𝑈
2

𝑚

2
𝑉
2/3

, (13)

where 𝑞 is the physiological maximumof the available animal
power per unit mass, 𝑚 is that mass, and 0 < 𝜂 < 1 is the
propulsion efficiency, which takes into account the fin drag.
Assuming a neutrally buoyant animal (𝑚 = 𝜌𝑉, in the case
of negatively buoyant animals the difference between weight
and buoyancy does not exceed 10%, e.g., [14], and can be
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neglected), the capacity-efficiency factor 𝑞𝜂 can be estimated
as

𝑞𝜂 =
𝑈
3

𝑚
𝐶
𝑉

2𝑉1/3
. (14)

If the animal body shape is close to the slender rotationally
symmetric one and ensures an unseparated flow pattern, then
for a purely laminar boundary layer, (5) and (14) yield

𝐶
𝐸
= (𝑞𝜂)min = 2.354

𝑈
3

𝑚

√𝑅
𝑉
𝑉1/3

= 2.354
𝑈
2.5

𝑚
√]

√𝑉
. (15)

In dimensionless form (15) can be written as follows:

𝑐
𝐸
=

𝐶
𝐸

]1/2𝑔4/3
= 2.354

𝑈
2.5

𝑚
]1/6√𝜌

𝑔4/3√𝑚
. (16)

3. Results

3.1. Which Shape Is Better? When designing robot fish or
other underwater vehicles, the goal is tominimize the drag for
a given volume and a prescribed velocity range. To solve this
problem, theminimumvolumetric drag coefficient𝐶

𝑉
for the

hull (themain part of the body)must be achieved at the given
volumetric Reynolds number 𝑅

𝑉
. Thus, the question arises:

what kind of shape must be chosen?
Since for laminar attached flow on a slender body of

revolution 𝐶
𝑉
is independent of the shape (see (5)), the hull

shapemay be arbitrary provided it ensures a laminar attached
flow. For example, any shape shown in Figure 3 can be used
at the corresponding subcritical Reynolds number range. If
𝑅
𝑉

> 𝑅
∗

𝑉
, the tail part of the hull has a turbulent boundary

layer and the optimal shape depends on the thickness ratio
𝐷/𝐿 and tail shape peculiarities.

It is rather difficult to calculate the frictional drag for
supercritical Reynolds numbers, especially in the laminar-to-
turbulent transition region. Expression (5) has been used for
the laminar forebody and the flat plate concept (e.g., [15])
for the turbulent tail. The results are represented in Figure 3.
For subcritical Reynolds numbers the universal straight line
corresponds to (5) in logarithmic coordinates. For 𝑅

𝑉
> 𝑅
∗

𝑉

as shown in Figure 3 this line bifurcates into different colour
lines corresponding to the shapes with different values of the
thickness ratio 𝐷/𝐿 = 0.1; 0.21; 0.3 (green, yellow, and red
lines, resp.).

For different animals the typical Reynolds numbers are
shown in Figure 3. For comparison, the cases of a human
sportsman (during underwater dolphin-kick swimming at
velocity 2.7m/s) and two different submarines are also
presented in Figure 3. All names shown in green correspond
to the values of the thickness ratio 𝐷/𝐿 ≤ 0.15, in yellow
0.15 < 𝐷/𝐿 ≤ 0.25, and in red 𝐷/𝐿 > 0.25.

To emphasize the fact that the theoretical curves in
Figure 3 show the minimal possible values of the drag, all
names are written over the corresponding lines. For example,
the real total drag coefficients for submarines (based on
theirmass,maximumunderwater velocity, capacity, propeller
efficiency 0.85, and 𝜐 = 1.3 ⋅ 10

−6m2/s; also shown in

Figure 3 by green markers “+”) are 3–5 times greater than the
minimum theoretical values shown by the green line. This
fact can be explained by the presence of separation on the
submarines’ hulls. Small organisms (e.g., mosquitofish) have
greater values of 𝐶

𝑉
than the submarines (see Figure 3).

