Representing Social Influencers and Influence using

Power-Law Graphs

Chiara Francalanci,AjazHussairi andFrancescavierlo

Departmenbf ElectronicsnformationandBio-EngineeringPolitecnicodi Milano, | - 20133Milano, Italy

Publishedbnline: 1 Sep.2015

1 Introduction

Most network visualization methodologiesand tools
focuson identifying networkhubs.Hubsrepresententral
nodesconnectingsetsof more peripheralnodesthat are
rather sparseand separatfrom eachother, as discussed
by [45]. Literature has focusedon measuringcentrality
and providesa broadarray of centrality metrics,eachof
themhighlighting a different aspectof a hub’s prominent
role. As discussedy [19], degreecentrality measureshe
absolute number of connectionsof a node, closeness
centrality measuresiow far a nodeis from all othernodes
in the network along the overall shortestpaths, while
betweennessentrality assesseshe role of a node as a
hub of information by analyzingthe extentto which the
node connects separate subnetworks. These metrics
represent the underlying concept of many network
visualizationtools. The assumptiorthat most tools make
to visualizelarge networksis thathubsrepresenthe main
driver of the structureof networksand, if they exist, they
shouldbe clearly highlightedto copewith complexityand
obtain a nice and intuitiveepresentatioof the network.
The literatureon social medianakes a distinction
between influencers and influence [11,30]. The former
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aresocialmediauserswith a broadaudienceFor example,
influencers can have a high number of followers on
Twitter, or a multitude of friendson Facebookor a broad
array of connectionson LinkedIn. The term influenceis
insteadusedto refer to the social impact of the content
sharedby social mediausers.The breadthof the audience
wasconsideredhefirst andforemostindicatorof influence
for traditionalmedia,suchastelevisionor radio. However,
traditional media are basedon broadcastingrather than
communicationwhile socialmediaaretruly interactive.lt
is very common that influencerssay somethingtotally
uninterestingand,asa consequencéhey obtainlittle or no
attention. On the contrary, if social media users are
interested in something, they typically show it by
participating in the conversation with a variety of
mechanismsand, most commonly,by sharingthe content
that they haveliked. [8] hasnotedthat a contentthat has
hadanimpactonauser'smindi s sharedinfluencersare
prominentsocial media users,but we cannotexpectthat
the contentthatthey shareis boundto havehigh influence,
asdiscussedy [6].

In previousresearchBruni et al. [10] hasshownhow
thecontentof messagesanplay a critical role andcanbe



a determinantof the social influence of a message
irrespective of the centrality of the message’sauthor.
Resultssuggestthat peripheralnodescan be influential:
this paperstartsfrom the observationmadeby [12] that
social networks of influence follow a power-law
distributionfunction, with a few hub nodesanda long tail
of peripheralnodes,consistentwith the so-calledsmall-
world phenomenomsnotedby [45]. In socialmedia,hub
nodesrepresentsocial influencers,but influential content
can be generatecby peripheralnodesand spreadalong
possiblymulti-hop pathsoriginatedin peripheralnetwork
layers.

Theultimategoal of our researchs to understandhow
influential content spreadsacrossthe network. For this
purpose,identifying and positioning hub nodesis not
sufficient, while we needan approachthat supportsthe
exploration of peripheral nodes and of their mutual
connectionsin this paper,we exploit a modified force-
directedalgorithm[24] to highlight thelocal multi-layered
neighborhoodlustersaroundhub nodes.The algorithmis
basedon the ideathat hub nodesshouldbe prioritized in
laying out the overall network topology, but their
placementshould dependon the topology of peripheral
nodesaroundthem.In our approachthe topology of the
peripheryis definedby grouping peripheralnodesbased
on the strengthof their link to hub nodes,aswell asthe
strength of their mutudhterconnections.

The approachis testedon a large sampleof tweets
expressingopinions on a selectionof Italian locations
relevant to the tourism domain. Tweets have been
semanticallyprocessedand taggedwith information on
a) thelocationto which they refer,b) the location’s
brand driver (or category)on which authorsexpressan
opinion, ¢) the subjectreferredby the author,d) the
number of retweets, and e) the identifier of the
retweeting author. With this information, we draw
corresponding multi-mode networks highlighting the
connections among authors (retweeting), and their
interests(brandor category).The datasampleis referred
to the tourism domain. We have adopteda modified
version of the Anholt's Nation Brand index model to
definea setof categoriesof contentreferringto specific
branddriversof a destination’sbrand[2]. Basedon a set
of qualitative criteria, we visually compare the
effectivenesof our approachin highlighting featuresof
the networks relevant to understandthe influence of
contentwith previousstate-of-the-aralgorithmsbasedon
the traditional spring and force-directedapproachegsee,
for example, [13] and [20]). Results highlight the
effectiveness of our approach, providing interesting
insightson how unveiling the structureof the peripheryof
the network canvisually showthe potentialof peripheral
nodes in determiningnfluence.

