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Abstract Aeroelastic systems have the peculiarity of

changing their behavior with flight conditions. Within

such a view, it is difficult to design a single control law

capable of efficiently working at different flight condi-

tions. Moreover, control laws are often designed on sim-

ple linearized, low-fidelity models. A fact introducing

the need of a scheduled tuning over a wide operational

range. Obviously such a design process can be time con-

suming, because of the high number of simulations and

flight tests required to assure high performance and ro-

bustness. The present work aims at proving the high

flexibility of neural network-based controllers, testing

their adaptive properties when applied to typical fixed

and rotary wing aircraft problems. At first the proposed

control strategy will be used to suppress the limit cy-

cle oscillations experienced by a rigid wing in transonic

regime. Then as a second example, a controller with the

same structure will be employed to reduce the hub vi-

brations of an helicopter rotor with active twist blades.

Keywords Neural networks · Multibody · Cosimula-

tion · Aeroservoelasticity · Nonlinear behavior.

1 INTRODUCTION

The improvement of aircraft performance through ac-

tive control systems is a well established research and

industrial topic. As different sources state [1–3], the

next generation of flight control systems will utilize
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adaptive and non-deterministic techniques to provide

more stable and maneuvrable aircrafts. The study of

the interaction of structure compliance, aerodynamic

loads and control laws involves many diverse disciplines

and, when considering fixed wing aircraft, deals with

problems such as wing flutter, buffeting, divergence,

control surface effectiveness and reversal, buzz and gust

loads [4].

Aeroelastic interactions have to be considered in

rotary-wing aircrafts as well. Apart from the classical

air resonance and whirl flutter, which is typical for tilt-

rotors, the challenge in the design of modern and more

comfortable helicopters involves the reduction of noise

and vibrations due to the asymmetry of the wind per-

ceived by the main rotor. Vibratory loads trasmitted by

the main rotor to the fuselage represent nowadays one

of the most important problem for rotary wing aircrafts

in forward flight condition, because they can cause crew

and passenger discomfort and reduce the airframe fa-

tigue life.

The analysis of the stability properties of an aeroe-

lastic system is of utmost importance for any aircraft

designer. In fact, these systems change their behav-

ior when some key parameters, e.g. flight speed, Mach

number, are changed. Numerous studies that deal with

such an issue are present in the literature, considering

the aircraft as a whole system, as in [4,5] and refer-

ences therein, or only its sub-parts, as in [6]. Nonlinear

effects may play an important role in aeroelastic re-

sponse, possibly shaping limit cycle oscillations instead

of exponentially diverging responses [7–12]. The control

of these unwanted phenomena is essential for preserv-

ing the structural integrity of the system and to avoid

possible fatigue failures. Different approaches aimed at

suppressing aeroelastic vibration can be found in the

literature. Classical LQG design [13], robustH∞ frame-
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work [14], input limiting [15,16], feedback linearization

[17], sliding mode control [18], immersion and invari-

ance approach [19] and neural networks, both static

[20], recurrent [21,22] and within the so called dynamic

surface framework [23,24], have been succesfully tested

on numerical and experimental models of fixed wing

aircraft.

On the other hand, the reduction of vibratory loads

in rotary-wing aircraft has been subject of many studies

and a suitable strategy aimed at eliminating this prob-

lem involves active control to modify the related aero-

dynamic periodic loads at harmonic frequencies above

the rotational frequency. Although the rotor system ex-

hibits a highly nonlinear behavior, due to both the

structural dynamics of the blades, which usually re-

quire a nonlinear ad hoc formulation as presented in

[25], and the aerodynamics involved, the most used ap-

proaches rely on linear control theory. The well known

Higher-Harmonic-Control [26], both in its classic and

adaptive version, considers a quasi-static model of the

helicopter rotor and requires the identification of the

transfer matrix between the harmonic components of

the control signal and the hub loads. More sophisti-

cated techniques exploits linear periodic control theory

to better take into account the periodicity of the rotor

in forward flight [27–29].

Since aeroelastic systems change their properties in

relation to the considered flight condition, an efficient

control law should be able to carry out its functions over

the whole flight envelope without losing its efficiency.

