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The robust𝐻
∞
filtering problem is investigated for a class of complex network systems which has stochastic packet dropouts and

time delays, combined with disturbance inputs. The packet dropout phenomenon occurs in a random way and the occurrence
probability for each measurement output node is governed by an individual random variable. Besides, the time delay phenomenon
is assumed to occur in a nonlinear vector-valued function. We aim to design a filter such that the estimation error converges to
zero exponentially in the mean square, while the disturbance rejection attenuation is constrained to a given level by means of the
𝐻
∞
performance index. By constructing the proper Lyapunov-Krasovskii functional, we acquire sufficient conditions to guarantee

the stability of the state detection observer for the discrete systems, and the observer gain is also derived by solving linear matrix
inequalities. Finally, an illustrative example is provided to show the usefulness and effectiveness of the proposed design method.

1. Introduction

Over the past decades, the 𝐻
∞

filtering problem has drawn
particular attention, since 𝐻

∞
filters are insensitive to the

exact knowledge of the statistics of the noise signals. Up to
now, a great deal of effort has been devoted to the design
issues of various kinds of filters, for example, the Kalman
filters [1–3] and𝐻

∞
filters [4–9].

In real-world applications, the measurements may con-
tainmissingmeasurements (or incomplete observations) due
to various reasons such as highmaneuverability of the tracked
targets, sensor temporal failures or network congestion.
In the past few years, the filtering problem with missing
measurements has received much attention [10–17]. In [10], a
model of multiple missing measurements has been presented
by using a diagonalmatrix to account for the differentmissing
probabilities for individual sensors.The finite-horizon robust
filtering problemhas been considered in [11] for discrete-time
stochastic systems with probabilistic missing measurements
subject to norm-bounded parameter uncertainties. AMarko-
vian jumping process has been employed in [12] to reflect

the measurement missing problem. Moreover, the optimal
filter design problem has been tackled in [13] for systems with
multiple packet dropouts by solving a recursive difference
equation (RDE).

On the other hand, the complex networks have been gain-
ing increasing research attention from all fields of the basic
science and the technological practice.They have applications
in many real-world systems such as the Internet, World
Wide Web, food webs, electric power grids, cellular and
metabolic networks, scientific citation networks, and social
networks [18–25]. Due to randomly occurring incomplete
phenomenon which occurs in the signal transfer within
complex networks, there may be time delays and packet
dropouts [26–33]. For instance, over a finite horizon, the
synchronization and state estimation problems for an array of
coupled discrete time-varying stochastic complex networks
have been studied based on the recursive linear matrix
inequalities (RLMIs) approach [26]. In [29], one of the first
few attempts has been made to address the synchronization
problem for stochastic discrete-time complex networks with
time delays. Furthermore, in [31], a new array of coupled
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delayed complex networks with stochastic nonlinearities,
multiple stochastic disturbances, and mixed time delays
in the discrete-time domain has been investigated, and
the synchronization stability criteria have been derived by
utilizing a novel matrix functional, the properties of the
Kronecker product, the free-weighting matrix method, and
the stochastic techniques.

Summarizing the above discussion, it should be pointed
out that, up to now, the general filter results for complex
networks with randomly occurring incomplete information
have been very few, especially when the networks exhibit both
stochastic natures and disturbance inputs. In this paper, we
make an attempt to investigate the problems of the robust
𝐻
∞

filtering for a class of complex systems with stochastic
packet dropouts, time delays, and disturbance inputs. By
constructing the proper Lyapunov-Krasovskii functional, we
can get sufficient conditions, such that the filter error is
exponentially stable in mean-square sense, and acquire gain
of the designed observer.

The rest of the paper is organized as follows. In Section 2,
the problem of complex networks is formulated and some
useful lemmas are introduced. In Section 3, some sufficient
conditions are established to make sure the robustly expo-
nential stability of the filtering error dynamics. Besides, the
gain of observer is also designed by LMI. An illustrated
example is given in Section 4 to demonstrate the effectiveness
of the proposed method. Finally, we give our conclusions in
Section 5.

Notation. The notation used here is fairly standard except
where otherwise stated. R𝑛 and R𝑛×𝑚 denote, respectively,
the 𝑛 dimensional Euclidean space and the set of all 𝑛 × 𝑚

real matrices. 𝐼 denotes the identity matrix of compatible
dimension. The notation 𝑋 ≥ 𝑌 (resp., 𝑋 > 𝑌), where 𝑋
and 𝑌 are symmetric matrices, means that 𝑋 − 𝑌 is positive
semidefinite (resp., positive definite).𝐴𝑇 represents the trans-
pose of 𝐴. 𝜆max(𝐴) and 𝜆min(𝐴) denote the maximum and
minimum eigenvalue of 𝐴, respectively. Sym{𝐴} denotes the
symmetric matrix 𝐴 + 𝐴

𝑇. E{𝑥} stands for the expectation of
the stochastic variable 𝑥. ‖𝑥‖ describes the Euclidean norm of
a vector 𝑥. diag{𝐹

1
, 𝐹
2
, . . .} stands for a block-diagonal matrix

whose diagonal blocks are given by𝐹
1
, 𝐹
2
, . . ..The symbol∗ in

amatrixmeans that the corresponding term of thematrix can
be obtained by symmetric property.The symbol⊗ denotes the
Kronecker product. In symmetric block matrices, the symbol
∗ is used as an ellipsis for terms induced by symmetry.

2. Problem Formulation

Consider the following discrete-time complex system with
time delays and disturbance:

𝑥
𝑖
(𝑘 + 1) = 𝑓 (𝑥

𝑖
(𝑘)) + 𝑔 (𝑥

𝑖
(𝑘 − 𝑑 (𝑘)))

+

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Γ𝑥
𝑗
(𝑘) + 𝐷

1𝑖
V
1
(𝑘) + ℎ (𝑥

𝑖
(𝑘)) 𝜔 (𝑘) ,

𝑧
𝑖
(𝑘) = 𝑀𝑥

𝑖
(𝑘) ,

𝑥
𝑖
(𝑗) = 𝜑

𝑖
(𝑗) , 𝑗 = −𝑑

𝑀
, − 𝑑
𝑀
+ 1, . . . , 0;

𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑥
𝑖
(𝑘) ∈ R𝑛 is the state vector of the 𝑖th node, 𝑧

𝑖
(𝑘) ∈ R𝑟

is the output of the 𝑖th node, 𝑑(𝑘) denotes time-varying delay,
𝑓(⋅) and 𝑔(⋅) are nonlinear vector-valued functions satisfying
certain conditions given later, V

1
(𝑘) is the disturbance input

belonging to 𝑙
2
([0,∞);R𝑞), 𝜔(𝑘) is a zero mean Gaussian

white noise sequence, and ℎ(⋅) is the continuous function
quantifying the noise intensity. Γ = diag{𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑛
} is

the matrix linking the 𝑗th state variable if 𝑟
𝑗
̸= 0, and 𝑊 =

(𝑤
𝑖𝑗
)
𝑁×𝑁

is the coupled configuration matrix of the network
with 𝑤

𝑖𝑗
> 0 (𝑖 ̸= 𝑗) but not all zero. As usual, the coupling

configuration matrix 𝑊 is symmetric (i.e., 𝑊 = 𝑊
𝑇) and

satisfies
𝑁

∑

𝑗=1

𝑤
𝑖𝑗
=

𝑁

∑

𝑗=1

𝑤
𝑗𝑖
= 0, 𝑖 = 1, 2, . . . , 𝑁. (2)

𝐷
1𝑖
, 𝐹
𝑖
, and𝑀 are constant matrices with appropriate dimen-

sions, and 𝜑
𝑖
(𝑗) is a given initial condition sequence.

