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are social media users with a broad audience. For example, 
influencers can have a high number of followers on 
Twitter, or a multitude of friends on Facebook, or a broad 
array of connections on LinkedIn. The term influence is 
instead used to refer to the social impact of the content 
shared by social media users. The breadth of the audience 
was considered the first and foremost indicator of influence 
for traditional media, such as television or radio. However, 
traditional media are based on broadcasting rather than 
communication, while social media are truly interactive. It 
is very common that influencers say something totally 
uninteresting and, as a consequence, they obtain little or no 
attention. On the contrary, if social media users are 
interested in something, they typically show it by 
participating in the conversation with a variety of 
mechanisms and, most commonly, by sharing the content 
that they have liked. [8] has noted that a content that has 
had an impact on a user’s mind is shared. Influencers are 
prominent social media users, but we cannot expect that 
the content that they share is bound to have high influence, 
as discussed by [6].

   In previous research, Bruni et al. [10] has shown how 
the content of messages can play a critical role and can be

1 Introduction

Most network visualization methodologies and tools 
focus on identifying network hubs. Hubs represent central 
nodes connecting sets of more peripheral nodes that are 
rather sparse and separate from each other, as discussed 
by [45]. Literature has focused on measuring centrality 
and provides a broad array of centrality metrics, each of 
them highlighting a different aspect of a hub’s prominent 
role. As discussed by [19], degree centrality measures the 
absolute number of connections of a node, closeness 
centrality measures how far a node is from all other nodes 
in the network along the overall shortest paths, while 
betweenness centrality assesses the role of a node as a 
hub of information by analyzing the extent to which the 
node connects separate subnetworks. These metrics 
represent the underlying concept of many network 
visualization tools. The assumption that most tools make 
to visualize large networks is that hubs represent the main 
driver of the structure of networks and, if they exist, they 
should be clearly highlighted to cope with complexity and 
obtain a nice and intuitive representation of the network.
 The literature on social media makes a distinction 
between influencers and influence [11,30]. The former
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discusses the implementation aspects of our work. 
Section 4 presents the experimental methodology, 
performance evaluation, and benchmark comparison. 
Conclusions are drawn in Section 5.

2 State of the Art

In this section, we will discuss about limitations of 
existing network visualization techniques and tools. We 
will also highlights the most common and widely 
accepted visualization aesthetic criteria.

2.1 Network Visualization Techniques and Tools

The first spring-embedded model for network visualization 
was proposed by [15], who have simplified the formulae 
used to compute spring forces, and made significant 
improvements by using a cooling schedule to limit  nodes’ 
maximum displacement. However, the repulsive force was 
still computed between all node pairs, yielding to an 
overall computational complexity of O(N2) for a network 
with N nodes. Subsequent studies that took a similar 
approach are the Online Force Directed Animated 
Visualization (OFDAV) technique by [23], and the edge-
edge repulsion approach by [34]. More recently,[44] has 
proposed the over relaxation algorithm for force directed 
drawing. Despite these efforts, these force-directed 
algorithms are still considered non-scalable and unsuitable 
for large networks, also noted by [21].

Several research efforts in network visualization have 
targeted power-law algorithms and their combination with 
the traditional force-directed techniques, as for example 
in [27,1]. Among these approaches, the most notable is 
the Out-Degree Layout (ODL) for the visualization of 
large-scale network topologies, presented by [38,12]. The 
core concept of the algorithm is the segmentation of the 
network nodes into multiple layers based on their 
out-degree, i.e. the number of outgoing edges of each 
node. The positioning of network nodes starts from those 
with the highest out-degree, under the assumption that 
nodes with a lower out-degree have a lower impact on 
visual effectiveness.

The most common and successful visualization tools 
are surveyed in [39,28,35] and [43]. Widely discussed 
tools include Cytoscape, OntoGraf, OntSphere, 
Giny, graphViz, Hyper Graph, rdf Gravity, 
IsaViz, Jambalaya, Owl2Prefuse, Flow 
inspector, Gephi and SocNetV. There is no 
one-to-one mapping between techniques and tools. This 
section discusses usage results from the literature or from 
experimental evidence that we made with the tools.

