Turbulent drag reduction for a wall with a bump

Jacopo Banchetti & Maurizio Quadrio, Politecnico di Milano

ETC17 2019, September 3-6

Friction Drag Reduction

Research

- Simple geometries
- Friction drag only
- (Low Reynolds number)

Applications

- Complex Geometries
- Pressure drag wave drag...
- (High Reynolds number)

What is the effect of friction drag reduction on total drag?

Channel with a bump

- Incompressible DNS of a channel with a small bump
- Second-order FD, immersed boundary
- Periodic + non-periodic domain
- $Re_{\tau} = 200$, $(L_x, L_y, L_z) = (25h, 3.2h, 2h)$, $(N_x, N_y, N_z) = (1120, 312, 241)$

Curved wall

Two (small) bump geometries, one inducing mild separation

The Streamwise Travelling Waves (StTW)

Quadrio, Ricco & Viotti, JFM 2009

Wall shear stress

Wall shear stress

Pressure at the wall

Pressure at the wall

Power budget

	Plane			Bump		
	Ref	StTW	Δ	Ref	StTW	Δ
P_f/P_{tot}	1	0.545	-45.5%	0.918	0.462	-49.6%
P_p/P_{tot}	_	_	_	0.082	0.073	-10.3%
Net Power Savings	_		-11.5%	_		-15.3%

Wall shear stress and friction reduction rate

TKE (left) and TKE production (right)

Conclusions

- Interaction between friction drag reduction and overall drag
- Benefits of skin-friction drag reduction techniques may be underestimated
- Compressible DNS may reveal larger effects

Thank you for your attention

Questions?

The separation bubble

Probability γ_u of a non-reversed flow:

The mean velocity profile (no bump)

The maximum velocity shifts towards the actuated side and produces 4% additional drag reduction on the unactuated side!

Wall shear stress

Power budget - Second Geometry

	Plane			Bump		
	Ref	StTW	Δ	Ref	StTW	Δ
P_f/P_{tot}	1	0.535	-46.5%	0.948	0.480	-49.0%
P_{p}/P_{tot}	_	_	_	0.060	0.058	<u>-3.4%</u>
Net Power Savings	_		-12.5%	_		-15.1%

Pressure drag reduction

$$\Delta D_p(x) = D_p(x)^{Ref} - D_p(x)^{StTW}$$

Pressure drag reduction

$$\Delta D_p(x) = D_p(x)^{Ref} - D_p(x)^{StTW}$$

Pressure drag reduction

Pressure distribution - bump 1

Pressure distribution - bump 2

Are StTW ready for practical applications?

Besides lacking a suitable actuator,

- Q1 Effect of Re? Gatti & Quadrio, JFM 2016
- Q2 What about total drag?

Q1: effectiveness is constant with Re

Gatti & Quadrio, JFM 2016

The streamwise-traveling waves (StTW)

Q2: What about the airplane total drag?

Prelim results presented at last EDRFCM in Frascati

- Transonic DLR-F6 transport aircraft
- RANS, Spalart-Allmaras model
- $Re = 3 \times 10^6$, M = 0.75
- StTW accounted for via wall functions

Changes in friction AND pressure

Friction drag reduces by 20% \Rightarrow Total drag reduction of 10%

Changes in friction AND pressure

 \dots but due to pressure changes the total drag reduces by 15%

