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Abstract
In this paper, starting from the shifting property for the ordinary Fibonacci and
q-Fibonacci numbers, we obtain some combinatorial identities involving the gen-
eralized Fibonacci and q-Fibonacci numbers of the first and second kind, and for
the q-Fibonacci polynomials. In particular, we specialize these identities to the Fi-
bonacci polynomials, the Pell polynomials, the Jacobstahl polynomials, the Cheby-
shev polynomials, the Fermat polynomials and the Morgan-Voyce polynomials.

1. Introduction

The Fibonacci numbers fn , [4] [16, A000045], are defined by the recurrence fn+2 =
fn+1+fn with the initial values f0 = f1 = 1 . These numbers have been generalized
in several ways. For instance, Carlitz [2] defined the q-Fibonacci numbers fn(q) by
employing a particular statistic on the set of Fibonacci strings (i.e. binary strings
without two consecutive 1’s), and proved that they satisfy the recurrence

fn+2(q) = fn+1(q) + qn+1fn(q)

with the initial values f0(q) = f1(q) = 1 . These numbers have been further
generalized as follows.

The generalized Fibonacci numbers of the first kind f [m]
n , [8, 10], are defined by

the recurrence
f [m]

n+m = f [m]
n+m�1 + f [m]

n+m�2 + · · · + f [m]
n

with the initial values

f [m]
0 = 1 , f [m]

1 = 1 , f [m]
2 = 2 , . . . , f [m]

m�2 = 2m�3 , f [m]
m�1 = 2m�2 .

The generalized q-Fibonacci numbers of the first kind f [m]
n (q) , [10], are defined by
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the recurrence

f [m]
n+m(q) = f [m]

n+m�1(q)

+ qn+m�1f [m]
n+m�2(q) + qn+m�2f [m]

n+m�3(q) + · · · + qn+1f [m]
n (q)

(1)

with the initial values

f [m]
�m+1(q) = f [m]

�m�2(q) = · · · = f [m]
�1 (q) = 0 and f [m]

0 (q) = 1 .

The generalized Fibonacci numbers of the second kind g[m]
n , [14], are defined by

the recurrence
g[m]

n+m = g[m]
n+m�1 + g[m]

n

with the initial values g[m]
0 = g[m]

1 = · · · = g[m]
m�1 = 1 . The generalized q-Fibonacci

numbers of the second kind g[m]
n (q) , [14], are defined by the recurrence

g[m]
n+m(q) = g[m]

n+m�1(q) + qn+1g[m]
n (q) (2)

with the initial values g[m]
0 (q) = g[m]

1 (q) = · · · = g[m]
m�1(q) = 1 .

The q-binomial coe�cients, or Gaussian coe�cients, are defined by
✓

n

k

◆

q

=
[n]q!

[k]q![n� k]q!

where [n]q! = [n]q[n � 1]q · · · [2]q[1]q are the q-factorial numbers and [n]q =
1 + q + q2 + · · · + qn�1 are the q-numbers, and satisfy the recurrence

✓
n + 1
k + 1

◆

q

=
✓

n

k

◆

q

+ qk+1

✓
n

k + 1

◆

q

. (3)

For q = 1 , we have the usual binomial coe�cients.
In [12], we obtained the following identities (shifting property)

nX

k=0

✓
n

k

◆
fk+1 =

nX

k=0

✓
n + 1
k + 1

◆
fk (4)

nX

k=0

✓
n

k

◆

q

fk+1(q) =
nX

k=0

✓
n + 1
k + 1

◆

q

fk(q) (5)

for the Fibonacci and the q-Fibonacci numbers. In [13], we obtained some general-
izations of identity (4) for the bivariate Fibonacci polynomials. In this paper, we
extend identities (4) and (5) to the generalized Fibonacci and q-Fibonacci numbers
of the first and the second kind (Sections 2 and 3), and to the q-Fibonacci poly-
nomials (Section 4). In particular, we specialize these identities to several classical
polynomial sequences, such as the ones given by the Fibonacci polynomials, the Pell
polynomials, the Jacobstahl polynomials, the Chebyshev polynomials, the Fermat
polynomials and the Morgan-Voyce polynomials.
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2. Generalized Shifting Property

We start by generalizing identities (4) and (5) to the generalized Fibonacci and
q-Fibonacci numbers of the first kind. Specifically, the following theorem.