The presentationis organizedas follows. Section 2
discusseinfluencein socialmedia,limitations of existing
semantic network drawing techniquesand tools, and
standard graph drawing aesthetitieria. Section3

discusses the implementation aspects of our work.
Section 4 presents the experimental methodology,
performance evaluation, and benchmark comparison.
Conclusionsredrawnin Section5.

2 Stateof the Art

In this section, we will discuss about limitations of
existing network visualization techniquesand tools. We
will also highlights the most common and widely
acceptediisualizationaestheticriteria.

2.1 NetworkVisualizationTechniquesnd Tools

Thefirst spring-embeddethodelfor networkvisualization
was proposedby [15], who have simplified the formulae
used to compute spring forces, and made significant
improvementdy usinga cooling schedulego limit nodes’
maximumdisplacementHowever,the repulsiveforce was
still computed betweenall node pairs, yielding to an
overall computationakcomplexity of O(N?) for a network
with N nodes. Subsequentstudies that took a similar
approach are the Online Force Directed Animated
Visualization (OFDAV) techniqueby [23], and the edge-
edgerepulsionapproachby [34]. More recently,[44] has
proposedthe over relaxationalgorithm for force directed
drawing. Despite these efforts, these force-directed
algorithmsarestill considerechon-scalableandunsuitable
for largenetworks, also noted by [21].

Severalresearchefforts in network visualizationhave
targetedpower-lawalgorithmsandtheir combinationwith
the traditional force-directedtechniques,as for example
in [27,1]. Among theseapproachesthe most notableis
the Out-Degreelayout (ODL) for the visualization of
large-scalenetwork topologies,presentecy [38,12]. The
core conceptof the algorithmis the segmentatiorof the
network nodes into multiple layers based on their
out-degree,i.e. the number of outgoing edgesof each
node. The positioningof network nodesstartsfrom those
with the highest out-degree,under the assumptionthat
nodeswith a lower out-degreehave a lower impact on
visualeffectiveness.

The most commonand successfulvisualizationtools
are surveyedin [39,28,35] and [43]. Widely discussed
tools include Cyt oscape, Ont oGraf, Ont Spher e,
G ny, graphViz, Hyper G aph, rdf Gavity,
I saViz, Janbalaya, Ow 2Prefuse, Flow
i nspector, Cephi and SocNetV. There is no
one-to-onemapping betweentechniquesand tools. This
sectiondiscussesisageresultsfrom the literatureor from
experimentaévidencehatwe madewith thetools.

Most of the tools are not highly scalableand with
large-scalegraphs, they are time inefficient or produce
ambiguous layouts. Many visualization tools support
graphs ugo a few hundred nodes, suchasrdf G avity



[21], Janbal aya [41], GraphViz [16], and Fl ow
i nspect or [9]. With large-scalegraphs,they are time
inefficient or produceambiguouslayouts, as observedby
[21] with r df Gravi t y. Node clutteringissuesand edge
overlapissuesare common,asin Pr ef use [22], Gephi
[5], GraphVi z, andOnt oG af [17]. Force-directeénd
spring layouts are implementedin several visualization
tools, but local minimaproblemsarecommon,asobserved
in SocNet V [25], Gephi , and in Fl ow i nspect or.

The most practical limitations that we have observed
in existing force-directedbasedgraphdrawing techniques
arethefollowing:

—Scal abi l'i ty: Tothebestof ourknowledgemost
implementationscaleup to few thousandodes.

—Conput ati onal conpl exity: A major pitfall
of existing force directethyout techniquess their
computationatomplexity,which is @ (N?> + E).
Hence, performancef existing approaches is low for
the case of large scafeetworks.

—Aest hetics: Many tools suffer from node
cluttering and edge crossing problemsin case of
densegraphsaswell asverticeocclusionoveredges,
andasymmetriddrawingsasnotedby [34].

—Local M ni ma: The adoptiorof coolingschedules

and temperaturmechanismsnay reduce the problems
relatedto localminima; however, they need to be fine-

tuned and optimizetb be effectiveon largegraphs.
—Topol ogy | ayout : If a network containsmany
edgesand vertices, the structureof the visualization
becomesomplexdueto thelocal minimaproblem.
—Convergencé&lodesaremovedbackandforth without
converging.