To achieve such a result, two different approaches can

be considered: control law scheduling and adaptive con-

trol. While the first approach has proved to be very ro-

bust and it is currently widely employed in service [30],

the latter has not seen any operational deployment yet.

This fact leaves open the space for researching of opti-

mal and robust solutions, and to support the ongoing

certification process [1].

Actually, there are two possible ways to realize an

adaptive control strategy. In one, a learning algorithm

is used to compute flight control inputs to augment the

controls produced by a non-adaptive flight controller,

while the other approach uses a system identification

algorithm to compute the gain parameters used by the

flight controller.

In this work a neural controller is designed using a re-

current network characterized by on-line learning. The

proposed method can be classified within the latter ap-

proach mentioned, since the controller is composed by

two networks. The first one is used to identify the dy-

namics of the plant under control and the information

so obtained is fed to the second network which acts as a

controller. Thanks to its learning capability, the system

under control can be identified on-line and no model is

required to design the controller. This adaptive black-

box approach permits to avoid scheduling procedures

to cover the whole flight envelope and reduces the ap-

proximations related to linearizations used to describe

the dynamic behavior of the system.

Although this work takes the basis from [21,22], sev-

eral innovations are introduced throughout the paper.

First of all the neural network formulation, presented

in Section 2, differs deeply from the classical ones found

in the literature. It relies on a compact computational

framework based on matrix-vector computations, and

this permits a simpler analysis and implementation of

the control law. Differently from [20], a recurrent for-

mulation is adopted, allowing to use a smaller number

of neurons and therefore leading to a smaller compu-

tational time. This fact is of great importance when

real-time implementations are considered [22].

Moreover, such a controller is tested on quite realistic

problems, where the systems dynamics is more complex

than the classical two degree-of-freedom system studied

in adaptive control demonstrations [31]. The interest in

controllers based on neural networks is growing for he-

licopter applications, for example in [32] a nonlinear

adaptive control with a neural network compensator is

proposed for trajectory tracking of a model-scaled he-

licopter. Therefore the application of this kind of con-

troller in the field of helicopters vibrations suppression

may also be considered innovative. Thanks to the good

results obtained here, such an adaptive nonlinear con-

troller can be seen as a valid alternative to the classical

HHC, which works in the frequency domain and it could

lose efficacy when strong nonlinearities occur.

Last but not the least, this work set the basis of an in-

tegrated aeroservoelastic toolbox, where softwares de-

scribing different problems are interfaced. This permits

the design of control systems on models with a good

level of accuracy, thus considering possible nonlinear

effects, and limited computational effort.

The main goal of the present effort is to prove the

high flexibility of neural network-based controllers, an-

alyzing their behavior when applied to typical fixed and

rotary wing aircraft problems. At first the proposed

control strategy will be used to suppress the limit cycle

oscillations experienced by a wing in transonic regime,

where the motion of the shock waves on the body sur-

face introduces strong nonlinearities in the system. In

the second example, a controller with the same struc-

ture will be employed to reduce the hub vibrations of

an helicopter rotor by active twist blades. In this case,

nonlinear effects have been considered through a multi-

body flexible simulation.
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1.1 Software Environment

Appropriate softwares have to be used, while design-

ing an aircraft, so to consider the aeroelastic coupling

properly. Unsteady and nonlinear effects in the aero-

dynamic field are very important for the dynamic re-

sponse. In particular the flutter instability is typical for

linear systems, which predict a destructive behavior be-

yond a critical free stream velocity. By introducing the

nonlinear modeling of the aerodynamics, the instabil-

ities develop in a different way, and often limit cycle

oscillations appear.

Other nonlinearities, which have to be considered in

some applications, such as that of the helicopter rotor,

are related to the structural response. In fact large dis-

placements and complex motion of the structure intro-

duce a severe inertial coupling, demanding an adequate

nonlinear structural modeling.

In this section we present a short description of the

software later used to perform the simulations.