Most of the tools are not highly scalable and with 
large-scale graphs, they are time inefficient or produce 
ambiguous layouts. Many visualization tools support 
graphs up to a few hundred nodes, such as rdfGravity

a determinant of the social influence of a message 
irrespective of the centrality of the message’s author. 
Results suggest that peripheral nodes can be influential: 
this paper starts from the observation made by [12] that 
social networks of influence follow a power-law 
distribution function, with a few hub nodes and a long tail 
of peripheral nodes, consistent with the so-called small-
world phenomenon as noted by [45]. In social media, hub 
nodes represent social influencers, but influential content 
can be generated by peripheral nodes and spread along 
possibly multi-hop paths originated in peripheral network 
layers.

The ultimate goal of our research is to understand how 
influential content spreads across the network. For this 
purpose, identifying and positioning hub nodes is not 
sufficient, while we need an approach that supports the 
exploration of peripheral nodes and of their mutual 
connections. In this paper, we exploit a modified force-
directed algorithm [24] to highlight the local multi-layered 
neighborhood clusters around hub nodes. The algorithm is 
based on the idea that hub nodes should be prioritized in 
laying out the overall network topology, but their 
placement should depend on the topology of peripheral 
nodes around them. In our approach, the topology of the 
periphery is defined by grouping peripheral nodes based 
on the strength of their link to hub nodes, as well as the 
strength of their mutual interconnections.

The approach is tested on a large sample of tweets 
expressing opinions on a selection of Italian locations 
relevant to the tourism domain. Tweets have been 
semantically processed and tagged with information on 
a) the location to which they refer, b) the location’s 
brand driver (or category) on which authors express an 
opinion, c) the subject referred by the author, d) the 
number of retweets, and e) the identifier of the 
retweeting author. With this information, we draw 
corresponding multi-mode networks highlighting the 
connections among authors (retweeting), and their 
interests (brand or category). The data sample is referred 
to the tourism domain. We have adopted a modified 
version of the Anholt’s Nation Brand index model to 
define a set of categories of content referring to specific 
brand drivers of a destination’s brand [2]. Based on a set 
of qualitative criteria, we visually compare the 
effectiveness of our approach in highlighting features of 
the networks relevant to understand the influence of 
content with previous state-of-the-art algorithms based on 
the traditional spring and force-directed approaches (see, 
for example, [13] and [20]). Results highlight the 
effectiveness of our approach, providing interesting 
insights on how unveiling the structure of the periphery of 
the network can visually show the potential of peripheral 
nodes in determining influence.

The presentation is organized as follows. Section 2 
discusses influence in social media, limitations of existing 
semantic network drawing techniques and tools, and 
standard graph drawing aesthetics criteria. Section 3



[21], Jambalaya [41], GraphViz [16], and Flow 
inspector [9]. With large-scale graphs, they are time 
inefficient or produce ambiguous layouts, as observed by 
[21] with rdfGravity. Node cluttering issues and edge 
overlap issues are common, as in Prefuse [22], Gephi 
[5], GraphViz, and OntoGraf [17]. Force-directed and 
spring layouts are implemented in several visualization 
tools, but local minima problems are common, as observed 
in SocNetV [25], Gephi, and in Flow inspector.

The most practical limitations that we have observed 
in existing force-directed based graph drawing techniques 
are the following:

–Scalability: To the best of our knowledge, most 
implementations scale up to few thousand nodes.

–Computational complexity: A major pitfall 
of existing force directed layout techniques is their 
computational complexity, which is Θ (N2 + E). 
Hence, performance of existing approaches is low for 
the case of large scale networks.

–Aesthetics: Many tools suffer from node 
cluttering and edge crossing problems in case of 
dense graphs, as well as vertice occlusion over edges, 
and asymmetric drawings as noted by [34].

–Local Minima: The adoption of cooling schedules 
and temperature mechanisms may reduce the problems 
related to local minima; however, they need to be fine-
tuned and optimized to be effective on large graphs.

–Topology layout: If a network contains many 
edges and vertices, the structure of the visualization 
becomes complex due to the local minima problem.

–Convergence Nodes are moved back and forth without 
converging. 