Theorem 1. For every m,n 2 N , m � 2 , we have the q-binomial identity
nX

k=0

✓
n

k

◆

q

f [m]
k (q) · · · f [m]

k+m�3(q)A
[m]
k (q)

=
nX

k=0

✓
n + 1
k + 1

◆

q

f [m]
k (q)f [m]

k+1(q) · · · f [m]
k+m�2(q) ,

(6)

where

A[m]
k (q) = f [m]

k+m�1(q)� qk+m�2f [m]
k+m�3(q)� · · ·� qk+1f [m]

k (q) .

In particular, for q = 1 , we have the binomial identity
nX

k=0

✓
n

k

◆
f [m]

k · · · f [m]
k+m�3

⇣
f [m]

k+m�1 � f [m]
k+m�3 � · · ·� f [m]

k

⌘

=
nX

k=0

✓
n + 1
k + 1

◆
f [m]

k f [m]
k+1 · · · f [m]

k+m�2 .

(7)

Proof. From recurrence (1), by replacing n by k , we have

f [m]
k+m(q)� qk+m�1f [m]

k+m�2(q)� · · ·� qk+2f [m]
k+1(q) = f [m]

k+m�1(q) + qk+1f [m]
k (q)

from which we obtain

f [m]
k+1(q) · · · f [m]

k+m�2(q)(f
[m]
k+m(q)� qk+m�1f [m]

k+m�2(q)� · · ·� qk+2f [m]
k+1(q))

= f [m]
k+1(q) · · · f [m]

k+m�2(q)f
[m]
k+m�1(q) + qk+1f [m]

k (q)f [m]
k+1(q) · · · f [m]

k+m�2(q) ,

that is,

f [m]
k+1(q) · · · f [m]

k+m�2(q)A
[m]
k+1(q)

= f [m]
k+1(q) · · · f [m]

k+m�2(q)f
[m]
k+m�1(q) + qk+1f [m]

k (q)f [m]
k+1(q) · · · f [m]

k+m�2(q) .

Then, we have

n�1X

k=0

✓
n

k + 1

◆

q

f [m]
k+1(q) · · · f [m]

k+m�2(q)A
[m]
k+1(q)

=
n�1X

k=0

✓
n

k + 1

◆

q

f [m]
k+1(q) · · · f [m]

k+m�1(q) +
n�1X

k=0

✓
n

k + 1

◆

q

qk+1f [m]
k (q) · · · f [m]

k+m�2(q) .
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Replacing k by k � 1 in the first two sums, we obtain

nX

k=1

✓
n

k

◆

q

f [m]
k (q) · · · f [m]

k+m�3(q)A
[m]
k (q)

=
nX

k=1

✓
n

k

◆

q

f [m]
k (q) · · · f [m]

k+m�2(q) +
n�1X

k=0

✓
n

k + 1

◆

q

qk+1f [m]
k (q) · · · f [m]

k+m�2(q) ,

and then, by recurrence (3), we have

nX

k=0

✓
n

k

◆

q

f [m]
k (q) · · · f [m]

k+m�3(q)A
[m]
k (q)

� f [m]
0 (q) · · · f [m]

m�3(q)(f
[m]
m�1(q)� qm�2f [m]

m�3(q)� · · ·� qf [m]
0 (q))

=
nX

k=0

"✓
n

k

◆

q

+ qk+1

✓
n

k + 1

◆

q

#

f [m]
k (q) · · · f [m]

k+m�2(q)

� [n + 1]qf
[m]
0 (q) · · · f [m]

m�2(q) + [n]qqf
[m]
0 (q) · · · f [m]

m�2(q)

=
nX

k=0

✓
n + 1
k + 1

◆

q

f [m]
k (q) · · · f [m]

k+m�2(q)

� ([n + 1]q � q[n]q)f
[m]
0 (q) · · · f [m]

m�2(q) .