– AeroFoam: is a density-based compressible Unsteady

Euler/RANS solver, with the Euler option being se-

lected in this work. It has been developed at Diparti-

mento di Scienze e Tecnologie Aerospaziali (DSTA),

of Politecnico di Milano [33]. Among its features

there is an aeroelastic interfacing scheme, based on

a moving least square interpolation strategy, provid-

ing all the needed functionalities to set the appropri-

ate aerodynamic boundary conditions imposed by a

deforming structure, while driving a connected hier-

archical mesh deformation within an Arbitrary La-

grangian Eulerian formulation. An extended discus-

sion of its aeroelastic capabilities can be found in

[34].

– MBDyn: is a general purpose multibody software

developed at DSTA [35]. This code deals with Initial

Value Problems (IVP) by solving Differential Alge-

braic Equations (DAE). The equations of motion are

based on Newton-Euler principles and the kinematic

constraints are enforced through Lagrange’s multi-

pliers. It is also possible to model flexible bodies as

nonlinear beams and plates with the full constitu-

tive law of the material, complex structural

part/components being cared through modal sub-

structures. A simple aerodynamic module based on

strip theory and linear induced velocity models is

also available.

Different approaches have been used in the following

numerical examples to perform closed loop simulations.

In the first example the controller is implemented in

C++ into the AeroFoam software while in the second

one it is implemented in the Simulink environment and

subsequently coupled with MBDyn as explained in the

next section.

2 CONTROL METHODOLOGY

2.1 Neural networks

A Neural Network (NN) is a massively parallel dis-

tributed process made up of simple processing units

(the neurons) that have a natural capability to store the

knowledge accumulated through experience, making it

available for later uses. Knowledge is acquired through

a learning process, and it is stored in the synaptic con-

nections linking the neurons.

A general network is composed by an input layer, where

the input data are stored and passed to the computa-

tional units, represented by the neurons, which receive

a linear combination of the input, whose coupling coef-

ficients are called synaptic weights of the network, and

use this input as the argument of a nonlinear, limited

function, in this work assumed to be the hyperbolic tan-

gent, located in the hidden layer.

Because of the universal approximation theorem, a neu-

ral network with one hidden layer is sufficient for ap-

proximating a nonlinear function with arbitrary accu-

racy, ensuring that the number of neurons is adequate

[36]. In order to represent a dynamic process, the net-

work should be able to learn its evolution path from the

input-output data pairs only. The memory is included

through a time delay applied to the hidden neurons,

defining thus the state of the network. Basically, a net-

work state is a hidden neuron which is connected to

another hidden neuron. Such a network is defined as

Recurrent (RNN). In this case the input layer is com-

posed by the set of input data, now function of time,

and the set of the delayed output of the hidden neurons.

A graphical representation of such a recurrent network

is given in Figure 1. An RNN presents many advantages

over static networks, e.g. a smaller size, reduced com-

putational cost and a faster learning: all characteristics

that are very important for real-time control problems

[22,21,36].

A mathematical description of such a model can be

given in the following compact form:{
xn+1 = φ

(
Waxn + Wbun

)
yn = Wcxn

(1)

where xn ∈ Rnx is the network state at time tn, u ∈ Rm
is the network input, yn ∈ Rp is the network output,

φ : Rnx −→ Rnx is the set of activation functions,

Wa ∈ Rnx×nx , Wb ∈ Rnx×m and Wc ∈ Rp×nx are the

matrices containing the network synaptic weights; nx,
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Fig. 1: Example of recurrent neural network

m and p being respectively the state, input and output

space dimensions. In practice, nx represents the number

of neurons involved in the network. In general, the net-

work state xn has only an internal meaning: no physical

interpretation can be associated to it. However, assum-

ing the output matrix Wc with a fixed structure, able

to extract the first p elements of the state, we know that

such state elements are actually the physical output of

the model, gaining some physical insight of the process

at hand [36].

As discussed before, the proposed control approach

relies upon two networks, the identifier and the con-

troller.

2.2 Identifier network (ID-RNN)

Let us assume to have available a model of a process

capable of producing any sort of output. These are the

known, measured, quantities of the model, indicated

by yMn . Subjected to the same input of the physical

model, the ID-RNN should be able to minimize the error

between its output and the measured one. The network

input and output will be defined on a case by case basis.