2.2 Influencers and Influence in Social Networks

Traditionally, the literature characterizes a social media 
user as an influencer on the basis of structural properties. 
Centrality metrics are the most widely considered 
parameters for the structural evaluation of a user’s social 
network. The centrality of a concept has been defined as 
the significance of an individual within a network [18]. 
Centrality has attracted a considerable attention as it 
clearly recalls concepts like social power, influence, and 
reputation. A node that is directly connect-ed to a high 
number of other nodes is obviously central to the network 
and likely to play an important role [4]. [19] introduced 
the first centrality metrics, named as degree centrality, 
which is defined as the number of links incident upon a 
node. A node with many connections to other nodes, 
likely to play an important role [40]. A distinction is made 
between in-degree and out-degree centrality, measuring 
the number of incoming and outgoing connections 
respectively. This distinction has also been considered 
important in social networks. For example, Twitter makes 
a distinction between friends and followers. Normally, on

Twitter, users with a high in-degree centrality (i.e. with a 
high number of followers) are considered influencers.

In addition to degree centrality, the literature also 
shows other structural metrics for the identification of 
influencers in social net-works. [31] presented an 
approach, where users were identified as influencers based 
on their total number of retweets. Results highlighted how 
the number of retweets are positively correlated with the 
level of users’ activity (number of tweets) and their in-
degree centrality (number of followers). Besides structural 
metrics, the more recent literature has associated the 
complexity of the concept of influence with the variety of 
content. Several research works have addressed the need 
for considering content-based metrics of influence [7]. 
Content metrics such as the number of mentions, URLs, 
or hashtags have been proved to increase the probability 
of retweeting [3].

The more recent literature has associated the 
complexity of the concept of influence with the diversity 
of content. Several research works have addressed the 
need for considering content-based metrics of influence 
[32,36,42]. Clearly, this view involves a significant 
change in perspective, as assessing influence does not 
provide a static and general ranking of influencers as a 
result. However, there is a need for effective visualization 
technique in social networks, which enable user to 
visually explore large-scale complex social networks to 
identify influencers in social networks. The layout should 
be aesthetically pleasant and provide multi-layered 
periphery of the nodes in clustered networks to exploit 
spread of influence in social networks.

While the literature provides consolidated approaches 
supporting the identification and characterization of hub 
nodes i.e. influencers in a social network, research on 
information spread, which is multi-layered distribution of 
peripheral nodes, is limited. The literature mainly focuses 
on the concept of influencers, while there is a need for 
effective visualization techniques in social networks, 
which enable users to visually explore large-scale 
complex social networks to identify the users who are 
responsible for influence. This paper presents a power-law 
based modified force-directed technique, that extends a 
previous algorithm discussed in [24].

3 The Power-Law Algorithm

This section provides a high-level description of the graph 
layout algorithm used in this paper. An early version of 
the algorithm has been presented by [24]. This paper 
improves the initial algorithm by identifying multiple 
layers of peripheral nodes around hub nodes. The 
power-law layout algorithm belongs to the class of 
force-directed algorithms, such as the one by [12,20].

The base mechanism is that of starting from an initial 
placement of graph nodes, and then iteratively refining the 
position of the nodes according to a force model. The 
iteration mechanism is controlled by means of



Cooldown step. The main innovation in our approach
consists in the synergy between the exploitation of the
power-law distribution of the data and the adaptive
temperaturecooldown mechanism. The underlying idea
is that of iterating on hub nodes first with small
cooldown steps, and subsequently on peripheral nodes
with large cooldown steps, in order to achieve faster
convergence. The advantages of this approach are:

–The initial iteration on hub nodes is more efficient than
iterating on the whole node set, since|Nh| ≪ |N|. As
a consequence, it is possible to perform a fine-grained
positioning of hub nodes (achieved by adopting small
cooldown steps), (peripheral nodes will then form
clusters around hubs).

–The iteration over the set of peripheral nodes, which
would be computationally expensive sinceNp

∼= N, is
limited by the adoption of largecooldown steps.

Algorithm 1 provides a high-level overview of the
whole algorithm by showing its main building blocks.

Algorithm 1: Abstract Level Power-Law Layout
Algorithm.