Since [n + 1]q � q[n]q = 1 , we have the identity

f [m]
0 (q) · · · f [m]

m�3(q)(f
[m]
m�1(q)� qm�2f [m]

m�3(q)� · · ·� qf [m]
0 (q))

= ([n + 1]q � q[n]q)f
[m]
0 (q) · · · f [m]

m�3(q)f
[m]
m�2(q)

if and only if

f [m]
m�1(q)� qm�2f [m]

m�3(q)� · · ·� qf [m]
0 (q) = f [m]

m�2(q) ,

that is, if and only if

f [m]
m�1(q) = f [m]

m�2(q) + qm�2f [m]
m�3(q)� · · ·� qf [m]

0 (q)

and this equation is true by recurrence (1), with n = �1 . Hence, we have identity
(6).

Remark 2. For m = 2 , we recover identities (4) and (5). Moreover, for m = 3 ,
we have the identities

nX

k=0

✓
n

k

◆

q

f [3]
k (q)

⇣
f [3]

k+2(q)� qk+1f [3]
k (q)

⌘
=

nX

k=0

✓
n + 1
k + 1

◆

q

f [3]
k (q)f [3]

k+1(q) , (8)
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nX

k=0

✓
n

k

◆
f [3]

k

⇣
f [3]

k+2 � f [3]
k

⌘
=

nX

k=0

✓
n + 1
k + 1

◆
f [3]

k f [3]
k+1 . (9)

Finally, for m = 4 , we have the identities

nX

k=0

✓
n

k

◆

q

f [4]
k (q)f [4]

k+1(q)
⇣
f [4]

k+3(q)� qk+2f [4]
k+1(q)� qk+1f [4]

k (q)
⌘

=
nX

k=0

✓
n + 1
k + 1

◆

q

f [4]
k (q)f [4]

k+1(q)f
[4]
k+2(q) ,

(10)

nX

k=0

✓
n

k

◆
f [4]

k f [4]
k+1

⇣
f [4]

k+3 � f [4]
k+1 � f [4]

k

⌘
=

nX

k=0

✓
n + 1
k + 1

◆
f [4]

k f [4]
k+1f

[4]
k+2 . (11)

In next theorem, we generalize identities (4) and (5) to the generalized Fibonacci
and q-Fibonacci numbers of the second kind.

Theorem 3. For every m,n 2 N , m � 2 , we have the q-binomial identity

nX

k=0

✓
n

k

◆

q

g[m]
k (q) · · · g[m]

k+m�3(q)g
[m]
k+m�1(q)

=
nX

k=0

✓
n + 1
k + 1

◆

q

g[m]
k (q)g[m]

k+1(q) · · · g[m]
k+m�2(q) .

(12)

In particular, for q = 1 , we have the binomial identity

nX

k=0

✓
n

k

◆
g[m]

k · · · g[m]
k+m�3g

[m]
k+m�1 =

nX

k=0

✓
n + 1
k + 1

◆
g[m]

k g[m]
k+1 · · · g[m]

k+m�2 . (13)

Proof. From recurrence (2), we have

g[m]
k+1(q) · · · g[m]

k+m�2(q)g
[m]
k+m(q)

= g[m]
k+1(q) · · · g[m]

k+m�2(q)g
[m]
k+m�1(q) + qk+1g[m]

k (q)g[m]
k+1(q) · · · g[m]

k+m�2(q) ,

and then

n�1X

k=0

✓
n

k + 1

◆

q

g[m]
k+1(q) · · · g[m]

k+m�2(q)g
[m]
k+m(q)

=
n�1X

k=0

✓
n

k + 1

◆

q

g[m]
k+1(q) · · · g[m]

k+m�1(q) +
n�1X

k=0

✓
n

k + 1

◆

q

qk+1g[m]
k (q) · · · g[m]

k+m�2(q) .
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Replacing k by k � 1 in the first two sums, we obtain
nX

k=1

✓
n

k

◆

q

g[m]
k (q) · · · g[m]

k+m�3(q)g
[m]
k+m�1(q)

=
nX

k=1

✓
n

k

◆

q

g[m]
k (q) · · · g[m]

k+m�2(q) +
n�1X

k=0

✓
n

k + 1

◆

q

qk+1g[m]
k (q) · · · g[m]

k+m�2(q) ,

and then, by recurrence (3), we have
nX

k=0

✓
n

k

◆

q

g[m]
k (q) · · · g[m]

k+m�3(q)g
[m]
k+m�1(q)� g[m]

0 (q) · · · g[m]
m�3(q)g

[m]
m�1(q)

=
nX

k=0

"✓
n

k

◆

q

+ qk+1

✓
n

k + 1

◆

q

#

g[m]
k (q) · · · g[m]

k+m�2(q)

� [n + 1]qg
[m]
0 (q) · · · g[m]

m�2(q) + [n]qqg
[m]
0 (q) · · · g[m]

m�2(q)

=
nX

k=0

✓
n + 1
k + 1

◆

q

g[m]
k (q) · · · g[m]

k+m�2(q)� ([n + 1]q � q[n]q)g
[m]
0 (q) · · · g[m]

m�2(q) .