The minimum possible values of 0.0015 < 𝐶
𝑉

< 0.002

correspond to animals with very slender bodies (e.g., narrow-
barred Spanish mackerel Scomberomorus commerson, wahoo
Acanthocybium solandri, Mediterranean spearfish Tetrap-
turus belone, Indo-Pacific sailfish Istiophorus platypterus, and
saltwater crocodile Crocodylus porosus) and are located at the
subcritical Reynolds number range 6 ⋅ 10

6
< 𝑅
𝑉

< 10
7. For

plumper animals (e.g., dolphins, sharks) the same 𝑅
𝑉
range

is already supercritical and greater values of 𝐶
𝑉
are expected.

Whales and some fast-swimming fish (e.g., swordfish Xiphias
gladius, black marlin Makaira indica) swim at supercritical
Reynolds numbers.

3.2. Capacity-Efficiency Factor. Equation (15) allows estimat-
ing the capacity-efficiency factor for different animals and
vehicles with the use of their data for maximum speed, vol-
ume, and viscosity of water. Large values of𝐶

𝐸
correspond to

the better swimmers (i.e., the animals that can produce more
energy per unit time and per unit mass and use it effectively
for locomotion). Smaller values of this factor correspond to
animals or vehicles that have a large drag (greater than the
theoretical minimum (5)) and do not need to (or cannot) use
a lot of their energy for fast-swimming and/or cannot use
their energy in proper way (e.g., due to the small efficiency
𝜂).

Examples of calculation of the capacity-efficiency factor
are presented in Figure 4 and in Tables 1 and 2. In Table 1
the data from Aleyev [6] (crosses in Figure 4) have been
used. In Table 2 the different data about the animals’ mass
and maximal velocity have been used for calculations (circles
in Figure 4). Different colours of points correspond to the
different values of the thickness ratio 𝐷/𝐿, as mentioned in
the previous section.

Unfortunately, for themajority of the data points, it is very
difficult to determine the relevant value of the viscosity of
water, which varies from 𝜐 ≈ 1.8 ⋅ 10

−6 m2/s at 0∘C to 𝜐 =

0.66 ⋅10
−6 m2/s at 40∘C. In Aleyev [6] only data about animal

length, the ratio 𝐷/𝐿, and 𝑅
𝐿
are available. To calculate the

velocities the average value 𝜐 = 1.3 ⋅ 10
−6 m2/s was used.The

volume was estimated with the use of (11). Inaccuracy in the
maximumvelocity, themass, and viscosity data is a reason for
discrepancies in 𝐶

𝐸
values obtained for the same animals in

Tables 1 and 2.

4. Discussion

4.1. Comparison with the Literature. Since the experimental
drag data for live animals are very limited, expression (5)
is here related only to rigid bodies of revolution. The body
Dolphin was manufactured and tested by North American
Aviation in 1967-1968 (see [16]). The profile NACA-66 was
chosen for the shape of this body of revolution; its parameters
were𝐿/𝐷 = 3.33;𝐷 = 0.48m;𝐿 = 1.6m;𝑉 = 0.159 m3. Tests
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Figure 4: The capacity-efficiency factor 𝐶
𝐸
(W/kg) versus volumetric Reynolds number for different animals and vehicles.

revealed the minimal value of 𝐶
𝑉

= 0.008 at 𝑅
𝑉

= 0.85 ⋅ 10
7;

(5) yields 𝐶
𝑉

= 0.0016. The more slender body of Hansen
and Hoyt [17] (𝐿/𝐷 = 4.5; 𝐿 = 3.18m; 𝐷 = 0.71m) has
the minimum experimental drag coefficient 𝐶

𝑉
= 0.007 at

𝑅
𝑉

= 2.2 ⋅ 10
6 that is closer to the theoretical value 𝐶

𝑉
=

0.0032, which can be calculated from (5). The optimal shape
X-25 (𝐿/𝐷 = 4.85) for an unclosed (tail-boom) body of
revolution calculated in Parsons et al. [18] has 𝐶

𝑉
≈ 0.005 at

6 ⋅ 10
6
< 𝑅
𝑉

< 1.6 ⋅ 10
7. For the same Reynolds number range

the theoretical values of the minimum drag coefficient are
0.0012 < 𝐶

𝑉
< 0.0019 (see (5)). The higher vales of the drag

can be explained by the presence of separation and turbulence
on all the above-mentioned bodies of revolution.