Twitter, users with a high in-degrementrality(i.e. with a
high number of followers) are considered influencers.

In addition to degree centrality, the literature also
shows other structural metrics for the identification of
influencers in social net-works. [31] presented an
approachwhereuserswereidentifiedasinfluencersdased
on their total numberof retweetsResultshighlightedhow
the numberof retweetsare positively correlatedwith the
level of users’activity (numberof tweets)and their in-
degreecentrality(hnumberof followers).Besidesstructural
metrics, the more recent literature has associatedthe
complexityof the conceptof influencewith the variety of
content.Severalresearchworks have addressedhe need
for consideringcontent-basednetrics of influence [7].
Contentmetrics suchas the numberof mentions,URLSs,
or hashtagdhavebeenprovedto increasethe probability
of retweeting3].

The more recent literature has associated the
complexity of the conceptof influencewith the diversity
of content. Severalresearchworks have addressedhe
needfor consideringcontent-basednetrics of influence
[32,36,42]. Clearly, this view involves a significant
changein perspective,as assessingnfluence does not
provide a static and generalranking of influencersas a
result. However,thereis a needfor effectivevisualization
technique in social networks, which enable user to
visually explore large-scalecomplex social networksto
identify influencersin socialnetworks.The layout should
be aesthetically pleasant and provide multi-layered
periphery of the nodesin clusterednetworksto exploit
spread of influenca socialnetworks.

While the literature providesconsolidatedapproaches
supportingthe identification and characterizatiorof hub
nodesi.e. influencersin a social network, researchon
information spreadwhich is multi-layereddistribution of
peripheralnodesiis limited. The literaturemainly focuses

2.2 Influencers and Influence in Social Networksn the conceptof influencers,while thereis a needfor

Traditionally, the literature characterizesa social media
userasan influenceron the basisof structuralproperties.
Centrality metrics are the most widely considered
parametergor the structuralevaluationof a user'ssocial
network. The centrality of a concepthasbeendefinedas
the significanceof an individual within a network [18].

Centrality has attracted a considerableattention as it

clearly recallsconceptdike social power,influence,and

reputation.A nodethat is directly connect-edto a high

numberof othernodesis obviouslycentralto the network
and likely to play an importantrole [4]. [19] introduced
the first centrality metrics, namedas degreecentrality,

which is definedas the numberof links incidentupona

node. A node with many connectionsto other nodes,
likely to play animportantrole [40]. A distinctionis made
betweenin-degreeand out-degreecentrality, measuring
the number of incoming and outgoing connections
respectively. This distinction has also been considered
importantin socialnetworks.For example Twitter makes
a distinctionbetween friends and followers. Normaliyn

effective visualization techniquesin social networks,
which enable users to visually explore large-scale
complex social networks to identify the userswho are

responsibldor influence.This paperpresentsa power-law
basedmodified force-directedtechnique,that extendsa

previous algorithmdiscussed in [24].

3 The Power-Law Algorithm

This sectionprovidesa high-leveldescriptionof the graph
layout algorithm usedin this paper.An early version of
the algorithm has been presentedby [24]. This paper
improves the initial algorithm by identifying multiple
layers of peripheral nodes around hub nodes. The
power-law layout algorithm belongs to the class of
force-directedalgorithms,suchastheoneby [12, 20].

The basemechanisnis that of startingfrom aninitial
placemenbf graphnodesandtheniteratively refining the
position of the nodesaccordingto a force model. The
iterationmechanisnis controlledby means of



Cool down step The main innovation in our approach thatN = N, U Np, with N, Np = @. As a consequence,
consists in the synergy between the exploitation of thethe set of edgeR is also partitioned in the set of edgés
power-law distribution of the data and the adaptive for which at least one of the two nodes is a hub node, and
temperature ool down mechanism. The underlying idea the setE, which contains all the edges connecting only
is that of iterating on hub nodes first with small peripheral nodes, witle = EnUEp, andEnNE, = @.
cool down steps, and subsequently on peripheral nodesThe distinction of a noden as a hub node or as a
with large cool down steps, in order to achieve faster peripheral node is based on the evaluation of its degree

convergence. The advantages of this approach are:

p(n) againstthe constanto,, which is a thresholddefined
asthe value of degreethatidentifiesthe top it percentile

iterating on the whole node set, singé,| < |N|. As

ower-lawis supposedo hold in the degreedistribution,

a consequence, it is possible to perform a fine-grainechssumingfor examplei = 20 will endup in definingp, as
positioning of hub nodes (achieved by adopting smallihe 201 percentile thusconsideringashub nodesthe 20%
cool down steps), (peripheral nodes will then form of the nodeswith the highest values of degree- the

clusters around hubs).