For the system shown in (2), we make the following
assumptions throughout the paper.

Assumption 1. The variable 𝜔(𝑘) is a scalar Wiener process
(Brownian motion) satisfying

E {𝜔 (𝑘)} = 0, E {𝜔
2

(𝑘)} = 1,

E {𝜔 (𝑘) 𝜔 (𝑗)} = 0 (𝑘 ̸= 𝑗) .

(3)

Assumption 2. The variable 𝑑(𝑘) denotes the time-varying
delay satisfying

0 < 𝑑
𝑚
≤ 𝑑 (𝑘) ≤ 𝑑

𝑀
, (4)

where 𝑑
𝑚
and 𝑑

𝑀
are constant positive integers representing

the lower and upper bounds on the communication delay,
respectively.

Assumption 3. 𝑓(⋅) and 𝑔(⋅) are the nonlinear disturbance
which satisfies the following sector-bounded conditions:

[𝑓 (𝑥) − 𝑓 (𝑦) − 𝜙
𝑓

1
(𝑥 − 𝑦)]

𝑇

× [𝑓 (𝑥) − 𝑓 (𝑦) − 𝜙
𝑓

2
(𝑥 − 𝑦)] ≤ 0,

[𝑔 (𝑥) − 𝑔 (𝑦) − 𝜙
𝑔

1
(𝑥 − 𝑦)]

𝑇

× [𝑔 (𝑥) − 𝑔 (𝑦) − 𝜙
𝑔

2
(𝑥 − 𝑦)] ≤ 0,

(5)

for all 𝑥, 𝑦 ∈ R𝑛, where 𝜙𝑓
1
, 𝜙𝑓
2
, 𝜙𝑔
1
, and 𝜙𝑔

2
are real matrices

of appropriate dimensions and 𝑓(0) = 0, 𝑔(0) = 0.

Assumption 4. The continuous function ℎ(𝑥
𝑖
(𝑘)) satisfies

ℎ
𝑇

(𝑥
𝑖
(𝑘)) ℎ (𝑥

𝑖
(𝑘)) ≤ 𝑥

𝑇

𝑖
(𝑘) 𝑥
𝑖
(𝑘) , (6)

where  > 0 is known constant scalars.
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In this paper, we assume that an unreliable network
medium is present between the physical plant and the state
detection filter, and this means that the output data is subject
to randomlymissing phenomenon.The signal received by the
state detection filter can be described by

𝑦
𝑖
(𝑘) = 𝛼

𝑖
(𝑘) 𝐶𝑥

𝑖
(𝑘) + 𝐷

2𝑖
V
2
(𝑘) , (7)

where 𝑦
𝑖
(𝑘) ∈ R𝑚 is the measurement output of the

𝑖th node and V
2
(𝑘) is the disturbance input which belongs

to 𝑙
2
([0,∞);R𝑝). 𝐶 and 𝐷

2𝑖
are constant matrices with

appropriate dimensions. 𝛼
𝑖
(𝑘) is the Bernoulli distributed

white sequences governed by

Prob {𝛼
𝑖
(𝑘) = 1} = E {𝛼

𝑖
(𝑘)} = 𝛼

𝑖
,

when data received;

Prob {𝛼
𝑖
(𝑘) = 0} = 1 − E {𝛼

𝑖
(𝑘)} = 1 − 𝛼

𝑖
,

when data missing,

(8)

where 𝛼
𝑖
∈ [0, 1] is known constant.

In this paper, we are interested in obtaining �̂�
𝑖
(𝑘), the

estimate of the signal 𝑧
𝑖
(𝑘), from the actual measured output

𝑦
𝑖
(𝑘). We adopt the following filter to be considered for node

𝑖:

𝑥
𝑖
(𝑘 + 1) = 𝑓 (𝑥

𝑖
(𝑘)) + 𝑔 (𝑥

𝑖
(𝑘 − 𝑑 (𝑘)))

+ 𝐾
𝑖
(𝑦
𝑖
(𝑘) − 𝐶𝑥

𝑖
(𝑘)) ,

�̂�
𝑖
(𝑘) = 𝑀𝑥

𝑖
(𝑘) ,

𝑥
𝑖
(𝑗) = 0, 𝑗 = −𝑑

𝑀
, −𝑑
𝑀
+ 1, . . . , 0;

𝑖 = 1, 2, . . . , 𝑁,

(9)

where 𝑥
𝑖
(𝑘) ∈ R𝑛 is the estimate of the state 𝑥

𝑖
(𝑘), �̂�
𝑖
(𝑘) ∈

R𝑟 is the estimate of the output 𝑧
𝑖
(𝑘), and 𝐾

𝑖
∈ R𝑛×𝑚 is the

estimator gain matrix to be designed.
Let the estimation error be 𝑒(𝑘) = 𝑥(𝑘)−𝑥(𝑘). By using the

Kronecker product, the filtering error system can be obtained
from (2), (7), and (9) as follows:

𝑒
𝑘+1

=
̃
𝑓
𝑘
+ 𝑔
𝑘−𝑑𝑘

− 𝐾𝐶𝑒
𝑘
+ (𝑊 ⊗ Γ + 𝐾𝐶)𝑥

𝑘

+ �̃�V
𝑘
+ ℎ
𝑘
𝜔
𝑘
− 𝐾(

𝑁

∑

𝑖=1

𝛼
𝑖
(𝑘) 𝐸
𝑖
𝐶𝑥
𝑘
) ,

�̃�
𝑘
= �̃�𝑒

𝑘
,

(10)

where

𝑥
𝑘
= [𝑥
𝑇

1
(𝑘) 𝑥

𝑇

2
(𝑘) ⋅ ⋅ ⋅ 𝑥

𝑇

𝑁
(𝑘)]

𝑇

,

𝑥
𝑘
= [𝑥
𝑇

1
(𝑘) 𝑥

𝑇

2
(𝑘) ⋅ ⋅ ⋅ 𝑥

𝑇

𝑁
(𝑘)]