The theoretical drag values of different bodies of revolu-
tion calculated in Parsons et al. [18], Dodbele et al. [19], Zedan
et al. [20], and Lutz andWagner [21] are rather different.This
can probably be explained as due to different semiempirical
criteria for the laminar-turbulent transition in the boundary
layer. The values of 𝐶

𝑉
calculated in Parsons et al. [18],

Dodbele et al. [19], Zedan et al. [20], andLutz andWagner [21]
exceed estimation (5). For example, in Zedan et al. [20] the
theoretical value 𝐶

𝑉
= 0.012 at 𝑅

𝑉
= 1.5 ⋅ 10

7 was obtained,
whereas the shape calculated by Parsons et al. [18] has 2.4
times less drag and (5) yields a ten times smaller value.

A similar comparison can be performed for the critical
values of the Reynolds number calculations (12); for the
bodies Dolphin, Hansen and Hoyt, and X-35 the critical
Reynolds numbers are𝑅

∗

𝑉
≈ 2.1⋅10

6,𝑅∗
𝑉

≈ 3.1⋅10
6, and𝑅

∗

𝑉
≈

3.4⋅10
6, respectively. At 106 < 𝑅

𝑉
< 1.6⋅10

7 the predictions of
the laminar-to-turbulent transition coordinate presented by
Parsons et al. [18] are approximately 0.5𝐿 and 0.7𝐿 for bodies
Dolphin and X-35, respectively. This very slight dependence
on the Reynolds number can be explained by the use of the
cross-section of the laminar separation as the transition point
in Parsons et al. [18], whereas (12) are obtained for shapes
without any separation.

Expressions (12) yield 𝑅
∗

𝐿
≈ 1.7 ⋅ 10

7 or 𝑅
∗

𝑉
≈ 3.8 ⋅ 10

6

for the bottlenose dolphin with body ratio 𝐿/𝐷 = 5.2. These
estimations resolve the well-known Gray paradox, since the
Reynolds number𝑅

𝐿
≈ 1.4 ⋅10

7 taken for estimations in Gray
[22] corresponds to laminar flowon the dolphin (see also [9]).

Thus slender bodies of revolution can delay laminar-
turbulent transitions on their surfaces and reduced skin-
friction drag. It must be stressed that relations (12) are valid
only for a flow pattern without separation. That is why the
effect of the turbulization delay has not been achieved on
standard (separated) slender bodies of revolution.The differ-
ence in shape can be hardly perceptible (see, e.g., Figure 5),
but the pressure distribution is very sensitive to small changes
in shape and similar shapes can have very different pressure
gradients and separation behaviour. In particular, the body
shape UA-2c has 𝐿/𝐷 = 3.6, a negative-pressure-gradient
forebody ending at the minimum pressure point 𝑥 ≈ 0.33,
a long positive-pressure-gradient region (approximately 45%
of the total body length), and a negative-pressure-gradient
near its tail. Separation on Goldschmied’s body𝐷 = 0.508m,
𝐿/𝐷 = 2.9, with a long negative-pressure-gradient forebody
(appox. 76% of the total hull length), a short zone of pressure
increase (its length 𝑑 ≈ 10%), and a negative-pressure-
gradient region near the tail, was removed only with the use
of boundary layer suction; see Goldschmied [23].

4.2. Ranking of Different Animals and Vehicles. It can be
seen from Figure 4 and Tables 1 and 2 that the best swim-
mers are fish whose shape corresponds to the minimal
possible values of 𝐶

𝑉
. These are the Indo-Pacific sailfish,

Mediterranean spearfish, narrow-barred Spanish mackerel,
and wahoo. Some flying fish and some molluscs (e.g.,
southern shortfin squid Illex coindetii, European squid Loligo
vulgaris) have similar values of 𝐶

𝐸
. These animals are both

perfect swimmers and rather good fliers. In particular, the
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Table 1: The volumetric Reynolds number 𝑅
𝑉
and the capacity-

efficiency factor 𝐶
𝐸
(W/kg) for different animals based on formula

(15) and data from Aleyev [6].