—The iteration over the set of peripheral nodes, which

would be computationally expensive sindg = N, is
limited by the adoption of largeool down steps.

Algorithm 1 provides a high-level overview of the
whole algorithm by showing its main building blocks.

Algorithm 1: Abstract Level Power-Law Layout
Algorithm.

Input:

Np = HubNodes;

Np = Peripheral Nodes;

E;, = Edges;

d = node’s Degree;

T = Energy / Temperature Variable;

T, = Temperature threshold;

1 begin

2 call NodePartition()

3 call I nitial Layout ()

4 while Temperature> 0 do

5 if Tenperature> Ty, then

6 ‘ call Attracti onFor ce( Ny, Np)
7 call Repul si onFor ce( Ny, E)

8 else

9 callAttracti onFor ce(Np, Np)
10 call Repul si onFor ce( Np, E)
11 end

12 call Cool down( T)

13 callr eset NodesSi zes( Np, N, d)
14 end

15 end

3.1 NoddPartition

The NodePartition method is aimed at the
exploitationof the power-lawdegreedistributionof data.
Providedthatthe degree-distributiof the nodesfollows
apowerlaw, we partitionthe setof nodesN into the setof
hub nodesN;, andthe set of peripheralnodesN,, such

Pareto’s 80-20 Rule, as suggested by [29].

3.2 InitialLayout

The InitialLayout() method responsible for
randomplacemenbf graphnodes However,asdiscussed
by [13] and[27], it is known from the literaturethat the
initial layout of graphnodesis an importantfactor to be
consideredn order to avoid the local minima problem,
especiallyas the number of graph nodesincreases,as
noted by [27,15]. As suggestedby [14], a combined
approachcan be helpful in solving this problem.In this
paper,we adopt a random initial placementof nodes;
however,a combinationwith other algorithmssuch as

[26] or [20] will beconsideredspartof ourfuturework.

[27] The initialiterationon hub nodes is more efficient
than iteratingon the whole node set, sincep|N« |N|.
As a consequence, it is possible to perform a fine-
grainedpositioning of hub nodes (achieveg
adopting small cool down steps), (peripheraddes
will then form clusters around hubs).

[28] The iterationover the set of peripheralodes, which

would be computationallgxpensive since (N= N, is
limited by the adoption of large cool dowsteps.

3.3Forces

In this paper, both forces formulae (Attraction and
Repulsion) have been taken from the power-law based
modified force-directedlgorithmas presented in [24].

3.4 CoolDown

The Cool Down( T) methodis responsibleof cooling
down the system temperature,in order to make the
algorithmconvergeWe introducea customizeddynamic
temperature cool down scheme, which adapts the
cool down step based on the current value of the
temperature As shownin Figure 1, the temperatureis
supposedo beinitialized at a value Tsart, andthento be



Algorithm 2: Temperature Cooldown
h1 begin

reduced by a variableool down stepAt based on the
current value of the temperature itself. This approac

provides a convenient way to adapt the speed of iteration If Temperature> T then i
; 3 | Temperature= Temperature- Atp;

of the algorithm to the number of nodes to be processed. 4 else

While processing hub_nodes (a few), the temperature | Temperature- Temperature- Aty;

decreases slowly; while processing peripheral nodes . end

(many), the temperature decreases more rapidly to avoid ; | it Temperature< T, then
expensive computations for nodes that are ceitral to 8 | Tem perature= O;
the overall graph layout. The reference temperature value 4 end

Te is used as convergence threshold, i.e., when the;; eng

temperature reaches that point the iteration is stopped.

T —Node characterizati on. The computational
complexity of the node characterization step is
O(IN]), since it requires complete iterations over all
the nodes of node st
- nitial |ayout. The computational complexity
of the initial node placement depends on the
lteration over complexity of the selected layout algorithm.
" hub nodes Assuming that a random initial placement of nodes is
used, the complexity is Q).