Since [n + 1] � q[n] = 1 and all the initial conditions are equal to 1 , we have
identity (12).

Remark 4. For m = 2 , we recover identities (4) and (5) once again. For m = 3 ,
we have the identities

nX

k=0

✓
n

k

◆

q

g[3]
k (q)g[3]

k+2(q) =
nX

k=0

✓
n + 1
k + 1

◆

q

g[3]
k (q)g[3]

k+1(q) , (14)

nX

k=0

✓
n

k

◆
g[3]

k g[3]
k+2 =

nX

k=0

✓
n + 1
k + 1

◆
g[3]

k g[3]
k+1 , (15)

and, for m = 4 , we have the identities
nX

k=0

✓
n

k

◆

q

g[4]
k (q)g[4]

k+1(q)g
[4]
k+3(q) =

nX

k=0

✓
n + 1
k + 1

◆

q

g[4]
k (q)g[4]

k+1(q)g
[4]
k+2(q) , (16)

nX

k=0

✓
n

k

◆
g[4]

k g[4]
k+1g

[4]
k+3 =

nX

k=0

✓
n + 1
k + 1

◆
g[4]

k g[4]
k+1g

[4]
k+2 . (17)

3. Other Identities

Theorems 1 and 3 give a natural generalization of the original shifting property
for the Fibonacci and q-Fibonacci numbers, given by identities (4) and (5). The
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following Theorems 5 and 7 give a di↵erent, but equally natural, generalization of
this property. For the generalized Fibonacci and q-Fibonacci numbers of the first
kind, we have the next theorem.

Theorem 5. For every m,n 2 N , m � 2 , we have the q-binomial identity

nX

k=0

✓
n

k

◆

q

(�1)kf [m]
k (q) · · · f [m]

k+m�2(q)B
[m]
k (q)

=
nX

k=0

✓
n + 1
k + 1

◆

q

(�1)kf [m]
k (q)f [m]

k+1(q) · · · f [m]
k+m�1(q)

(18)

where

B[m]
k (q) = f [m]

k+m�2(q) + qk+m�2f [m]
k+m�3(q) + · · · + qk+1f [m]

k (q) .

In particular, for q = 1 , we have the binomial identity

nX

k=0

✓
n

k

◆
(�1)kf [m]

k · · · f [m]
k+m�2

⇣
f [m]

k+m�2 + f [m]
k+m�3 + · · · + f [m]

k

⌘

=
nX

k=0

✓
n + 1
k + 1

◆
(�1)kf [m]

k f [m]
k+1 · · · f [m]

k+m�1

(19)

Proof. From recurrence (1), by replacing n by k , we have

f [m]
k+m�1(q) + qk+m�1f [m]

k+m�2(q) + · · · + qk+2f [m]
k+1(q) = f [m]

k+m(q)� qk+1f [m]
k (q)

from which we obtain

f [m]
k+1(q) · · · f [m]

k+m�1(q)(f
[m]
k+m�1(q) + qk+m�1f [m]

k+m�2(q) + · · · + qk+2f [m]
k+1(q))

= f [m]
k+1(q) · · · f [m]

k+m�1(q)f
[m]
k+m(q)� qk+1f [m]

k (q)f [m]
k+1(q) · · · f [m]

k+m�1(q) .