Input :
Nh = HubNodes;
Np = Peripheral Nodes;
Eh = Edges;
d = node’s Degree;
T = Energy / Temperature Variable;
Th = Temperature threshold;

1 begin
2 call NodePartition()
3 call InitialLayout()
4 while Temperature> 0 do
5 if Temperature> Th then
6 call AttractionForce(Nh,Np)
7 call RepulsionForce(Nh,E)
8 else
9 call AttractionForce(Np,Nh)

10 call RepulsionForce(Np,E)
11 end
12 call Cooldown(T)
13 call resetNodesSizes(Np,Nt,d)
14 end
15 end

that N = Nh ∪Np, with Nh ∩Np = ∅. As a consequence,
the set of edgesE is also partitioned in the set of edgesEh
for which at least one of the two nodes is a hub node, and
the setEp which contains all the edges connecting only
peripheral nodes, withE = Eh ∪ Ep, and Eh ∩ Ep = ∅.
The distinction of a noden as a hub node or as a
peripheral node is based on the evaluation of its degree
ρ(n) against the constant ρh, which is a threshold defined 
as the value of degree that identifies the top ith percentile 
of nodes, sorted by decreasing value of degree. Since the 
power-law is supposed to hold in the degree distribution, 
assuming for example i = 20 will end up in defining ρh as 
the 20th percentile, thus considering as hub nodes the 20% 
of the nodes with the highest values of degree - the 
Pareto’s 80-20 Rule, as suggested by [29]. 

3.2 InitialLayout

The InitialLayout() method responsible for 
random placement of graph nodes. However, as discussed 
by [13] and [27], it is known from the literature that the 
initial layout of graph nodes is an important factor to be 
considered in order to avoid the local minima problem, 
especially as the number of graph nodes increases, as 
noted by [27,15]. As suggested by [14], a combined 
approach can be helpful in solving this problem. In this 
paper, we adopt a random initial placement of nodes; 
however, a combination with other algorithms such as
[26] or [20] will be considered as part of our future work.

[27] The initial iteration on hub nodes is more efficient 
than iterating on the whole node set, since |Nh| ≪ |N|. 
As a consequence, it is possible to perform a fine-
grained positioning of hub nodes (achieved by 
adopting small cooldown steps), (peripheral nodes 
will then form clusters around hubs).

[28] The iteration over the set of peripheral nodes, which 
would be computationally expensive since Np ∼= N, is 
limited by the adoption of large cooldownsteps. 

3.3 Forces

In this paper, both forces formulae (Attraction and 
Repulsion) have been taken from the power-law based 
modified force-directed algorithm as presented in [24].

3.4 CoolDown

The CoolDown(T) method is responsible of cooling 
down the system temperature, in order to make the 
algorithm converge. We introduce a customized dynamic 
temperature cooldown scheme, which adapts the 
cooldown step based on the current value of the 
temperature. As shown in Figure 1, the temperature is 
supposed to be initialized at a value Tstart , and then to be

3.1 NodePartition

The NodePartition method is aimed at the 
exploitation of the power-law degree distribution of data. 
Provided that the degree-distribution of the nodes follows 
a power law, we partition the set of nodes N into the set of
hub nodes Nh and the set of peripheral nodes Np, such



reduced by a variablecooldown step∆ t based on the
current value of the temperature itself. This approach
provides a convenient way to adapt the speed of iteration
of the algorithm to the number of nodes to be processed.
While processing hub nodes (a few), the temperature
decreases slowly; while processing peripheral nodes
(many), the temperature decreases more rapidly to avoid
expensive computations for nodes that are notcentral to
the overall graph layout. The reference temperature value
Tc is used as convergence threshold, i.e., when the
temperature reaches that point the iteration is stopped.

Fig. 1: Adaptive temperature cooldown mechanism.

Algorithm 2 presents the general overview of the
temperaturecooldown scheme. Variables∆ th and ∆ tp
may be parameterized to adapt the algorithm behavior to
properly fit the requirements given by the context of
analysis. The values we used for the experimental
analyses are∆ th = 0.0005 and∆ tp = 0.05.

3.5 resetNodesSizes

This method is responsible for resetting the sizes of each
node in the graph, based upon their degree. The higher the
degree of a node, the greater the size and vice versa.

3.6 Computational complexity

We evaluate the overall computational complexity of the
graph layout algorithm by starting from the assessment of
the computational complexity of its components.

Algorithm 2: Temperature Cooldown

1 begin
2 if Temperature> Th then
3 Temperature= Temperature−∆ th;
4 else
5 Temperature= Temperature−∆ tp;
6 end
7 if Temperature≤ Tc then
8 Temperature= 0;
9 end

10 end

–Node characterization. The computational
complexity of the node characterization step is
O(|N|), since it requires complete iterations over all
the nodes of node setN.