—Attractive force. The computational
complexity of the attractive force is (&|) for each
iteration on hub nodes, and [B|) for each iteration
on peripheral nodes, with|E,| > |Ep| and
|E| = |En| + |Ep|. Overall, the computational

,,,,,,,,,,,,, . complexity of the attractive force step is thenEY().
Aty —Repul sive force. The computational

Iteration over complexity of the repulsive force is @¢,|?) for each
— peripheral nodes . . 2 . .
T, iteration on hub nodes, and B |) for each iteration

on peripheral nodes, with|Np| > [Ny and
v IN| = |Nn| + |Np|. Overall, the computational

complexity of the repulsive force step is then
Fig. 1: Adaptive temperature cooldown mechanism. o(N, 2)_

—Cool down. The computational complexity of the
temperature cooldown step is O(1).
Algorithm 2 presents the general overview of the —eset NodesSi zes. The computational
temperaturecool down scheme. Variabledt, and Aty complexity of the this step is also O(1).
may be parameterized to adapt the algorithm behavior to
properly fit the requirements given by the context of
analysis. The values we used for the experimenta o 2
analyses ardt, = 0.0005 andAt, = 0.05. complexity is O(En|) + O(Np| ).

g
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Considering the computational complexity evaluation
|of each step of our algorithm, the overall computational

3.5 resetNodesSizes 4 Experimental Methodology and Results

This method is responsible for resetting the sizes of eac
node in the graph, based upon their degree. The higher th%'l Data Sample

reeofan the greater the size and vice versa. .
degree of a node, the greater the size and vice versa We collected a sample of tweets over a two-month period

(December 2012 - January 2013). For the collection of
3.6 Computational complexity tweets, we queried the public Twitter APIs by means of

an automated collection tool developed ad-hoc. We
We evaluate the overall computational complexity of thequeried Twitter APIs with the following crawling
graph layout algorithm by starting from the assessment okeywords, representing tourism destinations (i.e. brands):
the computational complexity of its components. Amalfi Amalfi CoastLecce Lucca Naples Palermoand



is modeled as an undirected affiliation two-mode
network, where an author nodwg is connected to a
brand noden, whenever authorma has mentioned
brandb in at least one of his/her tweets. The weight of
the edge connecting, to ny is proportional to the
number of times that auth@ has named brand in
his/her tweets.

—Aut hor — Category (Np) This model
considers the relationship among authors and domain
brand drivers (categories), i.e., city brand drivers in
our data set (namelrts & Culture, Events & Sports

Rome Two languages have been considered, English and
Italian. Collected tweets have been first analysed with a
proprietary semantic engine in order to tag each tweet
with information abouf) the location to which it refers,

b) the location’s brand driver (or category) on which
authors express an opinion) the subject referred to by
the authord) the number of retweets (if any), aed the
identifier of the retweeting author. Our data sample is
refers to the tourism domain. We have adopted a modified
version of the Anholt Nation Brand index model to define
a set of categories of content referring to specific brand

drivers of a destination’s bran@][ Examples of brand
drivers areArt & Culture, Food & Drinks Events &
Sport Services & Transportsetc. A tweet is considered

Generic if it does not refer to any Specific brand driver,

while it is consideredSpeci fi c if it refers to at least

Fares & Tickets Fashion & ShoppingFood & Drink,
Life & Entertainment Night & Music Services &
Transport and Weather & Environmentil The
network is modelled as an undirected affiliation
two-mode network, where an author nodg is

one of Anholt’s brand drivers. connected to a category node whenever authoa
Tweets have been categorized by using an automatic has mentioned a subject belonging to categoiry at

semantic text processing engine that has been developed least one of his/her tweets. The weight of the edge

as part of this research. The semantic engine can analyse connectingn, to n¢ is proportional to the number of

a tweet and assign it to one or more semantic categories. times that authorm has named categony in his/her

The engine has been instructed to categorize according to tweets.

the brand drivers of Anholt’s model, by associating each —Aut hor — Subj ect (Nz) This model considers

brand driver with a specific content category described by  the relationship among authors and domain subjects,

means of a network of keywords. Each tweet can be i.e., relevant semantic lemmas in our data set. The

assigned to multiple categories. We denote withthe
number of categories each twestis assigned to; the
specificity S(w) of a given tweetv is defined in Equation

network is modeled as an undirected affiliation
two-mode network, where an author nodg is
connected to a subject nodgwhenever authoa has

mentioned subjed in at least one of his/her tweets.
The weight of the edge connecting, to ns is
proportional to the number of times that autlohas
named subjedtin his/her tweets.

—Aut hor — Aut hor (Ng) This model considers
the relationship among authors producing a tweet and
corresponding retweeting authors. The network is
modeled as a directed one-mode network, where an
author nodeng; is linked to another author nodwg,
whenever authoal has retweeted at least one tweet
of authora2. The weight of the edge connecting to
Na2 is proportional to the number of times that author
al has retweeted autha®.

