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Abstract

The paper develops a reduction scheme based on the identification of continuous
time recursive neural networks from input-output data obtained through high
fidelity simulations of a nonlinear aerodynamic model at hand. The training
of network synaptic weights is accomplished either with standard or automatic
differentiation integration techniques. Particular emphasis is given to using
such a reduced system in the determination of aeroelastic limit cycles. The
related solutions are obtained with the adoption of two different approaches:
one trivially producing a limit cycle through time marching simulations, and
the other solving a periodic boundary value problem through a direct periodic
time collocation with unknown period. The presented formulations are verified
for a typical section and the BACT wing.

Keywords: Continuous Time Recurrent Neural Networks, Limit Cycle
Oscillation, Periodic Collocation Method, Nonlinear Aeroelasticity

Nomenclature and common abbreviations

b airfoil/wing semi-chord, measured in [m];

c airfoil chord, measured in [m];

CL, CM coefficients of lift and moment;

e network output error;

h, θ plunge and pitch degree of freedoms, measured in [m]
and [deg] respectively;

k =
ωc

V∞
reduced frequency;
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l wing span, measured in [m];

m airfoil/wing mass, measured in [kg];

r2θ =
Jθ
mb2

nondimensional airfoil/wing moment of inertia;

t physical time, measured in [s];

u network input;

V ∗ =
V∞

ωθb
√
µ

reduced velocity;

Wx, Wa, Wb, Wc network synaptic weights;

xθ =
Sθ
mb

nondimensional airfoil/wing static unbalance;

x network state;

y network output;

β mixing parameter employed in the periodic collocation
method;

Λ network Jacobian matrix;

µ =
m

πρ∞ l b2
fluid-mass ratio;

ρ∞ fluid density, measured in [kg/m3];

τs = ωθt structural adimensional time;

τa =
V∞t

b
aerodynamic adimensional time;

Φ(v) network activation function;

ωh, ωθ uncoupled plunging and pitching circular frequencies,
measured in [rad/s];

AD automatic differentiation;

CFD computational fluid dynamics;

CTRNN continuous time recurrent neural network;

LCO limit cycle oscillation;

NN neural network;

PCM periodic collocation method;

ROM reduced order model.
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1. Introduction

Nonlinear unsteady aerodynamic loads can be determined through high fidelity
Computational Fluid Dynamics (CFD), which enables an accurate solution of
many aeroelastic problems. Nevertheless, even with the computational power
currently available, the costs of solving the related nonlinear high order problems
still impede their routine adoption in the many repeated calculations required
in preliminary aircraft design phase, making them more viable for the detailed
validations typical of advanced design phases (Romanelli et al., 2012; Morton
and Beran, 1999; Timme et al., 2011). It is therefore of utmost importance to
develop Reduced Order Models (ROM) out of high fidelity numerical schemes
to permit the use of nonlinear aerodynamics in a far wider analysis and design
spectrum, while maintaining the needed level of accuracy required by aeroelastic
stability and response calculations. An overview of ROM techniques can be
found in (Lucia et al., 2004). The main approaches to ROM can be subdivided
roughly into three main branches.

The first is the group of subspace projection methods, which exploits vector
bases provided for example by a Proper Orthogonal Decomposition (POD) or
Balanced POD (BPOD) (Schilders et al., 2008; Rowley, 2005; Mastroddi et al.,
2012). A reduced (B)POD basis aims to retain most of the generalized numerical
energy, i.e. a norm, of a system through a Singular Value Decomposition (SVD)
of the matrix of the snapshots of appropriately accurate high fidelity responses.
A smaller set of aerodynamic states can then be obtained by projecting the
parent high fidelity approximation onto the determined (B)POD subspace. It
should be remarked that when a reduction can be focused on periodic responses
only, e.g. limit cycles, it is possible to include also the Harmonic Balance (HB)
scheme within such a group (Thomas et al., 2002).

The second branch encompasses generalized interpolation methods, e.g. Ra-
dial Basis Function (RBF) or Kriging interpolators (Timme et al., 2011; Timme
and Badcock, 2011). Such methods employ a high fidelity model to determine
the solutions associated to a discrete set of parameters, to which a high or-
der interpolation is applied afterward to evaluate any needed response at any
intermediate point of interest. Therefore, the interpolator works as a general
nonlinear input-output mapping, leading to a simpler representation of the dy-
namic system. Even if it is a robust technique, its application seems limited
mostly to the evaluation of the aeroelastic stability.

The third group is represented by identification techniques based on input-
output data. The Volterra series method (Lucia et al., 2004), based on the
generalization of the impulse response of a system, is one of those techniques.
Another approach, the one taken in this work, is characterized by the adop-
tion of various forms of Neural Networks (NN). An example of the application
of such an approach is the order reduction of relatively simple aeroelastic sys-
tems provided by the application of Discrete Time Recurrent Neural Networks
(DTRNN) and Nonlinear AutoRegressive with eXogeneous input (NARX) NN
models (Zhang et al., 2010; Yao and Liou, 2012). Instead, the present work
introduces the relatively newer approach of Continuous Time Recurrent Neu-
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ral Networks (CTRNN) to model order reduction. In this way, the resulting
ROM is characterized by an equivalent non linear state formulation continuous
in time, which can be exploited for both stability and response analyses, carried
out much as on a standard set of parametrized differential equations. An im-
mediate advantage of such a choice comes from the avoidance of the sampling
time constraint implied in any NN discretized in time, which heavily affects the
time steps to be used in any following analysis. As will be shown in Section
7, with the present reduced order modeling technique faster analyses can be
carried out, with a much larger time step with respect to that employed in the
training phase, which is constrained to smaller values because of the stability
issues related to the explicit time scheme used by the CFD solver. If a DTRNN
had been employed, the discretization time step would have been fixed, so con-
straining, a priori, the maximum representable frequency accounted for in the
training phase.

Within the CTRNN framework, particular emphasis will be given to the de-
termination of Limit Cycle Oscillations (LCO) of nonlinear aeroelastic systems,
which will be computed through two different time domain approaches. The
first of them is a trivial direct integration in time, starting from varied trial ini-
tial conditions, while the second imposes a periodic boundary solution through
a Periodic Collocation Method (PCM) (Epureanu and Dowell, 2003; Manetti
et al., 2009a). The PCM embeds an easy extension for the determination of
the stability of LCOs through Floquet analyses. It should be a relatively new
application of CTRNNs, at least for the computation of periodic aeroelastic
solutions.

This work will show how the presented CTRNN based ROM can predict the
nonlinear aerodynamic loads generated by a basis of structural motions, not yet
assigned, so allowing to obtain a nonlinear aeroelastic system by coupling such
a model to any underlying structure. Eventually the adopted PCM scheme will
be verified through the computation of LCOs, comparing its results with those
of the more common approach represented by direct trial simulations.

2. Continuous Time Recurrent Neural Network (CTRNN)

A neural network is a massively parallel distributed process combining simple
processing units, the neurons, which have the natural capability of storing any
knowledge accumulated through experience, making it available for later uses.
Knowledge is acquired through a learning process and is stored in the synaptic
connections linking the neurons. Because of their self-learning, fault tolerance,
intrinsic nonlinearity, adaptivity and microbiological analogy (Haykin, 2009),
neural networks are often used for nonlinear identifications.