𝑇

,

𝑧
𝑘
= [𝑧
𝑇

1
(𝑘) 𝑧

𝑇

2
(𝑘) ⋅ ⋅ ⋅ 𝑧

𝑇

𝑁
(𝑘)]

𝑇

,

�̂�
𝑘
= [�̂�
𝑇

1
(𝑘) �̂�

𝑇

2
(𝑘) ⋅ ⋅ ⋅ �̂�

𝑇

𝑁
(𝑘)]

𝑇

, �̃�
𝑘
= 𝑧
𝑘
− �̂�
𝑘
,

V
𝑘
= [V𝑇
1
(𝑘) V𝑇

2
(𝑘)]

𝑇

, 𝑑
𝑘
= 𝑑 (𝑘) , 𝑤

𝑘
= 𝑤 (𝑘) ,

𝑓 (𝑥
𝑘
) = [𝑓

𝑇

(𝑥
1
(𝑘)) 𝑓

𝑇

(𝑥
2
(𝑘)) ⋅ ⋅ ⋅ 𝑓

𝑇

(𝑥
𝑁
(𝑘))]

𝑇

,

𝑔 (𝑥
𝑘
) = [𝑔

𝑇

(𝑥
1
(𝑘)) 𝑔

𝑇

(𝑥
2
(𝑘)) ⋅ ⋅ ⋅ 𝑔

𝑇

(𝑥
𝑁
(𝑘))]

𝑇

,

ℎ (𝑥
𝑘
) = [ℎ

𝑇

(𝑥
1
(𝑘)) ℎ

𝑇

(𝑥
2
(𝑘)) ⋅ ⋅ ⋅ ℎ

𝑇

(𝑥
𝑁
(𝑘))]

𝑇

,

̃
𝑓
𝑘
= 𝑓 (𝑥

𝑘
) − 𝑓 (𝑥

𝑘
) , 𝑔

𝑘
= 𝑔 (𝑥

𝑘
) − 𝑔 (𝑥

𝑘
) ,

𝐾 = diag {𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑁
} , 𝐶 = 𝐼 ⊗ 𝐶,

𝐷
1
= [𝐷
𝑇

11
𝐷
𝑇

12
⋅ ⋅ ⋅ 𝐷

𝑇

1𝑁
]

𝑇

, 𝐷 = [𝐷
1
−𝐾𝐷
2
] ,

𝐷
2
= [𝐷
𝑇

21
𝐷
𝑇

22
⋅ ⋅ ⋅ 𝐷

𝑇

2𝑁
]

𝑇

, �̃� = 𝐼 ⊗𝑀,

𝐸
𝑖
= diag{0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑖−1

, 𝐼, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁−𝑖

} .

(11)

Setting 𝜂
𝑘

= [𝑥
𝑇

𝑘
𝑒
𝑇

𝑘
]

𝑇

, we subsequently obtain an aug-
mented system as follows:

𝜂
𝑘+1

= W𝜂
𝑘
+

⃗
𝑓
𝑘
+ ⃗𝑔
𝑘−𝑑𝑘

+

𝑁

∑

𝑖=1

(𝛼
𝑖

𝑘
− 𝛼
𝑖
)G
𝑖
𝐶S𝜂
𝑘
+DV
𝑘
+H𝜔

𝑘
,

�̃�
𝑘
= M𝜂

𝑘
,

(12)

where

⃗
𝑓
𝑘
= [𝑓
𝑇

(𝑥
𝑘
)

̃
𝑓
𝑇

𝑘
]

𝑇

, ⃗𝑔
𝑘
= [𝑔
𝑇

(𝑥
𝑘
) 𝑔
𝑇

𝑘
]

𝑇

,

𝛼
𝑖

𝑘
= 𝛼
𝑖
(𝑘) , �̃�

Λ

= diag {𝛼
1
𝐼, 𝛼
2
𝐼, . . . , 𝛼

𝑁
𝐼} ,

G
𝑖
= [0 −𝐸

𝑇

𝑖
𝐾
𝑇

]

𝑇

,

M = [0 �̃�] , S = [𝐼 0] ,

W = [

𝑊 ⊗ Γ 0

𝑊 ⊗ Γ + 𝐾 (𝐼 − �̃�
Λ

) 𝐶 −𝐾𝐶
] ,

D = [

𝐷
1

0

𝐷
1
−𝐾𝐷
2

] , H = [

ℎ (𝑥
𝑘
)

ℎ (𝑥
𝑘
)
] .

(13)

Definition 5 (see [34]). The filtering error system (12) is said
to be exponentially stable in the mean square if, in case of
V
𝑘
= 0, for any initial conditions, there exist constants 𝜀 > 0

and 0 < 𝜅 < 1 such that

E {




𝜂
𝑘






2

} ≤ 𝜀𝜅
𝑘 max
𝑖∈[−𝑑𝑀, 0]

E {




𝜂
𝑖






2

} , 𝑘 ∈ N, (14)

where 𝜂
𝑖
:= [𝜑
𝑇

1
(𝑖), 𝜑
𝑇

2
(𝑖), . . . , 𝜑

𝑇

𝑁
(𝑖), 𝜑
𝑇

1
(𝑖), 𝜑
𝑇

2
(𝑖), . . . , 𝜑

𝑇

𝑁
(𝑖)]
𝑇,

for all 𝑖 ∈ [−𝑑
𝑀
, 0].
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Our aim in this paper is to develop techniques to deal
with the robust 𝐻

∞
filtering problem for a class of complex

systemswith stochastic packet dropouts, time delays, and dis-
turbance inputs.The augmented observer system (12) satisfies
the following requirements (Q1) and (Q2), simultaneously:

(Q1) the filter error system (12) with V
𝑘
= 0 is exponentially

stable in the mean square;
(Q2) under the zero initial condition, the filtering error �̃�

𝑘

satisfies

1

𝑁

∞

∑

𝑘=0

E {




�̃�
𝑘






2

} ≤ 𝛾
2

∞

∑

𝑘=0





V
𝑘






2 (15)

for all nonzero V
𝑘
, where 𝛾 > 0 is a given disturbance

attenuation level.

Lemma 6 (the Schur complement). Given constant matrices
𝑆
1
, 𝑆
2
, and 𝑆

3
, where 𝑆

1
= 𝑆
𝑇

1
and 0 < 𝑆

2
= 𝑆
𝑇

2
, then 𝑆

1
+

𝑆
𝑇

3
𝑆
−1

2
𝑆
3
< 0 if and only if

[
𝑆
1

𝑆
𝑇

3

𝑆
3
−𝑆
2

] < 0 or [

−𝑆
2
𝑆
3

𝑆
𝑇

3
𝑆
1

] < 0. (16)

3. Main Results

In this part, we will construct the Lyapunov-Krasovskii
functional and the use of linear matrix inequality to propose
sufficient conditions such that the system error model in (12)
could be exponentially stable in mean square. Let us first
consider the robust exponential stability analysis problem for
the filter error system (12) with V

𝑘
= 0.