–Initial layout. The computational complexity
of the initial node placement depends on the
complexity of the selected layout algorithm.
Assuming that a random initial placement of nodes is
used, the complexity is O(|N|).

–Attractive force. The computational
complexity of the attractive force is O(|Eh|) for each
iteration on hub nodes, and O(

∣

∣Ep
∣

∣) for each iteration
on peripheral nodes, with |Eh| >

∣

∣Ep
∣

∣ and
|E| = |Eh| +

∣

∣Ep
∣

∣. Overall, the computational
complexity of the attractive force step is then O(|Eh|).

–Repulsive force. The computational
complexity of the repulsive force is O(|Nh|

2) for each

iteration on hub nodes, and O(
∣

∣Np
∣

∣

2
) for each iteration

on peripheral nodes, with
∣

∣Np
∣

∣ > |Nh| and
|N| = |Nh| +

∣

∣Np
∣

∣. Overall, the computational
complexity of the repulsive force step is then
O(

∣

∣Np
∣

∣

2
).

–Cooldown. The computational complexity of the
temperature cooldown step is O(1).

–resetNodesSizes. The computational
complexity of the this step is also O(1).

Considering the computational complexity evaluation
of each step of our algorithm, the overall computational
complexity is O(|Eh|) + O(

∣

∣Np
∣

∣

2
).

4 Experimental Methodology and Results

4.1 Data Sample

We collected a sample of tweets over a two-month period
(December 2012 - January 2013). For the collection of
tweets, we queried the public Twitter APIs by means of
an automated collection tool developed ad-hoc. We
queried Twitter APIs with the following crawling
keywords, representing tourism destinations (i.e. brands):
Amalfi, Amalfi Coast, Lecce, Lucca, Naples, Palermoand



Rome. Two languages have been considered, English and
Italian. Collected tweets have been first analysed with a
proprietary semantic engine in order to tag each tweet
with information abouta) the location to which it refers,
b) the location’s brand driver (or category) on which
authors express an opinion,c) the subject referred to by
the author,d) the number of retweets (if any), ande) the
identifier of the retweeting author. Our data sample is
refers to the tourism domain. We have adopted a modified
version of the Anholt Nation Brand index model to define
a set of categories of content referring to specific brand
drivers of a destination’s brand [2]. Examples of brand
drivers areArt & Culture, Food & Drinks, Events &
Sport, Services & Transports, etc. A tweet is considered
Generic if it does not refer to any Specific brand driver,
while it is consideredSpecific if it refers to at least
one of Anholt’s brand drivers.

Tweets have been categorized by using an automatic
semantic text processing engine that has been developed
as part of this research. The semantic engine can analyse
a tweet and assign it to one or more semantic categories.
The engine has been instructed to categorize according to
the brand drivers of Anholt’s model, by associating each
brand driver with a specific content category described by
means of a network of keywords. Each tweet can be
assigned to multiple categories. We denote withNC the
number of categories each tweetw is assigned to; the
specificityS(w) of a given tweetw is defined in Equation
1 as follows:

S(w) =

{

0,Nc = 0
1,Nc > 0

}

(1)

Table1 refer to the descriptive statistics of the original
non-linear variables.

Table 1: Basic descriptive statistics of our data set.

Variable Value
Number of tweets 957,632
Number of retweeted tweets 79,691
Number of tweeting authors 52,175
Number of retweets 235,790

4.2 Network models

In order to verify the effectiveness of the proposed
algorithm with respect to the goal of our research, we
have defined different network models based on the data
set described in the previous section. Figure2 provides an
overview of the adopted network models.

–Author → Brand (N1) This model considers
the relationship among authors and domain brands,
i.e., touristic destinations in our data set. The network

is modeled as an undirected affiliation two-mode
network, where an author nodena is connected to a
brand nodenb whenever authora has mentioned
brandb in at least one of his/her tweets. The weight of
the edge connectingna to nb is proportional to the
number of times that authora has named brandb in
his/her tweets.

–Author → Category (N2) This model
considers the relationship among authors and domain
brand drivers (categories), i.e., city brand drivers in
our data set (namely,Arts & Culture, Events & Sports,
Fares & Tickets, Fashion & Shopping, Food & Drink,
Life & Entertainment, Night & Music, Services &
Transport, and Weather & Environmental). The
network is modelled as an undirected affiliation
two-mode network, where an author nodena is
connected to a category nodenc whenever authora
has mentioned a subject belonging to categoryc in at
least one of his/her tweets. The weight of the edge
connectingna to nc is proportional to the number of
times that authora has named categoryc in his/her
tweets.