Then, we have

n�1X

k=0

✓
n

k + 1

◆

q

(�1)k+1f [m]
k+1(q) · · · f [m]

k+m�1(q)(f
[m]
k+m�1(q) + · · · + qk+2f [m]

k+1(q))

=
n�1X

k=0

✓
n

k + 1

◆

q

(�1)k+1f [m]
k+1(q) · · · f [m]

k+m(q)

�
n�1X

k=0

✓
n

k + 1

◆

q

(�1)k+1qk+1f [m]
k (q) · · · f [m]

k+m�1(q) .
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Replacing k by k � 1 in the first two sums, we obtain

nX

k=1

✓
n

k

◆

q

(�1)kf [m]
k (q) · · · f [m]

k+m�2(q)(f
[m]
k+m�2(q) + · · · + qk+1f [m]

k (q))

=
nX

k=1

✓
n

k

◆

q

(�1)kf [m]
k (q) · · · f [m]

k+m�1(q)

+
n�1X

k=0

✓
n

k + 1

◆

q

(�1)kqk+1f [3]
k (q)f [3]

k+1(q)f
[3]
k+2(q) ,

and then, by recurrence (3), we have

nX

k=0

✓
n

k

◆

q

(�1)kf [m]
k (q) · · · f [m]

k+m�2(q)(f
[m]
k+m�2(q) + · · · + qk+1f [m]

k (q))

� f [m]
0 (q) · · · f [m]

m�2(q)(f
[m]
m�2(q) + · · · + qf [m]

0 (q))

=
nX

k=0

"✓
n

k

◆

q

+ qk+1

✓
n

k + 1

◆

q

#

(�1)kf [m]
k (q) · · · f [m]

k+m�1(q)

� [n + 1]qf
[m]
0 (q) · · · f [m]

m�1(q) + [n]qqf
[3]
0 (q)f [m]

0 (q) · · · f [m]
m�1(q)

=
nX

k=0

✓
n + 1
k + 1

◆

q

(�1)kf [m]
k (q) · · · f [m]

k+m�1(q)

� ([n + 1]q � q[n]q)f
[m]
0 (q) · · · f [m]

m�1(q) .

Since [n + 1]� q[n] = 1 , we have the identity

f [m]
0 (q) · · · f [m]

m�2(q)(f
[m]
m�2(q) + · · · + qf [m]

0 (q)) = ([n + 1]q � q[n]q)f
[m]
0 (q) · · · f [m]

m�1(q)

if and only if

f [m]
m�1(q) = f [m]

m�2(q) + qm�2f [m]
m�3(q) + · · · + qf [m]

0 (q) ,

and this equation is true by recurrence (1), with n = �1 . Hence, we have identity
(18).

Remark 6. For m = 2 , we have the identities

nX

k=0

✓
n

k

◆

q

(�1)kfk(q)2 =
nX

k=0

✓
n + 1
k + 1

◆

q

(�1)kfk(q)fk+1(q) , (20)

nX

k=0

✓
n

k

◆
(�1)kf2

k =
nX

k=0

✓
n + 1
k + 1

◆
(�1)kfkfk+1 . (21)
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For m = 3 , we have the identities
nX

k=0

✓
n

k

◆

q

(�1)kf [3]
k (q)f [3]

k+1(q)
�
f [3]

k+1(q) + qk+1f [3]
k (q)

�

=
nX

k=0

✓
n + 1
k + 1

◆

q

(�1)kf [3]
k (q)f [3]

k+1(q)f
[3]
k+2(q) ,

(22)

nX

k=0

✓
n

k

◆
(�1)kf [3]

k f [3]
k+1

�
f [3]

k+1 + f [3]
k

�
=

nX

k=0

✓
n + 1
k + 1

◆
(�1)kf [3]

k f [3]
k+1f

[3]
k+2 . (23)

For m = 4 , we have the identities
nX

k=0

✓
n

k

◆

q

(�1)kf [4]
k (q)f [4]

k+1(q)f
[4]
k+2(q)

�
f [4]

k+2(q) + qk+2f [4]
k+1(q) + qk+1f [4]

k (q)
�

=
nX

k=0

✓
n + 1
k + 1

◆

q

(�1)kf [4]
k (q)f [4]

k+1(q)f
[4]
k+2(q)f

[4]
k+3(q) ,

(24)

nX

k=0

✓
n

k

◆
(�1)kf [4]

k (q)f [4]
k+1f

[4]
k+2

�
f [4]

k+2 + f [4]
k+1 + f [4]

k

�

=
nX

k=0

✓
n + 1
k + 1

◆
(�1)kf [4]

k f [4]
k+1f

[4]
k+2f

[4]
k+3 .