Theorem 7. Consider the system (2) and suppose that the
estimator parameters 𝐾

𝑖
(𝑖 = 1, 2, . . . , 𝑁) are given. The

system augmented error model (12) with V
𝑘
= 0 is said to

be exponentially stable in mean square, if there exist positive
definite matrices 𝑄

𝑖
(𝑖 = 1, 2, 3, 4) and positive scalars 𝜆

𝑗
(𝑗 =

1, 2, 3) satisfying the following inequality:

Π
1
=

[

[

[

[

[

[

[

[

[

[

[

Ξ
11

0 Ξ
13

W𝑇𝑃
1

∗ Ξ
22

0 𝜆
2
Φ
𝑔𝑇

2

∗ ∗ Ξ
33

𝑃
1

∗ ∗ ∗ Ξ
44

]

]

]

]

]

]

]

]

]

]

]

< 0,

𝑃
1
≤ 𝜆
3
𝐼,

(17)

where

�̃�
∗

𝑖
= 𝛼
𝑖
(1 − 𝛼

𝑖
) , 𝐴


= [

𝐼 0

0 0
] ,

Φ
𝑓

1
= 𝐼 ⊗ Sym {

1

2

𝜙
𝑓𝑇

1
𝜙
𝑓

2
} ,

Φ
𝑓

2
= 𝐼 ⊗

(𝜙
𝑓

1
+ 𝜙
𝑓

2
)

2

,

Φ
𝑔

1
= 𝐼 ⊗ Sym {

1

2

𝜙
𝑔𝑇

1
𝜙
𝑔

2
} ,

Φ
𝑔

2
= 𝐼 ⊗

(𝜙
𝑔

1
+ 𝜙
𝑔

2
)

2

,

𝑃
1
= diag {𝐼 ⊗ 𝑄

1
, 𝐼 ⊗ 𝑄

2
} , Ξ

22
= −𝑃
2
− 𝜆
2
Φ
𝑔

1
,

𝑃
2
= diag {𝐼 ⊗ 𝑄

3
, 𝐼 ⊗ 𝑄

4
} , Ξ

33
= 𝑃
1
− 𝜆
1
𝐼,

Ξ
11
= W
𝑇

𝑃
1
W − 𝑃

1
+ (𝑑
𝑀
− 𝑑
𝑚
+ 1) 𝑃

2
+ 𝜆
3
𝐴


− 𝜆
1
Φ
𝑓

1
+

𝑁

∑

𝑖=1

�̃�
∗

𝑖
S
𝑇

𝐶
𝑇

G
𝑇

𝑖
𝑃
1
G
𝑖
𝐶S,

Ξ
13
= W
𝑇

𝑃
1
+ 𝜆
1
Φ
𝑓𝑇

2
, Ξ

44
= 𝑃
1
− 𝜆
2
𝐼.

(18)

Proof. Choose the following Lyapunov functional for system
(12):

𝑉 (𝑘) = 𝑉
1
(𝑘) + 𝑉

2
(𝑘) + 𝑉

3
(𝑘) , (19)

where

𝑉
1
(𝑘) = 𝜂

𝑇

𝑘
𝑃
1
𝜂
𝑘
,

𝑉
2
(𝑘) =

𝑘−1

∑

𝑖=𝑘−𝑑𝑘

𝜂
𝑇

𝑖
𝑃
2
𝜂
𝑖
,

𝑉
3
(𝑘) =

𝑘−𝑑𝑚

∑

𝑗=𝑘−𝑑𝑀+1

𝑘−1

∑

𝑖=𝑗

𝜂
𝑇

𝑖
𝑃
2
𝜂
𝑖
.

(20)

Then, along the trajectory of system (12) with V
𝑘
= 0, we

have

E {Δ𝑉
1
(𝑘)} = E {𝑉

1
(𝑘 + 1) − 𝑉

1
(𝑘)}

= E {𝜂
𝑇

𝑘+1
𝑃
1
𝜂
𝑘+1

− 𝜂
𝑇

𝑘
𝑃
1
𝜂
𝑘
}

= E {𝜂
𝑇

𝑘
W
𝑇

𝑃
1
W𝜂
𝑘
+

⃗
𝑓
𝑇

𝑘
𝑃
1

⃗
𝑓
𝑘

+ ⃗𝑔
𝑇

𝑘−𝑑𝑘

𝑃
1
⃗𝑔
𝑘−𝑑𝑘

+H
𝑇

𝑃
1
H

+

𝑁

∑

𝑖=1

�̃�
∗

𝑖
𝜂
𝑇

𝑘
S
𝑇

𝐶
𝑇

G
𝑇

𝑖
𝑃
1
G
𝑖
𝐶S𝜂
𝑘

+ 2𝜂
𝑇

𝑘
W
𝑇

𝑃
1

⃗
𝑓
𝑘
+ 2𝜂
𝑇

𝑘
W
𝑇

𝑃
1
⃗𝑔
𝑘−𝑑𝑘

+2
⃗

𝑓
𝑇

𝑘
𝑃
1
⃗𝑔
𝑘−𝑑𝑘

− 𝜂
𝑇

𝑘
𝑃
1
𝜂
𝑘
} ,

E {H
𝑇

𝑃
1
H} ≤ 𝜆

3
𝜂
𝑇

𝑘
𝐴

𝜂
𝑘
.

(21)