Name Re
𝑉

𝐶
𝐸
(W/kg)

Sagitta setosa 1.0 ∗ 10
3 6.74

Gambusia affinis holbrooki 3.4 ∗ 10
3 8.32

Lebistes reticulatus 3.8 ∗ 10
3 2.92

Xiphophorus maculatus 8.0 ∗ 10
3 1.74

Leucaspius delineatus 8.6 ∗ 10
3 1.56

Mollienisia velifera 9.6 ∗ 10
3 1.76

Ostracion tuberculatus 9.7 ∗ 10
3 0.022

Clupeonella delicatula delicatula 9.8 ∗ 10
3 0.887

Gymnammodytes cicerellus 1.0 ∗ 10
4 2.97

Gasterosteusaculeatus 1.4 ∗ 10
4 0.722

Atherina bonapartei 1.6 ∗ 10
4 2.43

Xiphophorus helleru 1.7 ∗ 10
4 0.924

Sprattus sprattus phalericus 1.9 ∗ 10
4 1.91

Atherina mochon pontica 2.2 ∗ 10
4 1.54

Atherina hepsetus 2.2 ∗ 10
4 1.34

Chaetodon striatus 3.1 ∗ 10
4 0.679

Alosa caspia nordmanni 4.3 ∗ 10
4 1.81

Spicara smaris 4.9 ∗ 10
4 0.730

Engraulis encrasicholus ponticus 4.9 ∗ 10
4 4.83

Carassius auratis 5.7 ∗ 10
4 2.49

Sardina pilchardus 6.1 ∗ 10
4 6.24

Carassius carassius 6.3 ∗ 10
4 0.482

Scardinius erythrophthalmus 7.0 ∗ 10
4 0.831

Enhybrina schistosa 7.1 ∗ 10
4 0.615

Zeus faber pungio 7.5 ∗ 10
4 0.243

Labrus viridis 8.7 ∗ 10
4 0.356

Belone belone euxini 9.0 ∗ 10
4 2.95

Perca fluviatilis 9.7 ∗ 10
4 1.33

Alosa kessleri pontica 9.8 ∗ 10
4 1.74

Serranus scriba 1.0 ∗ 10
5 2.61

Sciaena umbra 1.0 ∗ 10
5 0.804

Rutilus rutilus 1.1 ∗ 10
5 2.29

Clupea harengus pallasi 1.1 ∗ 10
5 2.14

Leuciscus leuciscus 1.1 ∗ 10
5 6.83

Anguilla anguilla 1.4 ∗ 10
5 0.504

Odontogadus merlangus euxinus 1.7 ∗ 10
5 0.617

Abramis brama 2.3 ∗ 10
5 0.245

Salmo trutta labrax m. fario 2.3 ∗ 10
5 25.7

Cyprinus carpio carpio 2.4 ∗ 10
5 0.725

Sphyraena sphyraena 2.9 ∗ 10
5 17.2

Trichiurus lepturus 2.9 ∗ 10
5 2.69

Umbrina cirrosa 2.9 ∗ 10
5 2.19

Todarodes pacificus 3.1 ∗ 10
5 18.8

Mugil saliens 3.2 ∗ 10
5 5.71

Ilex coindeti 3.2 ∗ 10
5 96.6

Acipenserstellatus 3.2 ∗ 10
5 0.117

Mugil auratus 3.3 ∗ 10
5 4.70

Loligo vulgaris 3.6 ∗ 10
5 77.9

Todarodes sagittatus 3.6 ∗ 10
5 7.05

Table 1: Continued.