(25)

Finally, for the generalized Fibonacci and q-Fibonacci numbers of the second
kind, we have the following theorem.

Theorem 7. For every m,n 2 N , m � 2 , we have the q-binomial identity
nX

k=0

✓
n

k

◆

q

(�1)kg[m]
k (q)g[m]

k+1(q) · · · g[m]
k+m�3(q)g

[m]
k+m�2(q)

2

=
nX

k=0

✓
n + 1
k + 1

◆

q

(�1)kg[m]
k (q)g[m]

k+1(q)g
[m]
k+2(q) · · · g[m]

k+m�1(q) .

(26)

In particular, for q = 1 , we have the binomial identity
nX

k=0

✓
n

k

◆
(�1)kg[m]

k g[m]
k+1 · · · g[m]

k+m�3

�
g[m]

k+m�2

�2

=
nX

k=0

✓
n + 1
k + 1

◆
(�1)kg[m]

k g[m]
k+1g

[m]
k+2 · · · g[m]

k+m�1 .

(27)

Proof. From recurrence (2), we have

g[m]
k+m�1(q) = g[m]

k+m(q)� qk+1g[m]
k (q) .
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Hence, we have

g[m]
k+1(q) · · · g[m]

k+m�1(q)
2 = g[m]

k+1(q) · · · g[m]
k+m�1(q)g

[m]
k+m(q)

� qk+1g[m]
k (q)g[m]

k+1(q) · · · g[m]
k+m�1(q) ,

and then

n�1X

k=0

✓
n

k + 1

◆

q

(�1)k+1g[m]
k+1(q) · · · g[m]

k+m�1(q)
2

=
n�1X

k=0

✓
n

k + 1

◆

q

(�1)k+1g[m]
k+1(q) · · · g[m]

k+m�1(q)g
[m]
k+m(q)

�
n�1X

k=0

✓
n

k + 1

◆

q

(�1)k+1qk+1g[m]
k (q)g[m]

k+1(q) · · · g[m]
k+m�1(q) .

Replacing k by k � 1 in the first two sums, we obtain

nX

k=1

✓
n

k

◆

q

(�1)kg[m]
k (q) · · · g[m]

k+m�2(q)
2

=
nX

k=1

✓
n

k

◆

q

(�1)kg[m]
k (q) · · · g[m]

k+m�1(q)

+
n�1X

k=0

✓
n

k + 1

◆

q

(�1)kqk+1g[m]
k (q) · · · g[m]

k+m�1(q) ,

and then, by recurrence (3), we have

nX

k=1

✓
n

k

◆

q

(�1)kg[m]
k (q) · · · g[m]

k+m�2(q)
2 � g[m]

0 (q) · · · g[m]
m�2(q)

2

=
nX

k=1

"✓
n

k

◆

q

+ qk+1

✓
n

k + 1

◆

q

#

(�1)kg[m]
k (q) · · · g[m]

k+m�1(q)

� [n + 1]qg
[m]
0 (q) · · · g[m]

m�1(q) + [n]qqg
[m]
0 (q) · · · g[m]

m�1(q)

=
nX

k=1

✓
n + 1
k + 1

◆

q

(�1)kg[m]
k (q) · · · g[m]

k+m�1(q)

� ([n + 1]q � q[n]q)g
[m]
0 (q) · · · g[m]

m�1(q) .

Finally, since [n + 1] � q[n] = 1 and the initial conditions are all equal to 1 , we
have identity (26).

Remark 8. For m = 2 , we recover identities (20) and (21). For m = 3 , we have



INTEGERS: 18 (2018) 11

the identities
nX

k=0

✓
n

k

◆

q

(�1)kg[3]
k (q)g[3]

k+1(q)
2 =

nX

k=0

✓
n + 1
k + 1

◆

q

(�1)kg[3]
k (q)g[3]

k+1(q)g
[3]
k+2(q) , (28)

nX

k=0

✓
n

k

◆
(�1)kg[3]

k

�
g[3]

k+1

�2 =
nX

k=0

✓
n + 1
k + 1

◆
(�1)kg[3]

k g[3]
k+1g

[3]
k+2 . (29)