The training of such a network can be interpreted as an

optimization algorithm which minimizes the following

cost function:

EID
n =

1

2
eTnen, en = yID

n − yMn (2)

Given that yID
n depends on Wa,ID and Wb,ID, we need

an updating strategy for such weights that minimizes

the cost function defined in Eq. 2. We use here the Real-

Time Recurrent Learning (RTRL) algorithm. Such an

algorithm derives its name from the fact that adjust-

ments are made to the synaptic weights of a fully con-

nected recurrent network in real time, i.e. while the net-

work continues to perform its signal-processing function

[36,37]. This kind of approach perfectly fits our needs,

potentially leading to an accurate description of the

plant under control at each sampling time.

Following the algorithm proposed in [36], the synap-

tic weights of the ID-RNN are so identified. First, let

us write the model described by Eq. 1 in the following

way:

xID
n+1 =



φ
(
wID

1 ξIDn

)
φ
(
wID

2 ξIDn

)
...

φ
(
wID
j ξIDn

)
...

φ
(
wID
nxξ

ID
n

)


(3)

Where wID
j is the row vector collecting the j-th row of

Wa,ID and Wb,ID, while ξ is the column vector stacking

xID
n and uID

n :

wID
j =

[
Wa,ID

j,: Wb,ID
j,:

]
ξIDn =

[
xID
n

uID
n

] (4)

Where the subscript (j, :) means ’row j, all columns’.

In order to minimize Eq. 2 by varying the synaptic

weights of the identifier network, the simplest choice

is a gradient descent approach, that is:

∆wID
j,n = −ηID ∂E

ID
n

∂wID
j,n

, j = 1, 2, ..., nID
x (5)

As it can be noted, the weights variation goes in the

opposite direction of the gradient of the identification

error. The parameter ηID is called learning rate and

it is the fundamental parameter governing the ID-RNN
training velocity. The learning rate value is limited by

stability considerations: too-high values may destabilize

the training algorithm, causing the divergence of the

synaptic weights. On the other hand, a low learning rate

would limit a fast control adaption to system variations.

Unfortunately, there is no general theory for predicting

the limiting values of η for ID-RNN. So its best value

must be tuned through design simulations.

The term
∂EID

n

∂wID
j,n

can be computed explicitly:

∂EID
n

∂wID
j,n

= eTn
∂en
∂wID

j,n

= eTn
∂yID

n

∂wID
j,n

=

eTnW
c,ID ∂xID

n

∂wID
j,n

= eTnW
c,IDΛID

j,n

(6)

Where ΛID
j,n can be interpreted as the network state

gradient, i.e. the sensitivity of the state vector xID
n to

the weight vector wID
j,n. Since ΛID

j,n depends on xID
n , it is
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itself a dynamic quantity governed by a system of differ-

ence equations. Such a system can be derived directly

from Eq. 3:

∂xID
n+1

∂wID
j,n

= Diag
(
..., φ′

(
wID
j ξIDn

)
, ...
)
·Wa,ID

n

∂xID
n

∂wID
j,n

+

 0j−1

ξID
T

n

0nID
x −(j+1)

 (7)

Where φ′ is the first derivative of the activation function

with respect to its argument and the subscript to the

null column vector 0 represents its length. Eq. 7 can be

compactly rewritten as:

ΛID
j,n+1 = ΦID

n

(
Wa,ID

n ΛID
j,n + UID

j,n

)
(8)

We have now available a complete set of difference equa-

tion describing the dynamic evolution of the identifier:
xID
n+1 = φ

(
Wa,ID

n xID
n + Wb,ID

n uID
n

)
ΛID
j,n+1 = ΦID

n

(
Wa,ID

n ΛID
j,n + UID

j,n

)
yID
n = Wc,IDxID

n

(9)

where j = 1, 2, ..., nID
x . With the synaptic weights Wa,ID

and Wb,ID updated at each sampling time by:

∆wID
j,n = −ηIDeTnWc,IDΛID

j,n, j = 1, 2, ..., nID
x (10)

The initial conditions of the system described by Eq. 9

are set to xID
0 = 0 and ΛID

j,0 = 0, for j = 1, 2, ..., nID
x .