Therefore, they are a powerful tool for approximating nonlinear dynamic sys-
tems, even when the system structure is unknown and only input-output data
are available. They permit a sort of nonlinear generalized black-box modeling,
thus avoiding the burden of stating a structured parametrization of the related
differential equations, as required by other methods (Paduart et al., 2010). In
an NN framework, the model is defined only by the structure and connections
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Figure 1: Schematic example of CTRNN.

of the network itself, i.e. the order of the system, the related parameters be-
ing determined through experimental/computational models, without any prior
knowledge of the system internals. In fact the NN model parameters have no
direct relationship to first principles (Nelles, 2001). The advantages of black-box
NNs reside in their shorter modeling time and embedded implicit parametriza-
tion. So they can be used both for well-and not-so-well-understood processes.
Such a feature could nevertheless be seen as a drawback of an NN, since it can
lead to a scattered ’monkey-see, monkey do’ approach, in place of exploiting
the knowledge and physical understanding of a system at hand in guiding any
learning process. Neural networks can be adopted both for the modeling of
nonlinear functions and nonlinear dynamic systems (Haykin, 2009). In the lat-
ter case, such a representation is mostly casted in a recursive form, either in
a discrete or continuous time framework. The logical scheme of the CTRNN
considered in this work is shown in Figure 1.
The mathematical model is then represented by:

ẋj =

nh∑
i=1

W x
jiφi

(
nx∑
k=1

W a
ik xk +

m∑
q=1

W b
iq uq

)
, j = 1, ... , nx, (1)

or more compactly:

ẋ = WxΦ
(
Wax + Wbu

)
, y = Wcx, (2)

where x ∈ Rnx is the network state, u ∈ Rm is the input, y ∈ Rp is the
output, Φ : Rnh −→ Rnh is the set of activation functions, Wa ∈ Rnh×nx ,
Wb ∈ Rnh×m, Wx ∈ Rnx×nh and Wc ∈ Rp×nx are the matrices containing the
network synaptic weights; nx, nh, m and p being respectively the state, hidden
and input-output space dimensions. The presented model is similar to the one
found in (Seyab, 2006), with a slight modification of the bias term, which is
not considered in the present work. Such a choice combines the advantage of
a significant reduction of the size of the optimization problem with the possi-
bility of a fixed neuron activation point, so leading to symmetrically structured
networks.
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From Eq. (2) above it is seen that, for a reduced aerodynamic model, it
is appropriate to assume a strictly proper output form, whose matrix will be
structured as:

Wc =
[
Ip×p 0p×(nx−p)

]
, (3)

where I is the identity matrix, 0 is a null matrix. The structure of Eq. (3) shows
that the output of the first p hidden neurons are the output of the network,
leading to a direct and easier physical interpretation of the computed results
(Haykin, 2009).

A physical description of the quantities involved in the dynamics of the neural
network may clarify its meaning. Consider for example an airfoil experiencing
pitch and plunge oscillations. If the aim of the CTRNN is the identification of
the aerodynamic loads, then the input u is composed by the pitch and plunge
themselves, while the output y are the nondimensional load coefficients. Because
of Eq. (3), the first two component of the state x will be represented by the
CTRNN output, meanwhile the others will have no direct physical meaning, they
will increase only the capabilities of the CTRNN in its task of identifying motion-
dependent loads. Therefore, in this case the input and output dimensions will
be m = 2 and p = 2, while the state dimension nx should be chosen as small as
required to maintain an acceptable computational effort for a wanted precision.

Following a few preliminary numerical experiments the logistic function and
its sensitivity to the neuron potential have been found to be an adequate choice
for neurons activation. As such they are written as:

φ(v) =
1

1 + exp (−v)
,

dφ

dv
=

exp (−v)

(1 + exp (−v))
2 , (4)

where v is the neuron potential, its first derivative playing a significant role
within the training algorithm.

3. CTRNN training

Without a doubt, the most demanding effort in setting up a meaningful
NN is its training. Different strategies have been proposed in the literature, in
particular for the DTRNN case, such as the Back Propagation Through Time
(BTTP) algorithm, for batch learning, and the Real Time Recurrent Learn-
ing (RTRL) for online applications. An RTRL has also been proposed for the
continuous case (Pearlmutter, 1989). Both algorithms have demonstrated good
convergence properties within the realm of the applications of interest for the
present work. (Haykin, 2009).

It should be nonetheless remarked that no standard procedure has yet been
defined for the training of CTRNNs. So, since it has been verified that a simple
gradient based learning method, e.g. BTTP and RTRL, is somewhat inefficient
(Suykens and Vanderwalle, 1995), improved optimization algorithms should be
used, such as the Levenberg-Marquardt (LM) scheme (Marquardt, 1963) or a
Genetic Algorithm (GA) (Goldberg, 1989).
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In fact the training of a neural network can be viewed as a nonlinear opti-
mization problem, which can greatly benefit from the knowledge of the Jacobian
matrix associated to any stationary point. Such a Jacobian is clearly referred
to the derivative of the system output with respect to the unknown parameters,
the synaptic weights of Eq. (2) in our case, that must be designed by minimizing
a given cost function. To such an aim let us define the state Jacobian matrix:

Λ =
∂x

∂θ
, (5)

where θ =
(

vec (Wx)
T
, vec (Wa)

T
, vec

(
Wb

)T)T
, vec (·) being the operator

ordering a matrix into a vector by stacking its columns. Moreover, being asso-
ciated to a dynamic system, the above Jacobian matrix will change with time.
Thus a system of nx×nθ Ordinary Differential Equations (ODEs) must be added
and coupled to the original nx ODEs of Eq. (2) during the network training,
with nθ = 2nx · nh + nh ·m representing the total number of optimization vari-
ables.

Such a training should find out the optimal synaptic weights through the
minimization of a given cost function, which, in our case, will be the most
common one found in the literature for similar identification problems, i.e. a
quadratic function of the Output Error e(t), defined as:

e(t) = ŷ(t)−Wcx(t), (6)

where ŷ(t) is the output of the parent high order system. Therefore, the cost
function reads:

F =
1

2

Nt∑
k=1

eT(tk)e(tk), (7)

where Nt is the number of sampled points. The optimization algorithm will find
a minimum of the cost function with respect to the unknown optimal synaptic
weights.

It should be noted that, despite its relatively robust convergence properties,
the LM solver may prove weak when started from an initial guess point θ0
far away from the optimal solution. Therefore, a hybrid technique has been
implemented, running a few iterations of a global GA (Goldberg, 1989) first,
resuming LM when the genetic solution hooks an optimum region, that in this
work is represented by a cost function value smaller than a selected threshold.
Beside fostering convergence from very rough initial guesses, an added advantage
of such a hybrid approach resides in avoiding the calculation of the almost useless
initial Jacobian matrices, resuming their costly calculation only when the full
advantage of the second order convergence provided by LM is almost assured.