For m = 4 , we have the identities
nX

k=0

✓
n

k

◆

q

(�1)kg[4]
k (q)g[4]

k+1(q)g
[4]
k+2(q)

2

=
nX

k=0

✓
n + 1
k + 1

◆

q

(�1)kg[4]
k (q)g[4]

k+1(q)g
[4]
k+2(q)g

[4]
k+3(q) ,

(30)

nX

k=0

✓
n

k

◆
(�1)kg[4]

k g[4]
k+1(g

[4]
k+2)

2 =
nX

k=0

✓
n + 1
k + 1

◆
(�1)kg[4]

k g[4]
k+1g

[4]
k+2g

[4]
k+3 . (31)

4. Final Remarks

Identities (4) and (5) can be extended to many other sequences similar to the
Fibonacci sequence. In this final section, we consider the following polynomial
sequences. The Fibonacci polynomials Fn(x) defined by the recurrence Fn+2(x) =
xFn+1(x) + Fn(x) with the initial values F0(x) = 1 and F1(x) = x . The Pell
polynomials Pn(x) , [6], defined by the recurrence Pn+2(x) = 2xPn+1(x) + Pn(x)
with the initial values P0(x) = 1 and P1(x) = 2x . The Jacobsthal polynomials
Jn(x) , [7], defined by the recurrence Jn+2(x) = Jn+1(x) + 2xJn(x) with the
initial values J0(x) = J1(x) = 1 . The Chebyshev polynomials of the second kind
Un(x) , [1, 15], defined by the recurrence Un+2(x) = 2xUn+1(x)� Un(x) with the
initial values U0(x) = 1 and U1(x) = 2x . The Fermat polynomials 'n(x) , [5],
defined by the recurrence 'n+2(x) = x'n+1(x) � 2'n(x) with the initial values
'0(x) = 1 and '1(x) = x . The Morgan-Voyce polynomials Bn(x) , [9], defined
by the recurrence Bn+2(x) = (x + 2)Bn+1(x) � Bn(x) with the initial values
B0(x) = 1 and B1(x) = x+2 . The q-Fibonacci polynomials �n(q;x) , [3], defined
by the recurrence

�n+2(q;x) = �n+1(q;x) + qn+1x�n(q;x) (32)

with the initial values �0(q;x) = �1(q;x) = 1 . All these polynomials are particular
instances of the q-Fibonacci polynomials Fn(q;x, y) , [11], defined by the recurrence

Fn+2(q;x, y) = xFn+1(q;x, y) + qn+1yFn(q;x, y) (33)
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with the initial values F0(q;x, y) = 1 and F1(q;x, y) = x . In particular, we have
Fn(1;x, 1) = Fn(x) , Fn(1; 2x, 1) = Pn(x) = Fn(2x) , Fn(1; 1, 2x) = �n(q; 2x) =
Jn(x) , Fn(1; 2x,�1) = Un(x) , Fn(1;x,�2) = 'n(x) , Fn(1;x + 2,�1) = Bn(x)
and Fn(q; 1, x) = �n(q;x) . We also have Fn(q;x, y) = xn�n(q; y/x2) .

Theorem 9. We have the q-binomial identity
nX

k=0

✓
n

k

◆

q

xkyn�kFk+1(q;x, y) =
nX

k=0

✓
n + 1
k + 1

◆

q

xk+1yn�kFk(q;x, y) . (34)

Proof. From recurrence (33), with n replaced by k , we have the identity

n�1X

k=0

✓
n

k + 1

◆

q

xk+1

yk+1
Fk+2(q;x, y)

=
n�1X

k=0

✓
n

k + 1

◆

q

xk+2

yk+1
Fk+1(q;x, y) +

n�1X

k=0

✓
n

k + 1

◆

q

xk+1

yk
qk+1Fk(q;x, y) ,

that is,
nX

k=1

✓
n

k

◆

q

xk

yk
Fk+1(q;x, y)

=
nX

k=1

✓
n

k

◆

q

xk+1

yk
Fk(q;x, y) +

n�1X

k=0

✓
n

k + 1

◆

q

xk+1

yk
qk+1Fk(q;x, y) ,

that is,
nX

k=0

✓
n

k

◆

q

xk

yk
Fk+1(q;x, y)� F1(q;x, y)

=
nX

k=0

"✓
n

k

◆

q

+ qk+1

✓
n

k + 1

◆

q

#
xk+1

yk
Fk(q;x, y)� xF0(q;x, y) .