Next, it can be derived that

E {Δ𝑉
2
(𝑘)} = E {𝑉

2
(𝑘 + 1) − 𝑉

2
(𝑘)}

= E
{

{

{

𝑘

∑

𝑖=𝑘−𝑑𝑘+1+1

𝜂
𝑇

𝑖
𝑃
2
𝜂
𝑖
−

𝑘−1

∑

𝑖=𝑘−𝑑𝑘

𝜂
𝑇

𝑖
𝑃
2
𝜂
𝑖

}

}

}
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= E
{

{

{

𝜂
𝑇

𝑘
𝑃
2
𝜂
𝑘
− 𝜂
𝑇

𝑘−𝑑𝑘

𝑃
2
𝜂
𝑘−𝑑𝑘

+

𝑘−1

∑

𝑖=𝑘−𝑑𝑘+1+1

𝜂
𝑇

𝑖
𝑃
2
𝜂
𝑖
−

𝑘−1

∑

𝑖=𝑘−𝑑𝑘+1

𝜂
𝑇

𝑖
𝑃
2
𝜂
𝑖

}

}

}

= E
{

{

{

𝜂
𝑇

𝑘
𝑃
2
𝜂
𝑘
− 𝜂
𝑇

𝑘−𝑑𝑘

𝑃
2
𝜂
𝑘−𝑑𝑘

+

𝑘−1

∑

𝑖=𝑘−𝑑𝑚+1

𝜂
𝑇

𝑖
𝑃
2
𝜂
𝑖

+

𝑘−𝑑𝑚

∑

𝑖=𝑘−𝑑𝑘+1+1

𝜂
𝑇

𝑖
𝑃
2
𝜂
𝑖
−

𝑘−1

∑

𝑖=𝑘−𝑑𝑘+1

𝜂
𝑇

𝑖
𝑃
2
𝜂
𝑖

}

}

}

≤ E
{

{

{

𝜂
𝑇

𝑘
𝑃
2
𝜂
𝑘
− 𝜂
𝑇

𝑘−𝑑𝑘

𝑃
2
𝜂
𝑘−𝑑𝑘

+

𝑘−𝑑𝑚

∑

𝑖=𝑘−𝑑𝑀+1

𝜂
𝑇

𝑖
𝑃
2
𝜂
𝑖

}

}

}

,

E {Δ𝑉
3
(𝑘)}

= E {𝑉
3
(𝑘 + 1) − 𝑉

3
(𝑘)}

=E
{

{

{

𝑘−𝑑𝑚+1

∑

𝑗=𝑘−𝑑𝑀+2

𝑘

∑

𝑖=𝑗

𝜂
𝑇

𝑖
𝑃
2
𝜂
𝑖
−

𝑘−𝑑𝑚

∑

𝑗=𝑘−𝑑𝑀+1

𝑘−1

∑

𝑖=𝑗

𝜂
𝑇

𝑖
𝑃
2
𝜂
𝑖

}

}

}

=E
{

{

{

𝑘−𝑑𝑚

∑

𝑗=𝑘−𝑑𝑀+1

𝑘

∑

𝑖=𝑗+1

𝜂
𝑇

𝑖
𝑃
2
𝜂
𝑖
−

𝑘−𝑑𝑚

∑

𝑗=𝑘−𝑑𝑀+1

𝑘−1

∑

𝑖=𝑗

𝜂
𝑇

𝑖
𝑃
2
𝜂
𝑖

}

}

}

=E
{

{

{

𝑘−𝑑𝑚

∑

𝑗=𝑘−𝑑𝑀+1

(𝜂
𝑇

𝑘
𝑃
2
𝜂
𝑘
−𝜂
𝑇

𝑗
𝑃
2
𝜂
𝑗
)

}

}

}

=E
{

{

{

(𝑑
𝑀
− 𝑑
𝑚
) 𝜂
𝑇

𝑘
𝑃
2
𝜂
𝑘
−

𝑘−𝑑𝑚

∑

𝑖=𝑘−𝑑𝑀+1

𝜂
𝑇

𝑖
𝑃
2
𝜂
𝑖

}

}

}

.

(22)

Letting

𝜉
𝑘
= [𝜂
𝑇

𝑘
𝜂
𝑇

𝑘−𝑑𝑘

⃗
𝑓
𝑇

𝑘
⃗𝑔
𝑇

𝑘−𝑑𝑘

]

𝑇

, (23)

the combination of (21) and (22) results in

E {Δ𝑉 (𝜂
𝑘
)} = E {𝑉 (𝑘 + 1) − 𝑉 (𝑘)}

=

3

∑

𝑖=1

E {Δ𝑉
𝑖
(𝑘)}

≤ E {𝜉
𝑇

𝑘
Π̃
1
𝜉
𝑘
} ,

(24)

where

Π̃
1
=

[

[

[

[

Ξ̃
11

0 W𝑇𝑃
1
W𝑇𝑃
1

∗ −𝑃
2

0 0

∗ ∗ 𝑃
1

𝑃
1

∗ ∗ ∗ 𝑃
1

]

]

]

]

,

Ξ̃
11
= W
𝑇

𝑃
1
W − 𝑃

1
+ (𝑑
𝑀
− 𝑑
𝑚
+ 1) 𝑃

2

+ 𝜆
3
𝐴

+

𝑁

∑

𝑖=1

�̃�
∗

𝑖
S
𝑇

𝐶
𝑇

G
𝑇

𝑖
𝑃
1
G
𝑖
𝐶S,

(25)

Notice that (5) implies

[
⃗

𝑓
𝑘
− (𝐼 ⊗ 𝜙

𝑓

1
) 𝜂
𝑘
]

𝑇

[
⃗

𝑓
𝑘
− (𝐼 ⊗ 𝜙

𝑓

2
) 𝜂
𝑘
] ≤ 0.

[ ⃗𝑔
𝑘
− (𝐼 ⊗ 𝜙

𝑔

1
) 𝜂
𝑘
]

𝑇

[ ⃗𝑔
𝑘
− (𝐼 ⊗ 𝜙

𝑔

2
) 𝜂
𝑘
] ≤ 0.

(26)

From (26), it follows that

E {Δ𝑉 (𝜂
𝑘
)}

≤ E {𝜉
𝑇

𝑘
Π̃
1
𝜉
𝑘
− 𝜆
1
[
⃗

𝑓
𝑘
− (𝐼 ⊗ 𝜙

𝑓

1
) 𝜂
𝑘
]

𝑇

× [
⃗

𝑓
𝑘
− (𝐼 ⊗ 𝜙

𝑓

2
) 𝜂
𝑘
]

− 𝜆
2
[ ⃗𝑔
𝑘−𝑑𝑘

− (𝐼 ⊗ 𝜙
𝑔

1
) 𝜂
𝑘−𝑑𝑘

]

𝑇

× [ ⃗𝑔
𝑘−𝑑𝑘

− (𝐼 ⊗ 𝜙
𝑔

2
) 𝜂
𝑘−𝑑𝑘

] }

≤ E {𝜉
𝑇

𝑘
Π
1
𝜉
𝑘
} .

(27)

According toTheorem 7, we haveΠ
1
< 0; theremust exist

a sufficiently small scalar 𝜀
0
> 0 such that

Π
1
+ 𝜀
0
diag {𝐼, 0} < 0. (28)

Then, it is easy to see from (27) and (28) that the following
inequality holds:

E {Δ𝑉 (𝜂
𝑘
)} ≤ −𝜀

0
E {





𝜂
𝑘






2

} . (29)

According to the definition of 𝑉(𝑘), we can derive that

E {𝑉 (𝑘)} ≤ 𝜌
1
E {





𝜂
𝑘






2

} + 𝜌
2

𝑘−1

∑

𝑖=𝑘−𝑑𝑀

E {




𝜂
𝑖






2

} , (30)

where 𝜌
1
= 𝜆max(𝑃1) and 𝜌2 = (𝑑𝑀 − 𝑑𝑚 + 1)𝜆max(𝑃2).