In relation to the refined LM algorithm, it becomes useful to define the
vector:

E(θ) =
(
e(t1, θ)

T e(t2, θ)
T · · · e(tNt , θ)

T
)T
, (8)
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with E ∈ RNt·p, meanwhile the output Jacobian matrix is defined by:

J(θ) =
∂E(θ)

∂θ
, (9)

which has dimensions R(Nt·p)×nθ , and can be split into the blocks:

J(θ) =
[
J(t1, θ)

T J(t2, θ)
T · · · J(tNt , θ)

T
]T
, (10)

each of dimensions Rp×nθ , as given by:

J(tk, θ) =
∂e(tk, θ)

∂θ
= −WcΛ(tk, θ), k = 1, ... , Nt. (11)

Having defined the state Jacobian matrix in Eq. (5), it is easy to compute
its dimensions as being given by Rnx×nθ matrix. For a more straightforward
computation of its elements, it becomes easier to split it into the following
blocks:

Λ =

[
∂x

∂W x
ij

∂x

∂W a
ij

∂x

∂W b
ij

]
. (12)

Taking the derivative of the state x with respect of the elements of the synaptic
weights matrix Wx as an example, each sub-matrix will have the following
structure:

∂x

∂W x
ij

=

[
∂x

∂W x
11

,
∂x

∂W x
21

, . . . ,
∂x

∂W x
nx1

,
∂x

∂W x
12

,
∂x

∂W x
22

, . . . ,
∂x

∂W x
nx2

, . . . ,
∂x

∂W x
nxnh

]
.

(13)
Remembering the size of each vector/matrix involved and the order they have
been sorted with, their assembly will result in a straightforward operation.
Defining the single-entry matrix Iij (Petersen and Pedersen, 2008), as the ma-
trix with a 1 at the position (i, j) and zero elsewhere and using the shorthand
notation z = Wax + Wbu, the direct computation of the blocks of Eq. (12)
from Eq. (2) reads:

∂ẋ

∂W x
ij

= IijΦ(z) + WxΨ(z)Wa ∂x

∂W x
ij

,
i = 1, ... , nx,

j = 1, ... , nh,
(14)

with Ψ(z) = diagnh

[
dφ1
dz1

,
dφ2
dz2

, · · · , dφnh
dznh

]
, then:

∂ẋ

∂W a
ij

= WxΨ(z)

(
Iijx + Wa ∂x

∂W a
ij

)
,

i = 1, ... , nh,

j = 1, ... , nx,
(15)

∂ẋ

∂W b
ij

= WxΨ(z)

(
Iiju + Wa ∂x

∂W b
ij

)
,

i = 1, ... , nh,

j = 1, ... ,m,
(16)
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Assembling the different blocks (14), (15) and (16), defining:

U = [IijΦ(z), WxΨ(z)Iijx, WxΨ(z)Iiju] , (17)

and:
Â = WxΨ(z)Wa, (18)

we end with a time varying Jacobian matrix governed by the following differen-
tial matrix equation:

Λ̇ = ÂΛ + U. (19)

Eventually the coupling of Eq. (2) and Eq. (19) fully defines the nonlinear state
dynamics of a CTRNN:

ẋ = WxΦ
(
Wax + Wbu

)
Λ̇ = ÂΛ + U

y = Wcx

J = −WcΛ.

(20)

It can thus be seen that both GA and LM require the forward time solution of
an ODE system, for the current value of the network synaptic weights. Because
of the structure chosen for Wc in Eq. (3) it is possible to assign the initial
condition required by Eq. (20) as being the initial value of the output of a high
fidelity simulation, thus defining a physical meaning for the network through
the following:

x0 =
(
ŷT
0 0T

)T
, (21)

where the size of the null vector is equal to nx−p. Instead, the initial condition
of the state Jacobian matrix is taken as a null matrix, meaning that the initial
network synaptic weights reside at a stationary point of Rθ (Haykin, 2009).

Since we will take into account only aerodynamic nonlinearities our CTRNN
will identify the aerodynamic response computed by a high fidelity CFD code.
Then, the thus determined CTRNN model can be coupled to a structure so
to produce a complete aeroelastic ROM solver, which should be much more
effective in providing precise nonlinear response and stability simulations, at a
faster pace than that of corresponding full order high fidelity calculations.

4. Tackling the CTRNN training with Automatic Differentiation (AD)
tools

In practical engineering applications, it is relatively simpler to code response
functions than their derivatives with respect to any parameter of interest. Nev-
ertheless, accurate values of a function derivatives often play a central role in
model validation (sensitivity analysis) and optimization. The adoption of Auto-
matic Differentiation (AD) tools permit to obtain an automatic determination
of any derivative required to build a Jacobian matrix on the base of the mere
availability of the related function written in a computer code, so avoiding their
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analytic evaluation, which can be cumbersome. A sound illustration of such a
point can be found in (Griewank and Walther, 2008; Griewank et al., 1996).

The two main basic algorithms used by AD to compute derivatives are the
forward mode, which computes the function value and its derivatives in parallel,
and the reverse or adjoint mode, which requires a first evaluation of the function,
followed by the evaluation of its derivatives through a step by step backward run
over the definition of the function itself, as for the Backpropagation Algorithm
for NNs (Griewank and Walther, 2008). It should be clear that, while the
forward mode follows the same path for a number of times equal to the number
of partial derivative desired, the reverse mode permits to compute all of the
partial derivatives of a function in a single shot, i.e. following the reverse path
once.

Moreover, by exploiting the properties of a Taylor series in the approximation
of a function, an AD is directly applicable also to the training of the neural
network previously presented. In fact the CTRNN model can be written as a
general parametrization of a nonlinear system:

ẋ = f (x, θ) , y = Wcx, (22)

so that the related network sensitivity can be defined as the variation of the
network output against θ. Then, differentiating Eq. (22) with respect to θ, one
obtains the following ordinary differential matrix problem:

ẋθ = fxxθ + fθ, yθ = Wcxθ, (23)

with fx =
∂f

∂x
∈ Rnx×nx , fθ =

∂f

∂θ
∈ Rnx×nθ , xθ =

∂x

∂θ
∈ Rnx×nθ and yθ =

∂y

∂θ
∈

Rp×nθ . The above system will be integrated along with the system dynamics

in Eq. (22), starting from a given initial condition xθ(0) =
∂x(0)

∂θ
. The related

system of ODEs is composed by nx + nx × nθ equations and can be integrated
numerically through any of the well known standard ODE solvers. Nonetheless,
typically, its size grows very quickly and since such an integration must be
performed at each iteration of the training algorithm, this part constitutes the
real burden of a network training.

Consider the following initial value problem:

ẋ = f(x(t)), x(0) = x0, (24)

with f differentiable d-times in time. Defining z(t) = f(x(t)), the Taylor coeffi-
cients of the solution can be computed through the following iterative formula:

xi+1 =
zi
i+ 1

, (25)

which derives from the application of the forward AD mode to Eq. (24). The
usual procedure is to calculate z0 = x1 from x0, then plugging it into x0 + x1 t
of z(t) so to obtain 1

2z1 = x2 and so on. In this way one has to perform d sweeps
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through the evaluation algorithm for f with the degree of the Taylor arithmetic
growing by one at each time (Griewank and Walther, 2008).