–Author → Subject (N3) This model considers
the relationship among authors and domain subjects,
i.e., relevant semantic lemmas in our data set. The
network is modeled as an undirected affiliation
two-mode network, where an author nodena is
connected to a subject nodens whenever authora has
mentioned subjects in at least one of his/her tweets.
The weight of the edge connectingna to ns is
proportional to the number of times that authora has
named subjects in his/her tweets.

–Author → Author (N4) This model considers
the relationship among authors producing a tweet and
corresponding retweeting authors. The network is
modeled as a directed one-mode network, where an
author nodena1 is linked to another author nodena2
whenever authora1 has retweeted at least one tweet
of authora2. The weight of the edge connectingna1 to
na2 is proportional to the number of times that author
a1 has retweeted authora2.

4.3 Visualization Results and Discussions

In order to visually analyse the influencers (hub nodes) 
and influence (spread across the multi-layered peripheral 
nodes connected around hub nodes), we visualized afore-
mentioned networks in Section 4.2. The color scheme for 
node-pair for all networks, is consistent for each graph 
(Yellow nodes: NA; Blue: NB). Figures 4, 6, 7 and 9 
present visualizations of the each network
(N1 − N4) from dataset, along with visual benchmark 
comparison with existing approaches. Table 2 compares 
the average time performance of our algorithm against 
that of the [20] and [33] approaches. Our approach shows 
a significant improvement in layout computation time.



Table 2: Summary of experimental results.

Dataset Size Computational Time and Speedup
|N| |NA| |NB| |E| PL FR MR

(s) (s) (%) (s) (%)

N1

78 71 7 94 0.012 0.191 93.72 0.039 69.23
275 268 7 540 1.223 3.422 64.26 2.25 45.64

2,627 2,621 7 3,705 4.962 196.387 97.47 96.837 94.88
12,017 12,011 7 14,139 6.472 232.486 97.22 124.023 94.78
21,000 20,993 7 24,349 9.635 328.745 97.07 256.382 96.24
30,523 30,516 7 34,845 12.256 547.334 97.76 327.287 96.26

N2

58 32 26 181 0.0017 1.157 98.53 0.234 92.74
87 56 31 327 0.114 1.638 93.04 0.545 79.08

301 268 38 1,897 1.236 3.427 63.93 2.678 53.85
2,659 2,615 44 11,602 3.248 187.218 98.27 146.213 97.78

12,049 12,005 44 35,192 7.623 412.349 98.15 318.641 97.61

N3

163 56 107 272 0.026 1.759 98.52 0.452 94.25
583 263 320 1,849 1.367 4.768 71.33 2.984 54.19

3,694 2,614 1,079 10,489 2.923 178.382 98.36 136.231 97.85

N4

1,305 373 932 1,000 0.941 3.876 75.72 2.316 59.37
2,677 839 1,838 2,000 1.769 5.672 68.81 3.261 45.75
6,268 1,839 4,429 5,000 2.746 128.762 97.87 87.562 96.86

11,484 2,197 9,287 10,000 4.627 238.752 98.06 124.753 96.29
Key to symbols:N: total number of nodes in network;NA: number of author
nodes;NB: number of brand / subject / category / retweeting author nodes;E:
number of edges
Key to algorithm acronyms:PL: Power-law;FR: Fruchterman-Reingold;MS:
Modified Spring.

Fig. 2: Network models:a) N1: Author→ Brand;b) N2:
Author → Category;c) N3: Author → Subject;d) N4:
Author→ Author.

The dataset follow a power-law distribution, as
discussed by [37]. Figure3 explains that the graphs in our

test set are ‘scale-free’ as they exhibits power-law degree 
distribution.