For any scalar 𝜇 > 1, together with (19), the above
inequality implies that

𝜇
𝑘+1

E {𝑉 (𝑘 + 1)} − 𝜇
𝑘

E {𝑉 (𝑘)}

= 𝜇
𝑘+1

E {Δ𝑉 (𝑘)} + 𝜇
𝑘

(𝜇 − 1)E {𝑉 (𝑘)}

≤ 𝜖
1
(𝜇) 𝜇
𝑘

E {




𝜂
𝑘






2

} + 𝜖
2
(𝜇)

𝑘−1

∑

𝑖=𝑘−𝑑𝑀

𝜇
𝑘

E {




𝜂
𝑖






2

}

(31)

with 𝜖
1
(𝜇) = (𝜇 − 1)𝜌

1
− 𝜇𝜀
0
and 𝜖
2
(𝜇) = (𝜇 − 1)𝜌

2
.
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In addition, for any integer𝑚 ≥ 𝑑
𝑀
+1, summing up both

sides of (31) from 0 to𝑚 − 1 with respect to 𝑘, we have

𝜇
𝑚

E {𝑉 (𝑘 + 1)} − E {𝑉 (0)}

≤ 𝜖
1
(𝜇)

𝑚−1

∑

𝑘=0

𝜇
𝑘

E {




𝜂
𝑘






2

}

+ 𝜖
2
(𝜇)

𝑚−1

∑

𝑘=0

𝑘−1

∑

𝑖=𝑘−𝑑𝑀

𝜇
𝑘

E {




𝜂
𝑖






2

} .

(32)

Due to 𝑑
𝑀
≥ 1,

𝑚−1

∑

𝑘=0

𝑘−1

∑

𝑖=𝑘−𝑑𝑀

𝜇
𝑘

E {




𝜂
𝑖






2

}

≤ (

−1

∑

𝑖=−𝑑𝑀

𝑖+𝑑𝑀

∑

𝑘=0

+

𝑚−1−𝑑𝑀

∑

𝑖=0

𝑖+𝑑𝑀

∑

𝑘=𝑖+1

+

𝑚−1

∑

𝑖=𝑚−1−𝑑𝑀

𝑚−1

∑

𝑘=𝑖+1

)𝜇
𝑘

E {




𝜂
𝑖






2

}

≤ 𝑑
𝑀

−1

∑

𝑖=−𝑑𝑀

𝜇
𝑖+𝑑𝑀E {





𝜂
𝑖






2

}

+ 𝑑
𝑀

𝑚−1−𝑑𝑀

∑

𝑖=0

𝜇
𝑖+𝑑𝑀E {





𝜂
𝑖






2

}

+ 𝑑
𝑀

𝑚−1

∑

𝑖=𝑚−1−𝑑𝑀

𝜇
𝑖+𝑑𝑀E {





𝜂
𝑖






2

}

≤ 𝑑
𝑀
𝜇
𝑑𝑀 max
−𝑑𝑀≤𝑖≤0

E {




𝜂
𝑖






2

}

+ 𝑑
𝑀
𝜇
𝑑𝑀

𝑚−1

∑

𝑖=0

𝜇
𝑖

E {




𝜂
𝑖






2

} .

(33)

So, we can obtain from (32) and (33) the following:

𝜇
𝑘

E {𝑉 (𝑘)} ≤ E {𝑉 (0)} + (𝜖
1
(𝜇) + 𝜖

2
(𝜇))

𝑘−1

∑

𝑖=0

𝜇
𝑖

E {




𝜂
𝑖






2

}

+ 𝜖
2
(𝜇) ∑

−𝑑𝑀≤𝑖≤0

E {




𝜂
𝑖






2

} ,

(34)

with 𝜖
2
(𝜇) = 𝑑

𝑀
𝜇
𝑑𝑀
(𝜇 − 1)𝜌

2
.

Let 𝜌
0
= 𝜆min(𝑃1) and 𝜌 = max{𝜌

1
, 𝜌
2
}. It is obvious from

(19) that

E {𝑉 (𝑘)} ≥ 𝜌
0
E {





𝜂
𝑘






2

} . (35)

Meanwhile, we can find easily from (30) that

E {𝑉 (0)} ≤ 𝜌 (2𝑑
𝑀
+ 1) max
−𝑑𝑀≤𝑖≤0

E {




𝜂
𝑖






2

} . (36)

It can be verified that there exists a scalar 𝜇
0
> 1 such that

𝜖
1
(𝜇
0
) + 𝜖
2
(𝜇
0
) = 0. (37)

Therefore, from (34)–(37), it is clear to see that

E {




𝜂
𝑘






2

}

≤ (

1

𝜇
0

)

𝑘
𝜌 (2𝑑
𝑀
+ 1) + 𝑑

𝑀
𝜖
2
(𝜇
0
)

𝜌
0

max
−𝑑𝑀≤𝑖≤0

E {




𝜂
𝑖






2

} .

(38)

The augmented system (12) with V
𝑘
= 0 is exponentially

mean-square stable according to Definition 5. The proof is
complete.

Next, we will analyze the performance of the filtering
error system (12).

Theorem 8. Consider the system (2) and suppose that the
estimator parameters 𝐾

𝑖
(𝑖 = 1, 2, . . . , 𝑁) are given. The

system augmented error model (12) is said to be exponentially
stable in mean square and satisfies the 𝐻

∞
performance

constraint (15) for all nonzero V
𝑘
and 𝜔

𝑘
under the zero initial

condition, if there exist positive definite matrices 𝑄
𝑖
(𝑖 =

1, 2, 3, 4) and positive scalars 𝜆
𝑗
(𝑗 = 1, 2, 3) satisfying the

following inequality:

Π
2
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
∗

11
0 Ξ
13

W𝑇𝑃
1

W𝑇𝑃
1
D

∗ Ξ
22

0 𝜆
2
Φ
𝑔𝑇

2
0

∗ ∗ Ξ
33

𝑃
1

𝑃
1
D

∗ ∗ ∗ Ξ
44

𝑃
1
D

∗ ∗ ∗ ∗ D𝑇𝑃
1
D − 𝛾

2

𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

𝑃
1
≤ 𝜆
3
𝐼,

(39)

where

Ξ
∗

11
= W
𝑇

𝑃
1
W − 𝑃

1
+ (𝑑
𝑀
− 𝑑
𝑚
+ 1) 𝑃

2

− 𝜆
1
Φ
𝑓

1
+ 𝜆
3
𝐴


+

1

𝑁

M
𝑇

M +

𝑁

∑

𝑖=1

�̃�
∗

𝑖
S
𝑇

𝐶
𝑇

G
𝑇

𝑖
𝑃
1
G
𝑖
𝐶S,

(40)

and other parameters are defined as in Theorem 7.

Proof. It is clear that (39) implies (17). According to
Theorem 7, the filtering error system (12) with V

𝑘
= 0 is

robustly exponentially stable in the mean square.
Let us now deal with the performance of the system (15).