Along with the solution of the ODE system, the analyst may desire to com-

pute the Jacobian matrix, B =
dx

dx0
, solution of the following initial value

problem:

Ḃ =
∂f

∂x
B = AB, B(0) = I, (26)

with I the identity matrix. Clearly, because of its implicit dependence on x, the
time varying Jacobian matrix must be integrated along with the state dynamics
itself. The expression of the Taylor elements of B are then obtained applying
the chain rule to Eq. (25):

Bi+1 =
dxi+1

dx0
=

1

i+ 1

dzi
dx0

=
1

i+ 1

i∑
j=0

∂zi
∂xj

dxj
dx0

=
1

i+ 1

i∑
j=0

Ai−jBj , (27)

where the matrices Aj are computed through the AD reverse mode (Griewank
and Walther, 2008; Seyab, 2006). In practice, a more straightforward approach
can be used. In fact after defining a normalized time τ = t/∆t, where ∆t is the
adopted integration step, the ODE system defined in Eq. (24) is transformed
to:

d

dτ
=

1

∆t

d

dt
→ dx̂(τ)

dτ
= x̂′ = ∆t f(x̂(τ)), (28)

with x̂(τ) = x(t/∆t). The solution and its Jacobian matrix trajectories can
now be expressed as:

x̂(τ) = x̂0 + x̂1τ + x̂2τ
2 + · · ·+ x̂dτ

d +O
(
τd+1

)
, (29)

A(τ) = A0 + A1τ + A2τ
2 + · · ·+ Adτ

d +O
(
τd+1

)
, (30)

meanwhile the Taylor series elements of the Jacobian matrix are assembled by
Eq. (27). Starting from the initial values x0 and B0, the solution at each time
step ti+1 = ti + ∆t is computed explicitly as follows:

x(ti + ∆t) =

d∑
j=0

x̂j , (31)

and:

B(ti + ∆t) =

d∑
j=0

Bj , (32)

with the maximum Taylor series degree d being adjusted so to obtain an accurate
solution of Eq. (24).

However, like for any explicit numerical integrators, for stability reasons,
Taylor expansion methods are forced to adopt excessively small step sizes, wher-
ever the system is stiff. There are nonetheless A-stable implicit variants that
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overcome this limitation (Griewank et al., 1996). It will nevertheless be seen that
such a stability problem will not affect what presented in this work significantly,
since the training phase is based on signals computed by CFD simulations, hav-
ing a very fine resolution in time.

In this work, the above Taylor series elements will be computed with the
support of the package ADOL-C (Automatic Differentiation by OverLoading in
C++) (Griewank et al., 1996), making it much simpler the evaluation of the
any order derivatives of the easily coded vector-valued functions. Moreover,
contrarily to the source transformation approach, the generation of an interme-
diate source code can be avoided by exploiting the C++ operator overloading,
thus saving run time memory. It is noted that ADOL-C permits also the com-
putation of directional (Lie) derivatives, gradients of any Taylor coefficient with
respect to any independent variable.

It is worth noting that Eq. (22) is nonautonomous. In such a case ADOL-C
permits the computation of the Jacobian matrix only with respect to the state
variables, a limitation that can be overcome by simply adding the differential
equations modeling constant parameters, so resulting in the augmented system:

ẋ = f (x, θ) , θ̇ = 0, y = Wcx, (33)

with the value of θ being the one available at the beginning of the iterated op-
timization, which remain constant in the computation of the CTRNN response.
While it is true that the size of the ODE system is augmented, the added dif-
ferential equations are trivial. Moreover, since the CTRNN represents a ROM,
the size of nθ will usually be small, thus the overall integration procedure will
suffer only for a very small added cost.

At this point let us rewrite Eq. (34) as being autonomous by defining the
extended state variable z:

z =
{
xT θT

}T
, (34)

so that Eq. (22) now reads:

ż = f (z) , y = [Wc 0p×nθ ] z = Ŵcz. (35)

Therefore, the forward and reverse AD modes may be easily employed for the
computation of the Taylor series elements presented in Eqs. (25) and (27)
respectively, afterward computing the solution of Eq. (35) through Eqs. (31)
and (32).

5. Limit Cycle Oscillations

Limit Cycle Oscillations (LCOs) are a peculiar phenomenon encountered in
the analysis of nonlinear dynamic systems. In the context of the related theory,
an LCO is one of the simplest dynamic bifurcation, ”a first stop on the road to
chaos” (Dowell et al., 2004). Without focusing too much on bifurcation analysis,
as there is a vast supporting literature on such a subject, e.g. in general (Seydel,
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1988) and for aeroelastic LCOs (Morton and Beran, 1999; Stanford and Beran,
2013), let us consider a few details pertaining to the aeroelastic case.

Both the aerodynamic (Morton and Beran, 1999; Zhang et al., 2010; Yao and
Liou, 2012) and structural (Manetti et al., 2009a; Epureanu and Dowell, 2003;
Li et al., 2012) nonlinearities can lead to such a characteristic behaviour. So
an advantage of using theoretical models resides in the possibility of analysing
each of the several possible physical phenomena leading to an LCO separately.

An LCO response can be determined by following two main lanes. The first
is a brute force, repeated direct numerical integration of the full-order/high-
fidelity nonlinear system, since the computational power available nowadays
makes it straightforward, especially in view of its large grain massive paralleliza-
tion. Nevertheless, such an approach remains computationally very expensive,
especially during the preliminary design phase, where many computational sim-
ulations are needed to evaluate any required performance over a large set of
configurations. The other approach is based on enforcing a periodic solution
of the nonlinear system under consideration, either through a direct periodic
collocation in time (Manetti et al., 2009b; Epureanu and Dowell, 2003; Borri
and Mantegazza, 1987) or through a harmonic balance in the frequency domain
(Thomas et al., 2002; Lucia et al., 2004; Thomas et al., 2010; Kholodar et al.,
2004), the time domain approach being the one followed in this paper.

Time marching integrations are largely used also for determining the flut-
ter condition through numerical experiments involving nonlinear aerodynamics
(Morton and Beran, 1999). Today such methods are mainly used to validate the
results of stability changes obtained with a Hopf bifurcation analysis at varying
dynamic pressures, which can provide any stable/unstable response but only
stable LCOs.

Calling λ any bifurcation parameter of interest, we have seen that our ROM
can be associated to a set of explicit nonlinear ODEs of the type:

ẋ = R (x;λ) for t > 0, x (t = 0) = x0, (36)

whose stable LCOs are much more amenable to an easy and relatively efficient
determination by means of time simulations, without much concern about the
choice between explicit and implicit integration methods because of the rela-
tively small size of x associated to a ROM model.

Nevertheless, a periodic LCO trajectory can be enforced a priori onto Eq.
(36) and its solution computed both in the time and frequency domain. The fre-
quency domain approach exploits Fourier series, with unknown period, typically,
considering only a few first fundamental components, leading to the well known
Describing Function method (Gelb and Vander Velde, 1968; Manetti et al.,
2009a) and numerically generalized HB formulations (Thomas et al., 2002; Hall
et al., 2002; Lucia et al., 2004).