Name Re
𝑉

𝐶
𝐸
(W/kg)

Symplectoteuthis oualaniensis 3.6 ∗ 10
5 9.20

Loligo forbesi 3.6 ∗ 10
5 31.3

Gadus morhua macrocephalus 3.8 ∗ 10
5 0.855

Hirundichthys rondeletii 4.5 ∗ 10
5 202.4

Stizostedion lucioperca 4.9 ∗ 10
5 3.85

Mola mola 6.0 ∗ 10
5 0.0112

Salmo trutta 6.1 ∗ 10
5 6.52

Scomber scombrus 6.4 ∗ 10
5 13.2

Trachurus mediterraneus ponticus 7.2 ∗ 10
5 11.4

Squalus acanthias 7.5 ∗ 10
5 1.18

Acipenser gueldenstaedtiicolchicus 8.8 ∗ 10
5 0.505

Chelonia mydas 9.0 ∗ 10
5 0.0877

Eretmochelys imbricata 9.5 ∗ 10
5 1.77

Mugil cephalus 9.6 ∗ 10
5 6.95

Caretta caretta 1.0 ∗ 10
6 0.160

Auxis thazard 1.1 ∗ 10
6 36.1

Pomatomus saltatrix 1.2 ∗ 10
6 5.14

Pygoscelis adeliae 1.3 ∗ 10
6 9.65

Eudyptes chrysolophus 1.3 ∗ 10
6 9.45

Huso huso 1.6 ∗ 10
6 0.633

Esox lucius 1.8 ∗ 10
6 18.8

Sarda sarda 2.3 ∗ 10
6 52.4

Salmo trutta labrax 2.5 ∗ 10
6 29.3

Salmo salar 2.6 ∗ 10
6 16.2

Phoca groenlandica 2.9 ∗ 10
6 1.43

Dermochelys coriacea 3.1 ∗ 10
6 1.44

Phocoena phocoena 3.3 ∗ 10
6 12.4

Sphyraena barracuda 3.4 ∗ 10
6 45.8

Arctocephalus pusillus 3.5 ∗ 10
6 3.21

Thunnus alalunga 3.9 ∗ 10
6 70.6

Sphyrna zygaena 3.9 ∗ 10
6 6.79

Stenopterygius quadriscissus 4.6 ∗ 10
6 5.20

Acanthocybium solandri 5.1 ∗ 10
6 90.7

Scomberomorus commerson 5.6 ∗ 10
6 150.8

Delphinus delphis ponticus 6.3 ∗ 10
6 16.9

Tetrapturus belone 6.4 ∗ 10
6 244.5

Coryphaena hippurus 6.7 ∗ 10
6 37.4

Thunnus albacares 7.3 ∗ 10
6 47.9

Thunnus obesus 7.9 ∗ 10
6 13.0

Prionace glauca 8.2 ∗ 10
6 2.15

Istiophorus platypterus 8.8 ∗ 10
6 246.5

Globicephala melas 1.2 ∗ 10
7 2.05

Tursiops truncatus 1.2 ∗ 10
7 6.80

Thunnus thynnus 1.9 ∗ 10
7 24.9

Xiphias gladius 2.4 ∗ 10
7 39.6

Physeter catodon 2.4 ∗ 10
7 0.0604

Balaena mysticetus 2.8 ∗ 10
7 0.0220

Orcinus orca 3.3 ∗ 10
7 1.41

Makaira indica 3.4 ∗ 10
7 41.7

Balaenoptera physalus 4.1 ∗ 10
7 0.0973

Balaenoptera borealis 5.6 ∗ 10
7 0.618

Balaenoptera musculus 5.7 ∗ 10
7 0.129
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Table 2: The volumetric Reynolds number 𝑅
𝑉
and the capacity-efficiency factor 𝐶

𝐸
(W/kg) for different animals and submarines based on

formula (15) and the maximum velocity, mass, and viscosity data. The following sources of the primal information were used: Dickson et al.
[27] for Green jack Caranx caballus; Deslauriers and Kieffer [28] for juvenile Shortnose sturgeon Acipenser brevirostrum; other primal data
about maximum velocity𝑈

𝑚
, the mass𝑚, and the water kinematic viscosity coefficient ] is added by authors with the use of the Internet (e.g.,

http://www.speedofanimals.com/animals/bottlenose dolphin).