By the initial values F0(q;x, y) = 1 and F1(q;x, y) = x and by recurrence (3),
we obtain the identity

nX

k=0

✓
n

k

◆

q

xk

yk
Fk+1(q;x, y) =

nX

k=0

✓
n + 1
k + 1

◆

q

xk+1

yk
Fk(q;x, y)

which is equivalent to identity (34).

Remark 10. As particular instances of identity (34), we have the identities
nX

k=0

✓
n

k

◆
xkFk+1(x) =

nX

k=0

✓
n + 1
k + 1

◆
xk+1Fk(x) , (35)
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nX

k=0

✓
n

k

◆
(2x)kPk+1(x) =

nX

k=0

✓
n + 1
k + 1

◆
(2x)k+1Pk(x) , (36)

nX

k=0

✓
n

k

◆
(2x)n�kJk+1(x) =

nX

k=0

✓
n + 1
k + 1

◆
(2x)n�kJk(x) , (37)

nX

k=0

✓
n

k

◆
(�1)n�k(2x)kUk+1(x) =

nX

k=0

✓
n + 1
k + 1

◆
(�1)n�k(2x)k+1Uk(x) , (38)

nX

k=0

✓
n

k

◆
(�2)n�kxk'k+1(x) =

nX

k=0

✓
n + 1
k + 1

◆
(�2)n�kxk+1'k(x) , (39)

nX

k=0

✓
n

k

◆
(�1)n�k(x + 2)kBk+1(x) =

nX

k=0

✓
n + 1
k + 1

◆
(�1)n�k(x + 2)k+1Bk(x) , (40)

nX

k=0

✓
n

k

◆

q

xn�k�k+1(q;x) =
nX

k=0

✓
n + 1
k + 1

◆

q

xn�k�k(q;x) . (41)

Theorem 11. We have the q-binomial identity

nX

k=0

✓
n

k

◆

q

(�1)kxn�k�k(q;x)2 =
nX

k=0

✓
n + 1
k + 1

◆

q

(�1)kxn�k�k(q;x)�k+1(q;x) . (42)

Proof. From the recurrence of the q-polynomials �k(q;x) , we obtain the identity

�k+1(q;x)2 = �k+1(q;x)�k+2(q;x)� qk+1x�k(q;x)�k+1(q;x) ,

and consequently the identity

n�1X

k=0

✓
n

k + 1

◆

q

(�1)k+1

xk+1
�k+1(q;x)2

=
n�1X

k=0

✓
n

k + 1

◆

q

(�1)k+1

xk+1
�k+1(q;x)�k+2(q;x)

�
n�1X

k=0

✓
n

k + 1

◆

q

(�1)k+1

xk
qk+1 �k(q;x)�k+1(q;x) ,

that is,

nX

k=1

✓
n

k

◆

q

(�1)k

xk
�k(q;x)2 =

nX

k=1

✓
n

k

◆

q

(�1)k

xk
�k(q;x)�k+1(q;x)

+
n�1X

k=0

✓
n

k + 1

◆

q

(�1)k

xk
qk+1 �k(q;x)�k+1(q;x) ,
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that is,

nX

k=0

✓
n

k

◆

q

(�1)k

xk
�k(q;x)2 � �0(q;x)2 =

=
nX

k=0

"✓
n

k

◆

q

+ qk+1

✓
n

k + 1

◆

q

#
(�1)k

xk
�k(q;x)�k+1(q;x)� �0(q;x)�1(q;x) .

By the initial values �0(q;x) = �1(q;x) = 1 and by recurrence (3), we obtain the
identity

nX

k=0

✓
n

k

◆

q

(�1)k

xk
�k(q;x)2 =

nX

k=0

✓
n + 1
k + 1

◆

q

(�1)k

xk
�k(q;x)�k+1(q;x)

which is equivalent to identity (42).

Remark 12. As a special case of identity (42), we have

nX

k=0

✓
n

k

◆
(�1)k(2x)n�kJk(x)2 =

nX

k=0

✓
n + 1
k + 1

◆
(�1)k(2x)n�kJk(x)Jk+1(x) . (43)
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