4.3.1 Results – N1 Network (Brand Fidelity)

Networks N1 is related to the relationship between 
authors and brands, i.e., touristic destinations which are 
basically Italian cities. In this case, the clustering of nodes 
provides a grouping of those authors who have tweeted 
about the same destination. The layering of nodes around 
brands is instead related to the intensity of tweeting about 
a given destination; i.e., authors closer to a brand node 
tweet a higher number of times about that destination 
with respect to farther authors. The emerging semantic of 
the network visualization is in this case related to the 
Brand Fidelity of authors. The visualized network layout 
supports the visual analysis of those authors who have a 
higher fidelity to a given brand, or those authors who 
never tweet about that brand. Moreover, it is possible to 
point out which authors are tweeting about a brand as 
well as a competing brand to support the definition of 
specific marketing campaigns. Through our visualization 
approach, we able to visually identify multiple peripheral 
layers of nodes surrounded by influencing hub nodes, the 
spread of these multi-layered peripheral nodes around hub 
nodes express the influence. Figures 4 provides the 
visualization of networks N1 of our dataset, together with 
a visual comparison with the layouts generated by two



(a) Linear Distribution (b) Logrithmic Distribution

Fig. 3: Power-Law degree Distribution from data setN2.

(a) NetworkN1: G(N=2627; E=3705).

(b) NetworkN1: G(N=12017;E=14139).

clearly highlights that author nodes aggregate in several
groups and subgroups based on their connections with
category nodes, which in this case are the hub nodes. The
aggregation of author nodes can be analyzed from two
different perspectives:

1.Clusters. The groups of author nodes cluster 
together all those authors that are connected to the 
same hubs (i.e., categories); this provides a visual 
clustering for those authors who have tweeted about 
the same categories. For example, Figure 5 highlights 
clusters that group all the authors who tweeted about 
Events & Sports, Fashion & Shopping, Drink, and 
Entertainment categories, as well as the authors who 
tweeted about more than one category, such as 
Transport and College, or Entertainment and Photo.

2.Layers. The network layout shows that clusters are 
placed at a different distance from the visualization 
center based on the number of hubs to which they are 
connected. In other words, the most peripheral 
clusters are those in which nodes are connected to 
only one hub, while the central cluster is the one in 
which nodes are connected to the highest number of 
hub nodes. An example of node layering is provided 
in the upper left area of Figure 5: the cluster referring 
to those authors who have tweeted about category 
Entertainment is positioned above (i.e., on an 
outermost layer) and the clusters grouping the authors 
who have tweeted about Entertainment and Photo, or 
Entertainment and People are positioned below. 
Authors belonging to the central cluster of nodes are 

in fact those who are more generalist in their content 
sharing about the analyzed tourism destinations, since 
they refer to many different categories. On the contrary, 
authors belonging tho the most peripheral clusters are 
those who are very specific in sharing content related 
to selected categories. Figure 6 represents the benchmark 
comparison of our technique with existing techniques, 
and the results are evident that our approach produces 
aesthetically pleasant layouts by highlighting clusters of 
multiple peripheral layers surrounded by hub-nodes.

Fig. 4: Graphs upon network N1 Author → Brand.

reference algorithms. Through our visualization 
approach, we able to visually identify multiple peripheral 
layers of nodes surrounded by influencing hub nodes, the 
spread of these multi-layered peripheral nodes around 
hub nodes express the influence.

4.3.2 Results – N2 Network (Category Specificity)

Figure 5 provides an enlarged view of network N2 
visualized by means of the power-law layout algorithm. 
The network visualization depicted in Figure 5 adopts 
yellow (light) nodes to represent authors, and blue (dark) 
nodes to represent the categories on which authors have 
expressed opinions in their tweets. The layout of the 
network produced by the power-law layout algorithm



Fig. 5: NetworkN2: Author → Category (enlarged view).

Fig. 6: Network N2: Author → Category
G(N=2,659;E=11,602).

4.3.3 Results – N3 Network (Subject Specificity)

Network N3 is related to the relationship between authors 
and subjects. Figures 7 provides the visualization of
networks N3 of our dataset, together with a visual 
comparison with the layouts generated by two reference 
algorithms. The emerging semantic of the network 
visualization is similar to that of N2, since the layout 
provides a visual representation of the level of 
specificity (or generality) of authors with respect to 
subjects instead of categories. In this network, we found 
many subjects, upon which multiple authors expressed 
their opinions, hence the center of graph, seems dense.



Our approach able to produce multiple layers of
peripheral nodes surrounded by hub-nodes. In graph, we
can observe multiple outlier peripheral layers, which are
surrounded by distinct subjects, are drawn far from center
of graph. We also observe some influencing authors’
nodes of large size, as they seemed to express their
opinions many times upon multiple subjects, hence
showing strong influence.