Name Re
𝑉

𝐶
𝐸
(W/kg) Primal information

𝑈
𝑚
(m/s) 𝑚 (Kg) ] ⋅ 10

6 (m2/𝑠)
Acipenser brevirostrum 7.4 ∗ 10

3 0.0998 0.45 0.0156 1.52
Caranx caballus 6.6 ∗ 10

4 0.174 1.03 0.19 0.90
Anguilla rostrata 8.8 ∗ 10

4 0.0872 1.08 1.5 1.40
Aptenodytes forsteri 3.8 ∗ 10

5 0.105 2.08 35.0 1.80
Enhydra lutris 6.0 ∗ 10

5 0.153 2.50 30.0 1.30
Pygoscelis antarcticus 8.7 ∗ 10

5 11.0 8.97 4.5 1.70
Human (sportsmen dolphin kick) 1.3 ∗ 10

6 0.0946 2.70 80.0 0.90
Cypselurus californicus 1.6 ∗ 10

6 72.6 15.69 1.0 1.00
Sphyraena argentea 2.2 ∗ 10

6 17.3 12.20 4.5 0.90
Prionace glauca (juvenile) 2.4 ∗ 10

6 83.2 19.20 2.0 1.00
Octopus vulgaris 2.9 ∗ 10

6 7.41 11.10 17.0 1.00
Zalophus californianus 3.5 ∗ 10

6 0.464 6.00 200.0 1.00
Prionace glauca (adult) 4.6 ∗ 10

6 12.3 10.9 75.2 1.00
Tursiops truncatus 6.1 ∗ 10

6 1.39 9.72 250.0 1.00
Isurus oxyrinchus 7.2 ∗ 10

6 3.53 3.90 300.0 1.30
Thunnus orientalis 8.0 ∗ 10

6 9.62 19.40 250.0 1.52
Galeocerdo cuvier 8.1 ∗ 10

6 0.710 8.89 550.0 0.90
Crocodylus porosus 9.8 ∗ 10

6 0.357 7.80 1000.0 0.80
Acanthocybium solandri 1.0 ∗ 10

7 16.7 21.40 80.0 0.90
Carcharodon carcharias 1.0 ∗ 10

7 1.082 11.11 800.0 1.00
Xiphias gladius 1.1 ∗ 10

7 30.3 26.90 98.0 1.15
Tetrapturus audax 1.4 ∗ 10

7 13.3 22.50 163.0 0.90
Carcharodon carcharias 1.5 ∗ 10

7 0.557 11.11 3324.0 1.10
Istiophorus albicans 1.5 ∗ 10

7 38.4 30.56 90.0 0.90
Megaptera novaeangliae 1.6 ∗ 10

7 0.0810 7.50 3.0 ∗ 10
4 1.50

Orcinus orca 1.7 ∗ 10
7 0.875 13.42 4.1 ∗ 10

5 1.30
Balaenoptera musculus 5.1 ∗ 10

7 0.160 13.90 1.7 ∗ 10
5 1.52

Submarine Collins class (diesel) 1.25 ∗ 10
8 0.0190 10.83 3.353 ∗ 10

6 1.30
Submarine Virginia class (nuclear) 1.96 ∗ 10

8 0.0183 12.78 7.9 ∗ 10
6 1.30

squid change their shape during flight to create lift forces (see,
e.g., [24]).

The capacity-efficiency factor of the best swimmers is
approximately 100 times greater than that of common good
swimmers. For example, burst swimming corresponds to
values of circa 10 body lengths per second for subcarangiform
fish of between 10 and 20 cm in length [25]. Applying
expressions (11) and (15) and the average value 𝜐 = 1.3 ⋅

10
−6m2/s yields

𝐶
𝐸
≈ 1.56𝐿

𝐿

𝐷
(W/kg) , (17)

where 𝐿 must be taken in metres. For the largest fish of 𝐿 =

0.2m and 𝐷/𝐿 = 0.1 the value of 𝐶
𝐸
is 3.1W/kg. According

to the data of Azuma [26] the capacity per unit of body mass
varies from 10 to 160W/kg.