1 as follows:

_ JO,N.=0
S(W)—{l,NC>0} @)
Tablel refer to the descriptive statistics of the original

non-linear variables.

Table 1: Basic descriptive statistics of our data set.

Variable Value

Number of tweets 957,632
Number of retweeted tweets 79,691
Number of tweeting authory 52,175
Number of retweets 235,790

4.3 VisualizationResultsand Discussions

In order to visually analysethe influencers(hub nodes)
and influence(spreadacrossthe multi-layeredperipheral
nodesconnectedaroundhub nodes),we visualizedafore-
In order to verify the effectiveness of the proposed mentionednetworksin Section4.2. The color schemefor
algorithm with respect to the goal of our research, wenode-pairfor all networks,is consistentfor eachgraph
have defined different network models based on the datdYellow nodes:Na; Blue: Ng). Figures 4, 6, 7 and 9
set described in the previous section. Figeigovides an ~ Present visualizationsf the eacmetwork

overview of the adopted network models. (N1 — Ng) from dataset,along with visual benchmark
comparisonwith existing approachesTable 2 compares

—Aut hor — Brand (N;) This model considers the averagetime performanceof our algorithm against
the relationship among authors and domain brandsthatof the [20] and[33] approacheOur approactshows
i.e., touristic destinations in our data set. The networka significant improvemernn layoutcomputatiortime.

4.2 Network models



Table 2: Summary of experimental results.

Dataset Size Computational Time and Speedup

N[ Nl INe[  JE[| PL FR MR
(s) (s) (%) (s) (%)
78 71 7 94| 0.012 0.191 93.72 0.039 69.23
275 268 7 540 1.223 3.422 64.26 225 45.64
N 2,627 2,621 7 3,708 4.962| 196.387 97.47| 96.837 94.88
1] 12,017 12011 7 14,139 6.472 | 232.486 97.22| 124.023 94.78
21,000 20,993 7 24,349 9.635| 328.745 97.07| 256.382 96.24
30,523 30,516 7 34,84% 12.256 | 547.334 97.76| 327.287 96.26
58 32 26 181| 0.0017 1.157 98.53 0.234 92.74
87 56 31 327| 0.114 1.638 93.04/ 0.545 79.08
N 301 268 38 1,897 1.236 3.427 63.93 2.678 53.85
2,659 2,615 44 11,602 3.248 | 187.218 98.27| 146.213 97.78
12,049 12,005 44 35192 7.623 | 412.349 98.15| 318.641 97.61
163 56 107 272 0.026 1.759 98.52 0.452 94.25
N3 583 263 320 1,849 1.367 4768 71.33 2984 54.19
3,694 2614 1,079 10,489 2.923 | 178.382 98.36| 136.231 97.85
1,305 373 932 1,000 0.941 3.876 75.72 2316 59.37
N 2,677 839 1,838 2,000 1.769 5.672 68.81 3.261 45.75
4| 6,268 1,839 4,429 5,000 2.746| 128.762 97.87| 87.562 96.86
11,484 2,197 9,287 10,00% 4.627 | 238.752 98.06| 124.753 96.29

Key to symbols:N: total number of nodes in networlya: number of author
nodes;Ng: number of brand / subject / category / retweeting author nodes;

number of edges

Key to algorithm acronymsPL: Power-law;FR: Fruchterman-ReingoldVS:

Modified Spring.

S .
o =
0 .
d)

Fig. 2: Network modelsa) Nj: Author— Brand;b) No:
Author — Category;c) Ns: Author — Subject;d) Ng:
Author — Author.

testsetare‘scale-free’asthey exhibitspower-lawdegree
distribution.

4.3.1Results- N; Network (BrandFidelity)

Networks N; is related to the relationship between
authorsand brands,i.e., touristic destinationswhich are
basicallyltalian cities.In this case the clusteringof nodes
providesa groupingof thoseauthorswho havetweeted
aboutthe samedestinationThelayeringof nodesaround
brandss insteadrelatedto the intensityof tweetingabout
a given destination;i.e., authorscloserto a brandnode
tweet a higher numberof times about that destination
with respecto fartherauthors The emergingsemanticof
the network visualizationis in this caserelatedto the
Brand Fidelity of authors.The visualizednetworklayout
supportsthe visual analysisof thoseauthorswho havea
higher fidelity to a given brand, or those authorswho
nevertweetaboutthat brand.Moreover,it is possibleto
point out which authorsare tweeting abouta brand as
well as a competingbrandto supportthe definition of
specificmarketingcampaignsThroughour visualization
approachwe ableto visually identify multiple peripheral
layersof nodessurroundedy influencinghub nodesthe
spreadof thesemulti-layeredperipherainodesaroundhub
nodes expressthe influence. Figures 4 provides the