Here we will follow the alternative approach of casting a periodic solution
directly in the time domain, through the enforcement of a collocated periodic
discretization (Epureanu and Dowell, 2003; Borri and Mantegazza, 1987). In
such a view it is simpler to reformulate Eq. (36) with its more general fully
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implicit form:
F (x, ẋ, λ) = 0, (37)

which is assumed to admit an LCO with unknown period T . Then, to impose
such a periodic solution, we divide its period T in N time intervals, thus N + 1
time nodes. In view of the adoption of an adaptive discretization in time, the
related intervals ∆t can be non-uniform, hence they are be defined by a vector
α such that:

∆ti = αiT, i = 1, ..., N. (38)

At each time interval, Eq. (37) can be time weighted and collocated at the
corresponding instant, for example with the Mid-Point Rule (MPR), reading:

FMPRi = F

(
x(ti+1) + x(ti)

2
,
x(ti+1)− x(ti)

∆ti

)
∆ti = 0. (39)

The MPR is a second order, symplectic, energy preserving integrator, thus it
can be efficiently adopted for solving Eq. (37). Hovever, if Eq. (37) is stiff or is
a set of Differential Algebraic Equations (DAE), there is the possibility that the
MPR converges toward a ringing solution, possibly jeopardizing convergence. In
order to solve this problem, Ref. (Manetti et al., 2009b) adopts a hybrid method,
mixing MPR with a second order Backward Difference Formula (BDF2) whose
collocation gives:

FBDFi = F

(
x (ti) ,

ρ1ix (ti+1) + ρ2ix (ti) + ρ3ix (ti−1)

∆ti

)
∆ti = 0, (40)

where:

ρi =
αi
αi+1

, ρ1i = 1 +
ρi
ρi+1

, ρ2i = ρi + 1, ρ3i =
ρ2i

ρi + 1
, (41)

with ρi allowing the use of differing collocation steps so to adapt the time mesh
to the nonlinear solution gradients. The mentioned hybridization consists in a
linear combination of the two methods, as given by:

βFMPRi (x (ti) ,x (ti+1)) ∆ti + (1− β) FBDFi (x (ti−1) ,x (ti) x (ti+1)) ∆ti = 0,
(42)

so that when the coefficient β tends to 0, the dissipation of any unwarranted
high frequency content of the solution is provided by BFD2, so solving any
MPR ringing problem, albeit at the cost of some loss of precision (Manetti
et al., 2009b). The discretization of Eq. (39) leads to N · n nonlinear algebraic
equations in n · (N + 1) + 1 unknowns: the N + 1 vector solutions x(ti) and
the period T , where of course n is the dimension of x. Therefore n + 1 more
equation must be added for the mathematical closure of the problem. Since we
are looking for periodic solution, n equations are introduced by imposing the
periodicity:

x(t1) = x(tN+1). (43)
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Moreover, since the system is autonomous, the time origin is also unknown and
must be defined, fixing in this way the phase reference of the computed limit
cycle. That is done by imposing a single element, say the k-th, of the vector
solution x at an arbitrary collocation time point, say the j-th, so providing the
last equation needed for the closure of the problem:

xk(tj) = C, (44)

where C ∈ R. The resulting system of nonlinear algebraic equations is even-
tually solved with a nonlinear solver, such as Newton-Raphson. In practical
applications the efficiency of the solution is usually enhanced by adopting a
continuation on the number of time interval used N , starting from a low num-
ber of points and then increasing them using an interpolation of the previous
solution as an initial guess. Such an approach will be here called Periodic
Collocation Method (PCM). Further continuations strategies can be applied to
varying system parameters, as in the case of an aeroelastic problem (Manetti
et al., 2009b; Epureanu and Dowell, 2003).

After ordering the collocated unknowns as:

Z =
(
xT(t1),xT(t2), . . . ,xT(tN+1), T

)T
. (45)

The block structure of the Jacobian matrix, required by a Newton-Raphson
solver, is shown below in Eq. (46):

J =



A1
1 A2

1 0 0 · · · 0 0 b1
1

A1
2 A2

2 A3
2 0 · · · 0 0 b2

2
...

...
...

...
. . .

...
...

...
0 · · · Ak

i−1 Ak
i Ak

i+1 · · · 0 bki
...

...
...

...
. . .

...
...

...
0 0 0 0 AN

N−1 AN
N AN

N+1 bNN
I 0 0 0 · · · 0 −I 0


, (46)

with its blocks given by:

Ak
i−1 = (1− β)

ρ3
αkT

∂F

∂ẋ

∣∣∣∣
MPR, k

,

Ak
i = β

(
1

2

∂F

∂x

∣∣∣∣
MPR, k

− 1

αkT

∂F

∂ẋ

∣∣∣∣
MPR, k

)
∆ti + (1− β)

ρ2
αkT

∂F

∂ẋ

∣∣∣∣
BDF, k

∆ti,

Ak
i+1 = β

(
1

2

∂F

∂x

∣∣∣∣
MPR, k

+
1

αkT

∂F

∂ẋ

∣∣∣∣
MPR, k

)
∆ti + (1− β)

(
1

2

∂F

∂x

∣∣∣∣
BDF, k

+
ρ1
αkT

∂F

∂ẋ

∣∣∣∣
BDF, k

)
∆ti,

(47)
and:

bki = F (x(ti), ẋ(ti))−

[
β
∂F

∂ẋ

∣∣∣∣
MPR, k

ẋkMPR + (1− β)
∂F

∂ẋ

∣∣∣∣
BDF, k

ẋkBDF

]
αk,

(48)
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where the subscript MPR and BDF indicates that the collocated functions and
derivatives refer to the use of an MPR and BDF formula respectively. Such an
approach is quite efficient, since the Jacobian matrix is usually easy to compute
and sparse, therefore requiring a limited number of operations.

Once a converged solution has been obtained, the monodromy matrix Q is
computed to investigate the LCO stability within the framework of the Floquet
theory (Jordan and Smith, 2007). Therefore, let us consider the linearization of
Eq. (37), around an LCO solution, i.e. for F|LCO = 0 at any time:

∂F

∂x

∣∣∣∣
LCO

∆x +
∂F

∂ẋ

∣∣∣∣
LCO

∆ẋ = 0, (49)

which is a first order linear ordinary differential system with periodically varying
coefficients. Following a standard literature approach, e.g. see (Jordan and
Smith, 2007), we write the above equation as:

∆ẋ(t) = P(t)∆x(t), with P(t) = − ∂F

∂ẋ

−1∣∣∣∣
LCO

∂F

∂x

∣∣∣∣
LCO

, (50)

with P(t+T ) = P(t) for all t. Then we combine all of its independent solutions
in a unique matrix X, called the fundamental matrix of the system, defined as:

X = [∆x1,∆x2, · · · ,∆xn] , (51)

where X is the solution of:

Ẋ = PX for t > 0, X(0) = I. (52)

According to Floquet theorem (Jordan and Smith, 2007), the fundamental ma-
trix satisfies:

X(t+ T ) = QX(t) ∀ t, (53)

so that Q = X(T ) and its eigenvalues are called the characteristic numbers
of Eq. (50), which are independent constants. Their values characterize the
stability of any obtained LCO solution. Within the presented PCM approach
Q is simply determined by solving the following linear system (Manetti et al.,
2009b):

A1
2 0 0 0 · · · 0 0

A2
2 A2

3 0 0 · · · 0 0
...

...
...

...
. . .

...
...

0 · · · Ak
i−1 Ak

i Ak
i+1 · · · 0

...
...

...
...

. . .
...