Construct the same Lyapunov-Krasovskii functional as in
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Theorem 7. A similar calculation as in the proof ofTheorem 7
leads to

E {Δ𝑉 (𝑘)} ≤ E {𝜉
𝑇

𝑘
Π
1
𝜉
𝑘
+ 2V𝑇
𝑘
D
𝑇

𝑃
1
W𝜂
𝑘

+ 2V𝑇
𝑘
D
𝑇

𝑃
1

⃗
𝑓
𝑘
+ 2V𝑇
𝑘
D
𝑇

𝑃
1
⃗𝑔
𝑘−𝑑𝑘

+V𝑇
𝑘
D
𝑇

𝑃
1
DV
𝑘
} ,

(41)

where 𝜉
𝑘
and Π

1
are defined previously.

Setting ̃𝜉
𝑘
= [𝜉
𝑇

𝑘
V𝑇
𝑘
]

𝑇

, inequality (41) can be rewritten as

E {Δ𝑉 (𝑘)} ≤ E{̃𝜉
𝑇

𝑘
[

Π
1

̃D𝑇

∗ D𝑇𝑃
1
D
]
̃
𝜉
𝑘
} , (42)

wherẽD = [D𝑇𝑃
1
W 0 D𝑇𝑃

1
D𝑇𝑃
1
].

In order to deal with the𝐻
∞
performance of the filtering

system (12), we introduce the following index:

J (𝑠) = E
𝑠

∑

𝑘=0

{

1

𝑁





�̃�
𝑘






2

− 𝛾
2



V
𝑘






2

} , (43)

where 𝑠 is nonnegative integer.
Under the zero initial condition, one has

J (𝑠) = E
𝑠

∑

𝑘=0

{

1

𝑁





�̃�
𝑘






2

− 𝛾
2



V
𝑘






2

+ Δ𝑉 (𝑘)}

− E {𝑉 (𝑠 + 1)}

≤ E
𝑠

∑

𝑘=0

{

1

𝑁





�̃�
𝑘






2

− 𝛾
2



V
𝑘






2

+ Δ𝑉 (𝑘)}

≤ E
𝑠

∑

𝑘=0

{
̃
𝜉
𝑇

𝑘
Π
2

̃
𝜉
𝑘
} < 0.

(44)

According to Theorem 8, we have J(𝑠) ≤ 0. Letting 𝑠 →
∞, we obtain

1

𝑁

∞

∑

𝑘=0

E {




�̃�
𝑘






2

} ≤ 𝛾
2

∞

∑

𝑘=0





V
𝑘






2

, (45)

and the proof is now complete.

We aim at solving the filter design problem for complex
network (2). Therefore, we are in a position to consider
the 𝐻

∞
filter design problem for the complex network (2).

The following theorem provides sufficient conditions for the
existence of such filters for system (12). The following result
can be easily accessible from Theorem 8, and the proof is
therefore omitted.

Theorem 9. Consider the system (2) and suppose that the
disturbance attenuation level 𝛾 > 0 is given. The system
augmented error model (12) is said to be exponentially stable in
mean square and satisfies the𝐻

∞
performance constraint (15)

for all nonzero V
𝑘
and 𝜔

𝑘
under the zero initial condition, if

there exist positive definite matrices𝑄
𝑖
(𝑖 = 1, 2, 3, 4), matrices

𝑌
𝑖
(𝑖 = 1, 2, . . . , 𝑁), and positive scalars 𝜆

𝑗
(𝑗 = 1, 2, 3)

satisfying the following inequality:

Π
3
=

[

[

[

[

[

[

[

[

[

[

[

Π
11

Π
12

0 Π
14

Π
15

Π
16

Π
18

Π
19

∗ Π
22

0 Π
24

Π
25

Π
26

Π
28

0

∗ ∗ Π
33

0 Π
35

0 0 0

∗ ∗ ∗ Π
44

Π
45

Π
46

0 0

∗ ∗ ∗ ∗ Π
55

Π
56

0 0

∗ ∗ ∗ ∗ ∗ Π
66

Π
68

0

∗ ∗ ∗ ∗ ∗ ∗ −Q
2

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q
2

]

]

]

]

]

]

]

]

]

]

]

< 0,

𝑃
1
≤ 𝜆
3
𝐼,

(46)

where

�⃗� = diag {𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑁
} , Q

2
= 𝐼 ⊗ 𝑄

2
, (47)

𝑍 = [√�̃�
∗

1
𝐸
1
�⃗�
𝑇

√�̃�
∗

2
𝐸
2
�⃗�
𝑇

⋅ ⋅ ⋅ √�̃�
∗

𝑁
𝐸
𝑁
�⃗�
𝑇

]

𝑇

,

Π
19
= (𝐼 ⊗ 𝐶)

𝑇

𝑍
𝑇

,

Π
18
= (𝐼 ⊗ 𝐶)

𝑇

(𝐼 − �̃�
Λ

)

𝑇

�⃗�
𝑇

,

Π
28
= −(𝐼 ⊗ 𝐶)

𝑇

�⃗�
𝑇

,

Π
68
= −𝐷
𝑇

2
�⃗�
𝑇

,

Π
11
= (𝑊

𝑇

𝑊) ⊗ (Γ (𝑄
1
+ 𝑄
2
) Γ)

+ Sym {(𝑊 ⊗ Γ)
𝑇

�⃗� (𝐼 − �̃�
Λ

) (𝐼 ⊗ 𝐶)}

− 𝐼 ⊗ (𝑄
1
− (𝑑
𝑀
− 𝑑
𝑚
+ 1)𝑄

4
)

− 𝜆
1
Φ
𝑓

1
+ 𝜆
3
𝐴

,

Π
12
= −(𝑊 ⊗ Γ)

𝑇

�⃗� (𝐼 ⊗ 𝐶) ,

Π
14
= [𝑊

𝑇

⊗ (Γ𝑄
1
) + 𝜆
1
Φ
𝑓𝑇

2
𝑊
𝑇

⊗ (Γ𝑄
2
)

+(𝐼 ⊗ 𝐶)
𝑇

(𝐼 − �̃�
Λ

) �⃗�
𝑇

] ,

Π
15
= [𝑊

𝑇

⊗ (Γ𝑄
1
)𝑊
𝑇

⊗ (Γ𝑄
2
)

+(𝐼 ⊗ 𝐶)
𝑇

(𝐼 − �̃�
Λ

) �⃗�
𝑇

] ,

Π
16
= [𝑊

𝑇

⊗ (Γ (𝑄
1
+ 𝑄
2
))𝐷
1
+ (𝐼 ⊗ 𝐶)

𝑇

(𝐼 − �̃�
Λ

) �⃗�
𝑇

𝐷
2

−(𝑊 ⊗ Γ)
𝑇

�⃗�𝐷
2
] ,

Π
22
= −𝐼 ⊗ (𝑄

2
− (𝑑
𝑀
− 𝑑
𝑚
+ 1)𝑄

4
)

− 𝜆
1
Φ
𝑓

1
+

1

𝑁

(𝐼 ⊗ (𝑀
𝑇

𝑀)) ,

Π
24
= [0 (𝐼 ⊗ 𝐶)