Fig. 7: Network N3: Author → Subjects
G(N=3,694;E=10,489).

4.3.4 Results –N4 Network (Retweeting phenomena)

Network N4 is related to the relationship among authors
retweeting other authors. Although very simple, this
network model visually represents the complexity of
real-world retweeting phenomena. As depicted in Figure
8, different retweeting scenarios are associated with
different network topologies.

1.Cloud Retweeting: In case a) of Figure 8, an author 
is retweeted by many of his followers, is visually 
represented as a cloud of nodes aggregating around a 
single hub.

2.Chain Retweeting: The opposite situation, depicted in 
case c) of Figure 8, is that of a tweet that is retweeted 
by an author which is following the author who has last 
retweeted.

3.Mixed Topology: In the middle, as represented by case
b) of Figure 8, a combination of the two base 
scenarios may happen, leading to intermediate 
topologies of varying complexity. 

Fig. 8: Examples of author-author retweeting scenarios:
a) cloud retweeting;b) mixed topology; c) chain
retweeting.

hub nodes, in fact, it is clear that there is no clue to
understand how content spreads across the authors
network, since the majority of hubs are just the centers of
isolated clouds of authors. Interesting insights can be
provided to the reader only by taking into account the
peripheral nodes (i.e., those nodes that are not labeled as
hubs), and thus by reconstructing the phenomenon of
chain retweeting. The network layout generated by the
proposed power-law layout algorithm is clearly effective
in helping the reader in identifying the different
retweeting scenarios and interpreting how retweets spread
across the network of authors.

Fig. 9: Network N4: Author → Author
G(N=2,677;E=2000)

The interesting retweeting scenarios are the chain 
retweeting ones as shown in Figure 10. By considering 
only hub nodes, in fact, it is clear that there is no clue to 
understand how content spreads across the authors 
network, since the majority of hubs are just the centers of 
isolated clouds of authors. Interesting insights can be 
provided to the reader only by taking into account the 
peripheral nodes (i.e., those nodes that are not labeled as 
hubs), and thus by reconstructing the phenomenon of 
chain retweeting.

5 Conclusions and Future Work

This paper proposes a novel visual aspect for the analysis 
and exploration of social networks in order to identify and 
visually highlight influencers (i.e., hub nodes), and

For Network N4 visualizations which are provided] in 
Figure 8, Figure 9 and 10, a specific node coloring 
scheme is adopted in order to distinguish among different 
types of authors. Yellow nodes represent those authors 
who only retweets other authors, and Blue nodes 
represent those authors who only retweeted by other 
authors. Similarly, Green nodes represent authors who 
both retweet and retweeted by other authors.

Figure 9 represents the benchmark comparison of our 
technique with existing techniques. By considering only



Fig. 10: NetworkN5: Author→ Author (enlarged view of detail).

influence (i.e., spread of multi-layer peripheral nodes),
represented by the opinions expressed by social media
users on a given set of topics. Results show that our
approach produces aesthetically pleasant graph layouts,
by highlighting multi-layered clusters of nodes
surrounding hub nodes (the main topics). These
multi-layered peripheral node clusters represent a visual
aid to understand influence.

Our approach exploits the underlying concept of
power-law degree distribution, which effectively represent
multi-layered peripheral clusters around hub nodes. We
analysed four different networks to exploit brand fidelity,
category specificity, subject specificty and retweeting
phenomenon. Our proposed approach is able to handle
scalable graphs in multi-clustered, and multi-layered

peripheries of network and encourages us to further
explore social network’s intrinsic characteristics. Results
show that our approach significantly improves scalability,
time performance and visual effectiveness compared to
previous approaches. Although our experiment can be
repeated with data from entities different from tourism
domain, additional empirical work is needed to extend
testing to multiple datasets and domains.

Future work will consider influence-based exploration
of social networks based on influential parameters. An
empirical evaluation of generally accepted graph drawing
aesthetics criteria can be considered, to compare our
approach with existing network drawing techniques. In
our current work, we are studying an achievable measure
of influence through proposed visualization approach that



can be used to rank influential nodes in social networks.
Future research may address the development of an
ad-hoc tool, by using proposed technique, for
influence-based exploration of social networks.
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