...
0 0 0 0 AN

N−1 AN
N AN

N+1





X(t1)
X(t2)

...
X(ti)

...
Q


= −



A1
1

A2
1

0
0
...
0


. (54)

An LCO will be stable if all of the modulus of the eigenvalues of Q are lower
than one, taking into account that there is always an eigenvalue with modulus
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equal to one (Manetti et al., 2009a; Jordan and Smith, 2007). So, if at least
one eigenvalue has a modulus higher than one the LCO will be unstable. It is
worth remarking that if any of the highest eigenvalue is significantly close to
one, a finer period discretization should be use as a check, to avoid attributing
an unstable behaviour just because of the inadequate precision of any found
solution.

6. Aerodynamic models

In the following examples the Euler option of the in-house CFD solver Aero-
Foam (Romanelli, 2012) will be adopted for the training of our CTRNNs. Such
a solver is supported by the open source tool OpenFOAM (VV.AA., 2010) for the
handling of the computational grid data, numerical solutions and the pre/post-
processing phases. It is a density-based Euler/Reynolds-Averaged Navier-Stokes
(RANS) solver, formulated in an Arbitrary-Lagrangian-Eulerian framework.
Accordingly, it can treat efficiently problems with moving grids, permitting
the simulation of aeroservoelastic applications. The Euler flow model has been
chosen in the present analyses because the resulting LCOs will be enhanced by
the large movements of shock waves over the wing surface. Such an effect would
have been smeared out if RANS simulation had been used out, with a costlier
computational effort. Furthermore, this choice allows to carry out more mean-
ingful comparisons with other results available in the literature (Zhang et al.,
2010; Yao and Liou, 2012; Thomas et al., 2002). In such a view an inviscid
flow model has been selected. Nevertheless, RANS simulations are currently
under testing and will be presented in future works. It is based on a state of the
art Finite Volume, cell-centered solver, which can treat both structured and un-
structured grids. The convective fluxes of the RANS model are discretized by the
classical Roe’s approximated Riemann solver, which is a first order, monotonic
scheme, blended by a centered approximation, i.e. Lax-Wendroff, producing a
high-resolution scheme, completed by the entropy fix of Harten and Hyman and
the van Leer flux limiter. Viscous and conductive fluxes are treated without any
approximation. The time discretization can exploit first and second order accu-
rate solutions, within a wide choice of explicit multi-step Runge-Kutta schemes,
up to 5 stages. Options for local time-stepping, residual smoothing, dual time-
stepping for unsteady problems and multi-grid to speed-up the convergence of
the simulation are also available. Convergence analyses and capabilities of the
solver in aeroelastic applications can be found in (Romanelli et al., 2012, 2010).

7. Sample applications

7.1. Two degrees of freedom typical section

The CTRNN is here applied to a plunging and pitching NACA 64A010 pro-
file, at M∞ = 0.8, in plain air (Thomas et al., 2002; Yao and Liou, 2012). A
schematic representation of the system is depicted in Figure 2, with the related
non-dimensional equations of motion given by Eq. (55):
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Figure 2: Two degrees of freedom typical section.

[
1 xθ
xθ r2θ

]{
h′′/b
θ′′

}
+

[
(ωh/ωθ)

2
0

0 r2θ

]{
h/b
θ

}
=

(V ∗)
2

π

{
CL

2CMEA

}
, (55)

where a .′ indicates the differentiation with respect to the structural non dimen-
sional time τs = ωθt, xθ and rθ are the non dimensional static unbalance and
moment of inertia respectively and ωh and ωθ the uncoupled natural circular
frequencies of the mechanical system. The two degrees of freedom are the air-
foil plunge h and pitch θ and the bifurcation parameter is represented by the
reduced velocity, defined as:

V ∗ =
V∞

ωθ b
√
µ
, (56)

being b the semi-chord and µ =
m

πρ∞b2
the fluid to mass ratio. The model can

be written in the compact matrix form:

Mu′′ + Ku = f . (57)

The parameters of the case here considered are reported in Table 1.

xθ r2θ ωh/ωθ µ
0.25 0.75 0.5 75

Table 1: Adimensional parameters of the typical section case.

The training signal is designed without considering any coupled structure, so
that the generated trained response is derived from purely aerodynamic simu-
lations, with imposed boundary conditions capable of catching all of the am-
plitudes and frequencies of the generalized forces associated to pitch/plunge
motions. Such training signals are generated by imposing the maximum ampli-
tude and reduced frequency allowed in the reduced order model representation,
therefore their value is taken randomly during its generation. No steady state
signals have been considered in this work since we are only interested in com-
puting unsteady solutions, such as LCOs. An example of the adopted training
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Figure 3: Sample of signal considered in the training phase. Figure 3(a) shows the related
time history, while Figure 3(b) illustrates the frequency range covered by the signal.

signal is shown in Figure 3(a), while the frequency range excited is reported
in Figure 3(b). The signals are expressed as a function of the aerodynamic re-
duced time τa = V∞t/c, while the reduced frequency is in this case defined by
k = ωc/V∞.
The training data, composed by Nt = 3500 samples, is generated by AeroFoam
in about 24 [h], with a physical time step of ∆t = 2 · 10−3 [s]. The adopted two
dimensional mesh is of a structured C-type, with 12200 cells, therefore 48800
unknowns. All of the computations have been carried out on a single processor
of a computer, with an Intel R© Core

TM

2 Duo CPU with a frequency of 2.93
GHz. A convergence analysis enables a comparison of the accuracy and the
computational time required for the training procedure of the CTRNN. For an
easier interpretation of the following converged results, we call A the CTRNN
characterized by nx = 2, nh = 4, so that nθ = 24, B the network with nx = 3,
nh = 5, nθ = 40 and C the network with nx = 5, nh = 8, nθ = 96. Of course
all the networks considered have the same number of inputs ( h, θ ); therefore,
m = 2. These three examples have been chosen since they present some differ-
ence in their behaviour. The convergence procedure on the order of the CTRNN
has been performed starting from the smaller model possible (nx, nh = 2) and
then increasing the model order until a satisfactory accuracy has been obtained.
Then the maximum number of generations allowed to the GA has been fixed
to 200, starting from random synaptic weights, while the maximum number of
iterations of the LM algorithm has been limited to 300, with a converged cost
function threshold value set at 10−4. Both the input and the output have been
normalized, so to appropriately weight the fitting errors. The related trained re-
sults are resumed in Tables 2, 3 and 4, which compare the overall performances
associated to the different ways of computing the Jacobian matrix within the
LM phase, i.e: finite differences, analytical and the AD based procedure previ-
ously presented.
They clearly show that finite differences are quite inefficient with respect to ana-
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Jacobian matrix computational method Computational time Converged F

Finite differences 6 [h] O (10)
Analytic 3 [h] 20 [min] O

(
10−1

)
AD 2 [h] 58 [min] O

(
10−1

)
Table 2: Convergence properties for the CTRNN A (nx = 2, nh = 4, nθ = 24).

Jacobian matrix computational method Computational time Converged F

Finite differences Not converged [−]
Analytic 4 [h] 03 [min] O

(
10−1

)
AD 3 [h] 51 [min] O

(
10−2

)
Table 3: Convergence properties for the CTRNN B (nx = 3, nh = 5, nθ = 40).