The dataset follow a power-law distribution, as visualizationof networksN; of our datasetfogethemwith
discussed byd7]. Figure3 explains that the graphs in our a visual comparisonwith the layouts generatedoy two



0:400 P(K) = 0.2442K 1162

n = 65,94K 1162 0.350 R*=0.8328

R*=0.8328
0.300

0250 |

£ 0200 -
T

Frequency (n)

0.150

0.100

0.050

0.000
20 30 40 50 60 70 80 1 10 100

Degree (K)

Degree (K)

(a) Linear Distribution (b) Logrithmic Distribution

Fig. 3: Power-Law degree Distribution from data $ét

clearly highlights that author nodes aggregate in several
groups and subgroups based on their connections with
category nodes, which in this case are the hub nodes. The
aggregation of author nodes can be analyzed from two

a) Power Layout

b) Modified Spring ¢) Force - Directed

(a) NetworkN;: G(N=2627; E=3705).

{ »

b) Modified Spring ¢) Force — Directed

(b) NetworkN;: G(N=12017;E=14139).

a) Power Layout

Fig. 4: GraphsuponnetworkN; Aut hor — Br and.

reference algorithms. Through our visualization
approachwe ableto visually identify multiple peripheral
layersof nodessurroundedy influencinghub nodes the
spreadof these multi-layered peripheralnodesaround
hubnodesexpresgheinfluence.

4.3.2Results N, Network (CategorySpecificity)

Figure 5 provides an enlarged view of network N
visualizedby meansof the power-lawlayout algorithm.
The network visualization depictedin Figure 5 adopts
yellow (light) nodesto represenauthorsandblue (dark)
nodesto representhe categorieson which authorshave
expressedopinions in their tweets. The layout of the
network producedby the power-law layout algorithm

different perspectives:

1.0 ust ers. The groups of author nodes cluster
togetherall those authorsthat are connectedto the
samehubs (i.e., categories);this providesa visual
clusteringfor thoseauthorswho havetweetedabout
the samecategoriesFor example Figure5 highlights
clustersthat groupall the authorswho tweetedabout
Events& Sports, Fashion & Shopping,Drink, and
Entertainmentategoriesaswell asthe authorswho
tweeted about more than one category, such as
TransportandCollege or EntertainmentandPhoto.

2.Layers. Thenetworklayoutshowsthatclustersare
placedat a different distancefrom the visualization
centerbasedon the numberof hubsto which theyare
connected. In other words, the most peripheral
clustersare thosein which nodesare connectedto
only one hub, while the centralclusteris the onein
which nodesare connectedo the highestnumberof
hub nodes.An exampleof nodelayeringis provided
in the upperleft areaof Figure5: the clusterreferring
to those authorswho have tweetedabout category
Entertainment is positioned above (i.e., on an
outermostayer)andthe clustersgroupingthe authors
who havetweetedaboutEntertainmentnd Photo,or
EntertainmentindPeoplearepositionedbelow.
Authorsbelongingto the centralclusterof nodesare

in factthosewhoaremoregener al i st in theircontent
sharing about the analyzedtourism destinations,since
they refer to many different categoriesOn the contrary,
authorsbelongingtho the most peripheralclustersare
thosewho arevery speci fi c in sharingcontentrelated
to selectedcategoriesFigure 6 representshe benchmark
comparisonof our techniquewith existing techniques,
and the resultsare evidentthat our approachproduces
aestheticallypleasantayoutshby highlighting clustersof
multiple peripheralayerssurroundedby hub-nodes.
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4.3.3Results- N3 Network (SubjectSpecificity)

¢) Force — Directed

a) Power Layout b) Modified Spring

Fig.
G(N=2,659;E=11,602).

Network N3 is relatedto the relationshipbetweenauthors
and subjects. Figures 7 provides the visualization of
networks N3 of our dataset,together with a visual
comparisorwith the layoutsgeneratedy two reference
algorithms. The emerging semantic of the network
visualizationis similar to that of N, since the layout
provides a visual representationof the level of
speci fi ci ty (or generality)of authorswith respecto
6. Network Ny Author — Category sﬁbjectsinsteaﬁc()f cgtegorietgl)n this network,we?ound
many subjects,upon which multiple authorsexpressed
their opinions, hencethe centerof graph,seemsdense.