The smallest values of 𝐶
𝐸
are associated with nonstream-

lined animals (e.g., ocean sunfish Mola mola, yellow boxfish

Ostracion tuberculatus, bowheadwhaleBalaenamysticetus, or
sperm whale Physeter catodon) and submarines. The shapes
of these animals and vehicles obviously cannot ensure any
attached flowpattern.The low values of𝐶

𝐸
for submarines are

both the result of the large supercritical Reynolds numbers at
which theymove (there are huge differences in the theoretical
values of both the laminar and the turbulent friction, shown
in Figure 3) and of the separation that increases the drag 3-
to 5-fold in comparison to the value possible for an attached
flow pattern.

Whales have a rather wide range of values of𝐶
𝐸
, larger for

the hydrodynamically “better shaped” animals; for example,
the sei whale Balaenoptera borealis has approximately 10
times greater capacity-efficiency factor than the bowhead
whale Balaena mysticetus. The main predator of whales—the
killer whaleOrcinus orca—has approximately twice as large a
value of 𝐶

𝐸
as the sei whale and comes close to the character-

istics of its relative, the bottlenose dolphinTursiops truncatus.
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Figure 5: Comparison of the special shaped unseparated body of
revolution UA-2c [8] with the “Dolphin-1” body based on NACA-
66 profile.

Humans are not the best swimmers. For example, the
world records men have a 𝐶

𝐸
value similar to some turtles,

sturgeons, and the blue whale Balaenoptera musculus, 2000
times smaller than the capacity-efficiency of the best swim-
mers.

The sharks have a very broad range of capacity-efficiency
factor that decreases with increasing Reynolds number. For
example, the juvenile blue shark belongs to the best swim-
mers, while barracuda and adult blue shark have 7–9 times
smaller values of𝐶

𝐸
. The largest great white sharks that swim

at supercritical Reynolds numbers have the smallest value of
𝐶
𝐸
. The same large difference can be seen in the case of birds.

For example, the small and fast chinstrap penguin Pygoscelis
antarcticus has approximately 100 times greater value of 𝐶

𝐸

than the large and slow emperor penguinAptenodytes forsteri.
The capacity-efficiency factor can be sometimes very

close for juvenile and adult animals (e.g., sturgeon) and
sometimes very different (e.g., blue shark). In the case of the
blue shark the large difference can be explained by the fact
that juvenile animals swim at subcritical Reynolds number,
whereas the adults swim at transitional and supercritical
values of 𝑅

𝑉
.

4.3. Final Remarks. It can be concluded that the best swim-
mers have a streamlined shape that ensures an attached flow
pattern and a laminar boundary layer at rather large values of
the Reynolds number. As a result the hydrodynamical drag
can be much smaller in comparison with the “poorly” shaped
animals and vehicles where separation and/or turbulence
occur.

The large difference in corresponding 𝐶
𝐸
values (see

Figure 5 and Tables 1 and 2) shows that information about
animal shapes and locomotion is not only of biological
interest but very useful to improve the capabilities of robot

fish and underwater vehicles as well. Better measurements
of the maximum velocity, mass, and water temperature are
necessary to determine the top swimmers among the animals.

The volumetric drag coefficient of an ideal laminar unsep-
arated body of revolution with a prescribed volume is inde-
pendent of the shape and can be calculated from expression
(5), which can be a rather good estimate of the drag on the
best-shaped fish. The critical value of the Reynolds number
depends on the shape peculiarities and increases as the
slenderness ratio 𝐷/𝐿 decreases (see (12)). At supercritical
Reynolds numbers a turbulent boundary layer develops along
the body’s tail and the drag increases drastically.

The capacity-efficiency factor (15) can be used to estimate
the swimming efficiency of both animals and underwater
vehicles. Animals that swim at supercritical Reynolds num-
bers have much smaller value of 𝐶

𝐸
in comparison with the

best swimmers at subcritical values of 𝑅
𝑉
.
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