Jacobian matrix computational method Computational time Converged F

Finite differences Not converged [−]
Analytic 5 [h] 34 [min] O

(
10−1

)
AD 5 [h] 12 [min] O

(
10−2

)
Table 4: Convergence properties for the CTRNN C (nx = 5, nh = 8, nθ = 96).

lytical derivatives, up to missing convergence within the fixed maximum number
of iterations allowed. The AD training based on a Taylor series of degree d = 6
provides results close to those of its analytic counterpart, even with somewhat
shorter execution times, probably because of the high efficient AD algorithms
employed, especially in the evaluation of the Jacobian matrix dynamics, since
its computation is not carried out explicitly but the function evaluations are
exploited with this aim by the AD tool directly (Griewank and Walther, 2008).
Comparing the results of networks A, B and C, it can be seen that the second
CTRNN is the one showing the best trade-off between accuracy and required
computational time, an outcome of the training results obtained with network
B is shown in Figure 4.
It can be seen that, because of the wide frequency content of the training signal
the computational training time is quite high. In fact the literature presents
significantly shorter times for similar trainings including a structural coupling
(Zhang et al., 2010; Yao and Liou, 2012). That should come without any sur-
prise, since the structure acts both as a signal enhancing filter at its charac-
teristic frequencies and as a low pass filtering beyond them. The latter action
in particular is of great help in cancelling the high frequency part of the train-
ing, which is the one affecting the most of the not so low matching error and
needed training signal length. Therefore the direct identification of the aeroe-
lastic system should reduce the training time, and different test are currently
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Figure 4: Sample of CTRNN output at the end of the training phase. Figures 4(a) and 4(b)
2) show the time histories of lift and aerodynamic moment coefficients respectively.
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Figure 5: LCO motion obtained by the CTRNN, V ∗ = 0.739. The maximum reduced fre-
quency considered in the training phase is k = 1.5.

under consideration to prove this fact. Nevertheless we accept to pay the related
simulation costs in order to be able to exploit the freedom afforded by a well
trained CTRNN in making it possible an easier a posteriori coupling to a wider
range of structures.

Then we couple the aerodynamic ROM to the structure, so to build the
nonlinear aeroelastic system represented by Eq. (58).

Mu′′ + Ku = f , f = BWcx, ẋ = WxΦ
(
Wax + Wbu

)
,

(58)

with B =
(V ∗)

2

π
Diag

(
1,

1

2

)
. Setting our bifurcation parameter to V ∗ = 0.739,

we can then compare the LCO obtained with AeroFoam and CTRNN-B, in both
amplitudes and frequency. The related results are shown in Figure 5.
As it can be clearly seen, the LCO frequency is correctly predicted to be
kLCO = 0.2077, while both the plunge (overestimated) and pitch (underesti-
mated) show a rough 10% error with respect to CFD-based simulations. It
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Figure 6: LCO motion obtained by the CTRNN at V ∗ = 0.739. The maximum reduced
frequency considered in the training phase is k = 3.

should be remarked also that neither the network A nor C have been able to
produce better results.

In order to obtain a CTRNN capable of adequately predicting LCO ampli-
tudes and frequency, the frequency range of the training signal has been widened,
so to take into account reduced frequencies up to k = 3, with quite a sizeable
increase of the training time. However the move proves to be an appropriate
one, as it can be verified from Figure 6 which shows a precise matching with
the reference solution.
In fact it can be seen that the already good frequency match is safeguarded
and the correct reference LCO amplitudes h/b = 0.34 [−], θ = 2.6 [deg] are fully
recovered. The aeroelastic ROM response has been obtained by an implicit,
A-L stable method, with tunable numerical dissipation (Masarati et al., 2001),
using a time step ∆t = 8 · 10−3 [s], much larger than the one adopted during
its training. Therefore we have proved that with the proposed CTRNN formu-
lation, correct responses can be obtained even with larger time steps than the
one adopted in the training phase. So the aeroelastic simulation time ends in a
considerable time saving, the full parent CFD simulation requiring about 40 [h]
to develop an LCO solution, against a ROM time of only 22 [s].

Furthermore, it should be remarked that also the dynamic order of the net-
work is relevant in the prediction of a correct LCO, as it can be seen from
Figure 7, whereas network A has not been able to correctly reproduce the LCO
amplitudes and frequency. This result can be ascribed to too a low order of
the model, while networks B and C seems to capture a correct LCO, because
their higher number of states and neurons is more adequate to represent such a
nonlinear response.
Finally the PCM option has been verified at the same V ∗ = 0.739 on the base
of a reference to the two following cases:

• Case A: varying h0/b, fixed T0 = 0.09 [s],

• Case B: fixed h0/b = 0.34, varying T0,

where h0/b is the initial value of the first state and T0 the initial guess of the
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Figure 7: LCO motion obtained by CTRNNs with different dynamic order, V ∗ = 0.75. As
can be seen, increasing its order, the network recovers the CFD-predicted LCO response.

unknown period. The results, obtained with a number of time intervals increas-
ing from 16 to 66 and β = 0.4, are reported in the Tables 5 and 6.

Case A

h/b imposed LCO amplitude h/b LCO amplitude θ [deg] LCO period [s]

0.1 0.1 0.7 0.1111
0.15 0.34 2.6 0.1111
0.2 0.34 2.6 0.1111
0.3 0.34 2.6 0.1111
0.33 0.34 2.6 0.1111

Table 5: LCO sensitivity analysis with respect to the value of the fixed h/b variable.

It should be noticed that the PCM shows a significant robustness against initial
guesses significantly far away from the converged solutions, in terms of both
amplitude and LCO period. An example of such an assertion can be seen in
Figure 8, with the converged solution being the thickest line, while the thinner
ones represent intermediate Newton-Raphson iterations and the initial guess is
represented by the dashed line.
At this point we are able to vary the reduced velocity to determine the LCO
envelope diagrams, shown in Figures 9 and 10.
The results obtained through the direct time integration of the ROM and the
PCM are compared to those obtained through the fine AeroFoam model, along
with analyses presented in (Yao and Liou, 2012), plotted here with a dashed
line. The envelope computed by the PCM exploits a continuation method using
the converged result at the previous reduced velocity as the initial guess for the
new reduced velocity. The good agreement provided by the different methods
can be spotted with a simple glance. Finally let us consider the computational
time required by the CFD-based and ROM-based analyses, presented in Tables
7 and 8.
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Figure 8: LCO computation by PCM. The first component of the state h0/b = 0.2 is main-
tained fixed, while the initial guess on the LCO period is T0 = 0.075 [s].
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Figure 9: Amplitudes trends for the typical section test case.
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Figure 10: Frequencies trends for the typical section test case.
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Case B

Initial guess of T LCO amplitude h/b LCO amplitude θ [deg] LCO period [s]

0.05 Not converged
0.08 0.34 2.6 0.1111
0.1 0.34 2.6 0.1111
0.15 0.34 2.6 0.1111
0.16 0.34 2.6 0.1112
0.163 0.345 2.6 0.1113
0.175 Unstable LCO
0.2 Unstable LCO

Table 6: LCO sensitivity analysis with respect to initial guess of the period.

Computational time required for 1 [h] 12 [min] + 42 [h] 42 [min] + 42 [h] 02 [min] +
seven time accurate simulations 41 [h] 00 [min] + 41 [h] 00 [min] + 39 [h] 10 [min]

38 [h] 40 [min]

Total time required 244 [h] 06 [min]

Table 7: Required computational time for the CFD-based generation of the LCOs envelope.