Our approach able to produce multiple layers of
petipheral nodes surrounded by hub-nodes. In graph, we
can observe multiple outlier peripheral layers, which are®

surrounded by distinct subjects, are drawn far from centel

of graph. We also observe some influencing authors’

nodes of large size, as they seemed to express the. K K J
opinions many times upon multiple subjects, hence

showing strong influence. Fig. 8: Examples of author-author retweeting scenarios:

a) cloud retweeting;b) mixed topology;c) chain
retweeting.

hub nodes, in fact, it is clear that there is no clue to
understand how content spreads across the authors
network, since the majority of hubs are just the centers of
isolated clouds of authors. Interesting insights can be
provided to the reader only by taking into account the
peripheral nodes (i.e., those nodes that are not labeled as
hubs), and thus by reconstructing the phenomenon of
chain retweeting The network layout generated by the
proposed power-law layout algorithm is clearly effective
in helping the reader in identifying the different
retweeting scenarios and interpreting how retweets spread
across the network of authors.

b) Modified Spring

a) Power Layout ¢) Force — Directed

Fig. 7: Network Ns:
G(N=3,694;E=10,489).

Aut hor — Subj ects

4.3.4 Results Ny Network (Retweeting phenomena)

Network Ny is related to the relationship among authors -
retweeting other authors. Although very simple, this
network model visually represents the complexity of .
real-world retweeting phenomena. As depicted in Figure::
8, different retweeting scenarios are associated with .. o0 S

different network topologies.

1.Cloud Retweetingin casea) of Figure8, an author
is retweetedby many of his followers, is visually
representeasa cloud of nodesaggregatingairounda
singlehub.

2.Chain RetweetingThe oppositesituation,depictedn
casec) of Figure8, is thatof atweetthatis retweeted
by anauthomwhichis following theauthorwho haslast
retweeted.

3.Mixed Topology:In themiddle,asrepresentetly case
b) of Figure 8, a combination of the two base
scenarios may happen, leading to intermediate
topologiesof varyingcomplexity.

For Network N4 visualizationswvhich are provided]in
Figure 8, Figure 9 and 10, a specific node coloring
schemads adoptedn orderto distinguishamongdifferent
types of authors. Yellow nodesrepresentthose authors
who only retweets other authors, and Blue nodes
representthose authors who only retweetedby other
authors. Similarly, Green nodesrepresentauthorswho
both retweetind retweetetdy other authors.

Figure9 representshe benchmarlcomparisorof our
techniquewith existing techniquesBy consideringonly

) Power Layout

b) Modified Spring

¢) Force — Directed

Fig. 9: Network Ng:
G(N=2,677;E=2000)

Aut hor — Aut hor

The interesting retweeting scenariosare the chain
retweetingonesas shownin Figure 10. By considering
only hub nodesiin fact, it is clearthatthereis no clueto
understandhow content spreads across the authors
network,sincethe majority of hubsarejust the centersof
isolated clouds of authors. Interestinginsights can be
providedto the readeronly by taking into accountthe
peripheralnodes(i.e., thosenodesthat are not labeledas
hubs), and thus by reconstructingthe phenomenorof
chainretweeting

5 Conclusionsand Future Work

This paperproposes novelvisualaspector the analysis
andexplorationof socialnetworksin orderto identify and
visually highlight influencers (i.e., hub nodes), and



Fig. 10: NetworkNs: Author — Author (enlarged view of detail).

influence (i.e., spread of multi-layer peripheral nodes),peripheries of network and encourages us to further
represented by the opinions expressed by social mediaxplore social network’s intrinsic characteristics. Results
users on a given set of topics. Results show that oushow that our approach significantly improves scalability,

approach produces aesthetically pleasant graph layoutéime performance and visual effectiveness compared to
by highlighting multi-layered clusters of nodes previous approaches. Although our experiment can be
surrounding hub nodes (the main topics). Theserepeated with data from entities different from tourism

multi-layered peripheral node clusters represent a visuatiomain, additional empirical work is needed to extend

aid to understand influence. testing to multiple datasets and domains.

Our approach exploits the underlying concept of  Future work will consider influence-based exploration
power-law degree distribution, which effectively representof social networks based on influential parameters. An
multi-layered peripheral clusters around hub nodes. Weempirical evaluation of generally accepted graph drawing
analysed four different networks to exploit brand fidelity, aesthetics criteria can be considered, to compare our
category specificity, subject specificty and retweetingapproach with existing network drawing techniques. In
phenomenon. Our proposed approach is able to handleur current work, we are studying an achievable measure
scalable graphs in multi-clustered, and multi-layeredof influence through proposed visualization approach that
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