𝑇

�⃗�
𝑇

+ 𝜆
1
Φ
𝑓𝑇

2
] ,

Π
25
= [0 (𝐼 ⊗ 𝐶)

𝑇

�⃗�
𝑇
] ,
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Π
26
= [−(𝐼 ⊗ 𝐶)

𝑇

�⃗�
𝑇

𝐷
1
0] ,

Π
33
= − diag {𝐼 ⊗ 𝑄

3
, 𝐼 ⊗ 𝑄

4
} − 𝜆
2
Φ
𝑔

1
,

Π
35
= 𝜆
2
Φ
𝑔𝑇

2
,

Π
44
= diag {𝐼 ⊗ 𝑄

1
, 𝐼 ⊗ 𝑄

2
} − 𝜆
1
𝐼,

Π
45
= diag {𝐼 ⊗ 𝑄

1
, 𝐼 ⊗ 𝑄

2
} ,

Π
55
= diag {𝐼 ⊗ 𝑄

1
, 𝐼 ⊗ 𝑄

2
} − 𝜆
2
𝐼,

Π
46
= Π
56
= [

(𝐼 ⊗ 𝑄
2
)𝐷
1

0

(𝐼 ⊗ 𝑄
2
)𝐷
1
−�⃗�𝐷
2

] ,

Π
66
= [

𝐷
𝑇

1
(𝐼 ⊗ (𝑄

1
+ 𝑄
2
))𝐷
1
− 𝛾
2

𝐼 −𝐷
𝑇

1
�⃗�𝐷
2

∗ −𝛾
2

𝐼

] ,

(48)

and other parameters are defined as inTheorem 7. Moreover, if
the above inequality is feasible, the desired state estimator gains
can be determined by

𝐾
𝑖
= 𝑄
−1

2
𝑌
𝑖
. (49)

4. Numerical Simulations

In this section, we present an illustrative example to demon-
strate the effectiveness of the proposed theorems. Consider-
ing the system model (2) with three sensors, the system data
are given as follows:

𝑊 =
[

[

−0.4 0.4 0

0.4 −0.6 0.2

0 0.2 −0.2

]

]

, Γ = diag {0.1, 0.1} ,

𝐷
11
= [

0.14

−0.15
] , 𝐷

12
= [

0.1

0.12
] ,

𝐷
13
= [

0.1

−0.05
] , 𝑀 = [0.5 0.7] ,

𝐷
21
= [

0.1

−0.1
] , 𝐷

22
= [

−0.1

0.2
] ,

𝐷
23
= [

0.2

−0.15
] , 𝐶 = [

0.8 0.5

0.9 −0.3
] ,

𝑓 (𝑥
𝑖
(𝑘))

= [

−0.6𝑥
𝑖1
(𝑘) + 0.3𝑥

𝑖2
(𝑘) + tanh (0.3𝑥

𝑖1
(𝑘))

0.6𝑥
𝑖2
(𝑘) − tanh (0.2𝑥

𝑖2
(𝑘))

] ,

𝑔 (𝑥
𝑖
(𝑘))

= [

0.02𝑥
𝑖1
(𝑘) + 0.06𝑥

𝑖2
(𝑘)

−0.03𝑥
𝑖1
(𝑘) + 0.02𝑥

𝑖2
(𝑘) + tanh (0.01𝑥

𝑖1
(𝑘))

] ,

ℎ (𝑥
𝑖
(𝑘)) = 0.15𝑥

𝑖
(𝑘) , 𝑑 (𝑘) = 2 + sin(𝜋𝑘

2

) ,

V
1
(𝑘) = 3 exp (−0.3𝑘) cos (0.2𝑘) ,

V
2
(𝑘) = 2 exp (−0.2𝑘) sin (0.1𝑘) .

(50)

Then, it is easy to see that the constraint (26) can be met
with

𝜙
𝑓

1
= [

−0.6 0.3

0 0.4
] , 𝜙

𝑓

2
= [

−0.3 0.3

0 0.6
] ,

𝜙
𝑔

1
= [

0.02 0.06

−0.03 0.02
] , 𝜙

𝑔

2
= [

0.02 0.06

−0.02 0.02
] .

(51)

Let the disturbance attenuation level be 𝛾 = 0.96. Assume
that the initial values 𝜑

𝑖
(𝑘) (𝑖 = 1, 2, 3; 𝑘 = −3, −2, −1, 0)

are generated that obey uniform distribution over [−1.5, 1.5],
𝛼
1
= 0.88, 𝛼

2
= 0.85, and 𝛼

3
= 0.87, and the delay

parameters are chosen as 𝑑
𝑚
= 1 and 𝑑

𝑀
= 3.

By applyingTheorem 9 with help fromMATLAB, we can
obtain the desired filter parameters as follows:

𝜆
1
= 23.9040, 𝜆

2
= 50.2256, 𝜆

3
= 14.0023,

𝑄
1
= [

9.1446 3.8908

3.8908 3.5213
] ,

𝑄
2
= [

9.0768 3.7262

3.7262 6.7169
] ,

𝑄
3
= [

0.7093 −0.1693

−0.1693 0.2576
] ,

𝑄
4
= [

0.8390 −0.3283

−0.3283 0.8284
] ,

𝑌
1
= [

0.5154 −0.9270

0.9371 −0.6966
] ,

𝑌
2
= [

0.6617 −1.1042

1.0172 −0.8178
] ,

(52)

𝑌
3
= [

0.2943 −0.7441

0.8713 −0.6346
] . (53)

Then, according to (49), the desired estimator parameters
can be designed as

𝐾
1
= [

−0.0006 −0.0771

0.1399 −0.0609
] ,

𝐾
2
= [

0.0139 −0.0928

0.1437 −0.0703
] ,

𝐾
3
= [

−0.0270 −0.0559

0.1447 −0.0635
] .

(54)

Simulation results are shown in Figures 1, 2, 3, and 4,
where Figures 1–3 plot the missing measurements and ideal
measurements for sensors 1–3, respectively, and Figure 4
depicts the output errors. From those figures, we can confirm
the superiority of the designed𝐻

∞
filter.
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5. Conclusions

In this paper, we have studied the robust 𝐻
∞

filtering
problem for a class of complex systems with stochastic packet
dropouts, time delays, and disturbance inputs. The discrete-
time system under study involves multiplicative noises, time-
varying delays, sector-bounded nonlinearities, and stochastic
packet dropouts. By means of LMIs, sufficient conditions
for the robustly exponential stability of the filtering error
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Figure 3: The ideal measurements and the missing measurements
of 𝑦
3
(𝑘).
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Figure 4: The estimator errors �̂�
𝑖
(𝑘) (𝑖 = 1, 2, 3).

dynamics have been obtained and, at the same time, the
prescribed disturbance rejection attenuation level has been
guaranteed. Then, the explicit expression of the desired filter
parameters has been derived. A numerical example has been
provided to show the usefulness and effectiveness of the
proposed design method.
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