It should be remarked that the PCM has been employed in the computation of
10 points of the envelope diagram, but required the same time as 20 simulations
through a direct time integration. It should nonetheless be noted that most of
the overall time spent for the PCM calculations is to be ascribed to the determi-
nation of the very first LCO, initialized with rough estimates of the converged
solution. Proceeding to the determination of the following LCO by varying the
bifurcation parameter in a continued mode required far shorter solution times,
thus making the PCM a viable alternative to direct time integration. Neverthe-
less the two methods should not be seen as competitors but as complementary
tools in the most awkward phase of the search of a first solution, to be followed
by much more effective continued scans over the range of the bifurcation pa-
rameters of interest. It should be remarked also that Table 6 shows that two
unstable LCOs are predicted by the PCM. Such a result has been dismissed

Generation of the training 24 [h] 01 [min]
input-output data pair by AeroFoam

Training time 3 [h] 50 [min]

Envelope simulation time (20 points) 20 [min]

Total time required 28 [h] 11 [min]

Table 8: Required computational time for the ROM-based generation of the LCOs envelope.
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xθ r2θ ωh ωθ µ c l
0.0035 1.036 21.01 [rad/s] 32.72 [rad/s] 4284 0.4064 [m] 0.8128 [m]

Table 9: BACT wing data, reported from (Wasnak, 1996).

by increasing the discretization points, up to 160, so confirming the comment
previously made about the higher precision needed for a reliable determination
of Floquet characteristic values.

7.2. BACT wing

The other test case considers the wing of the Benchmark Active Control
Technology (BACT) (Wasnak, 1996; Rivers et al., 1992). It is a rigid, rect-
angular wing with a NACA 0012 airfoil section, pitching around its mid chord
axis, which is mounted on a device called Pitch And Plunge Apparatus (PAPA),
designed to permit the motions suggested by its name. The BACT wing has
a dynamic behaviour very similar to the classical two DOFs typical section
previously shown in Figure 2. The main differences are related to a more com-
plex, three dimensional, aerodynamic behaviour and to some high frequency
structural modes, brought in by a not truly rigid wing and PAPA. Because of
the significant frequency separation between the rigid pitch/plunge motions and
those higher modes, it is nevertheless viable to approximate the BACT wing as a
two DOFs system. Such an assumption has been verified through more accurate
investigations of the vibration properties of the BACT-PAPA structure, whereas
the lowest frequency of any deformable mode was found to be more than six
times higher than the ones of the rigid pitch/plunge modes (Wasnak, 1996). The
parameters defining the BACT system are presented in Table 9, where, calling

l the wing span, it is possible to notice a mass ratio, µ =
m

πρ∞b2 l
, typical of

heavy wing sections of the turbomachine kind (Bisplinghoff et al., 1955).
The bifurcation point has been computed through a linear Nastran p− k flutter
analysis, based on a doublet lattice aerodynamics at M∞ = 0.8. A check of the
obtained results against the corresponding flutter test (Rivers et al., 1992) shows
a calculated reduced flutter velocity of V ∗f = 0.64, somewhat higher than its ex-
perimental counterpart of V ∗fexp = 0.595 and a matching of the related reduced

frequency at kf = ωfb/Vf = 0.0193. It should be remarked that the accurate
estimation of the bifurcation frequency, combined with the not so bad flutter
velocity provided by a linear flutter analysis, is often of great help in effectively
starting any following determination of an envelope of possible LCOs.

Then, because of the mentioned similarities between the present and pre-
vious numerical verifications, we can proceed to illustrate the obtained results
with a somewhat faster pace. Thus, the adopted training signal, shown in Fig-
ure 11, is, once more, a hybrid sinusoidal time history, with amplitude and
frequency range content adapted to the case under consideration. Once more,
a structured C-type mesh has been adopted, with 5 · 104 cells and 25 · 104 un-
knowns. The training CFD simulation is carried out through a fifth order RK
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Figure 11: Example of training signal considered in the BACT test case, the maximum reduced
frequency considered in this case is k = 0.3.
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Figure 12: Example of training results relative to the BACT test case.

scheme (maximum CFL = 3), with a physical time step of ∆t = 2.5 · 10−3 [s]
on a signal length of 5 seconds, i.e. Nt = 2000 samples. Using both of the
available computer processors, the computational time required for the training
is 26 [h] 13 [min] . After a convergence analysis performed in the same way of the
previous section, the selected dynamic order of the adopted CTRNN is nx = 3
and nh = 5, which guarantees a sufficient level of accuracy to maintain a limited
training time. Also in this case the input dimension is equal to m = 2, since the
input is again represented by the pitch and plunge DOFs. It should be noted
that even if the high-fidelity aerodynamic model is much more complex than
the previous test case, a CTRNN of similar order will be able to capture its
essential nonlinear behaviour. This fact is promising in view of much more real-
istic applications of the presented ROM. The results of the related training are
displayed in Figure 12. A comparison between the different trainings is shown
in Table 10. A very good fit has been obtained, with a small error for both
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Jacobian matrix computational method Computational time Converged F

Analytic 3 [h] 58 [min] O
(
10−1

)
AD 3 [h] 34 [min] O

(
10−2

)
Table 10: Convergence properties of the present CTRNN for the BACT wing case (nx = 3,
nh = 5, nθ = 40).
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Figure 13: Amplitudes trends for the BACT wing test case.

of the coefficients, CL and CM , followed by the evaluation of the related LCO
envelopes, mutually verified through continued PCM and simulated time march-
ing response solutions. Figures 13 and 14 depict the related LCO trends, while
Table 11 shows the computational time required for the ROM determination
and the evaluation of LCO envelopes.

8. Concluding remarks

The paper has detailed the development of a nonlinear aeroelastic Reduced
Order Models, built upon input-output data generated by high fidelity CFD
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Figure 14: Frequencies trends for the BACT wing test case.
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Time marching Periodic collocation method

Generation of the training 26 [h] 23 [min]
input-output data pair by AeroFoam

Training time 3 [h] 34 [min]

Envelope simulation time (15 points) 12 [min] 16 [min]

Total time required 30 [h] 09 [min] 30 [h] 13 [min]

Table 11: Required computational time for the ROM-based generation of the LCOs envelope.

simulations. The proposed ROM is structured as a Continuous Time Recurrent
Neural Network, trained with a procedure based on Automatic Differentiation.
It is thus possible to simulate any aeroelastic response of interest without being
constrained to a small time step size except where required for numerical sta-
bility and precision reasons. Moreover, a CTRNN allows the determination of
Limit Cycle Oscillations through the application of an adaptive Periodic Collo-
cation Method in the time domain, permitting an easy Floquet analysis of their
stability. The same freedom in time step adaption also makes it easier to de-
termine LCOs by continued simulations in time, allowing control of the related
integration error to avoid the masking of possible LCOs caused by any undue
numerical damping. The efficiency of the presented ROM procedure has the po-
tential of making it possible a more extensive adoption of nonlinear aeroelastic
analyses in early stages of aircraft design, maintaining adequate accuracies, close
to the solutions provided by the far more costlier high fidelity CFD calculations.
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