This means that we are not introducing any prior knowl-

edge of the real plant in our ID-RNN. As it will be shown

in Section 3, this fact will not cause any instability in

the training process, and with a proper tuning of ηID

the identifier will replicate accurately the plant output

in a few sampling steps.

2.3 Controller network (CO-RNN)

Starting with a basic interpretation, the CO-RNN input

will be fed by the outcomes of the ID-RNN, giving a new

output value of the control input, which will minimize

a certain control cost function. The network dynamics

is described by the usual model:

xCO
n+1 =



φ
(
wCO

1 ξCO
n

)
φ
(
wCO

2 ξCO
n

)
...

φ
(
wCO
j ξCO

n

)
...

φ
(
wCO
nx ξCO

n

)


(11)

with the obvious meaning of wCO
j and ξCO

n .

Similarly to the ID-RNN case, the training of the con-

troller can be interpreted as an optimization algorithm

which minimizes the following cost function:

ECO
n =

1

2
eTnen +

1

2
ρyCOT

n yCO
n , en = yID

n − yref
n

(12)

Where yref
n is a reference output. The parameter ρ is de-

fined as the control penalization parameter and is used

to limit the control effort in a way similar to what is

done in a classical LQG controller. In an unstable sys-

tem, all zeros in the right half of the complex plane may

be transformed into unstable poles of the controller by a

straight system inversion. In this case, the penalty term

is necessary to avoid the divergence of the control [22,

21]. The same approach to network training employed

for the ID-RNN is used here. However, care must be

taken to consider that the dynamics of the ID-RNN and

CO-RNN are coupled.

Once again, the gradient descent algorithm is used to

minimize the cost function described by Eq. 12:

∆wCO
j,n = −ηCO ∂E

CO
n

∂wCO
j,n

, j = 1, 2, ..., nCO
x (13)

The gradient of the cost function can be derived ana-

lytically:

∂ECO
n

∂wCO
j,n

= eTnW
c,ID ∂xID

n

∂wCO
j,n

+

ρ
(
Wc,COxCO

n

)T
Wc,CO ∂xCO

n

∂wCO
j,n

(14)

where the presence of the cross term
∂xID

n

∂wCO
j,n

makes it

explicit the coupling between the two networks. Such a

sensitivity can be computed directly from the difference

equations which describe the ID-RNN dynamics:

∂xID
n

∂wCO
j,n

= Diag
(
..., φ′

(
wID
j ξIDn

)
, ...
)
·

(
PWb,ID

)
Wc,CO ∂xCO

n

∂wCO
j,n

(15)

The quantity
∂xCO

n

∂wCO
j,n

is a dynamic variable, and its evo-

lution can be derived directly from Eq. 11:

∂xCO
n+1

∂wCO
j,n

= Diag
(
..., φ′

(
wCO
j,n ξ

CO
n

)
, ...
)
·Wa,CO

n

∂xCO
n

∂wCO
j,n

+

 0j−1

ξCOT

n

0nCO
x −(j+1)

 (16)
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The matrix P is a boolean matrix which extracts only

the terms of Wb,ID which multiply the control input

yCO
n from uID

n . In fact, as it will be seen in details in

the application section, the input to the ID-RNN may

not contain only the control input but also other mea-

sured quantities.

Defining ΛCO
j,n =

∂xCO
n

∂wCO
j,n

, Eqs. 15 and 16 can be rewrit-

ten in a more compact form:

∂xID
n

∂wCO
j,n

= ΦID
n

(
PWb,ID

)
Wc,COΛCO

j,n (17)

ΛCO
j,n+1 = ΦCO

n

(
Wa,CO

n ΛCO
j,n + UCO

j,n

)
(18)

By exploiting these compact definitions, Eq. 13 can now

be rewritten as:

∆wCO
j,n = − ηCOeTnW

c,IDΦID
n

(
PWb,ID

)
Wc,COΛCO

j,n+

− ηCOρ
(
Wc,COxCO

n

)T
Wc,COΛCO

j,n

(19)

where j = 1, 2, ..., nCO
x . We have now available a com-

plete set of difference equations that describes the dy-

namic evolution of the controller:
xCO
n+1 = φ

(
Wa,CO

n xCO
n + Wb,CO

n uCO
n

)
ΛCO
j,n+1 = ΦCO

n

(
Wa,CO

n ΛCO
j,n + UCO

j,n

)
yCO
n = Wc,COxCO

n

(20)

where j = 1, 2, ..., nCO
x . With the synaptic weights Wa,CO

and Wb,CO updated at each sampling time by Eq. 19.

Similarly to the ID-RNN, the initial conditions of the

system described by Eq. 20 are set to xCO
0 = 0 and

ΛCO
j,0 = 0, for j = 1, 2, ..., nCO

x . The previously discussed

considerations are still valid in this case. At this point

the control framework composed by the interconnection

of ID-RNN and CO-RNN is ready to be implemented.

The adaptivity of such a control system is achieved by

keeping the networks training active, so that the con-

trol adapts itself to system variations by appropriately

modifying the networks weights.

3 Sample applications

3.1 BACT wing

The Benchmark Active Controls Technology (BACT)

project was part of NASA Langley Research Center’s

Benchmark Models Program for studying transonic aeroser-

voelastic phenomena. The BACT wind-tunnel model

was developed to collect high quality unsteady aerody-

namic data (pressures and loads) near transonic flutter

conditions and to demonstrate the potential of design-

ing and implementing active control systems for flutter

suppression using flaps and spoilers [38]. Therefore, it

is a well known, easy to use, detailed and fully vali-

dated aeroservoelastic model [14,38,39], which has be-

come an often referred benchmark application for ver-

ifying nonlinear aerodynamic analyses and active con-

trols design methods. It is composed by an elastically

constrained rigid rectangular wing model, with NACA

0012 sections, equipped with a trailing-edge control sur-

face and upper and lower-surface spoilers, which can be

controlled independently through well performing hy-

draulic actuators. Its dynamic behavior is very similar

to a classical typical section but, because of its low as-

pect ratio, it displays a not so simple three-dimensional

transonic flow. However, it has been shown, e.g. [39],

that the related nonlinear aerodynamic behavior is mild

enough to produce slowly growing limit cycle oscilla-

tions, which can be verified through high fidelity CFD

simulations [40,41]. Because of the above remark, the

literature related to the design of active controllers for

the BACT wing presents many instances of effective,

experimentally validated, applications of linear design

techniques, such as: classical and min-max [39], robust

H∞ and µ−synthesis [14], robust passification [42] and

static neural networks [20].

For the design of the active control system it is

convenient to adopt an approximated and efficient nu-

merical model, providing satisfactory results within the

frequency range of interest, rather than choosing an

over-detailed and expensive numerical model. To this

end, the linear model proposed in [38], with a quasi-

steady approximation of the aerodynamic loads is em-

ployed. The need to include more sophisticated aero-

dynamic modelling options, such as unsteady kernel

approximations or time accurate CFD, is albeit mit-

igated by the fact that the flutter reduced frequency

for the BACT wing is relatively low, approximately

k =
ω c

2V∞
≈ 0.05. The aerodynamic derivatives have

been estimated through wind tunnel testing, with the

exception of the unsteady ones, obtained from compu-

tational aerodynamic analysis. Including also the actua-

tor dynamics, as derived in [43], the model so obtained

can be written in the following form, where the sub-

script SE represent the servoelastic part of the model,

meanwhile the subscript A represent its aerodynamic

part:

MSEq̈ + CSEq̇ + KSEq =(
c

2V∞

)2

MAq̈ +
c

2V∞
CAq̇ + KAq + BsβC

(21)
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where c is the aerodynamic chord, V∞ the flight speed
and the matrices are detailed as:

q =


h
θ
β
z

 MSE =


m Shθ Shβ 0
Shθ Jθθ Iθβ 0
Shβ Iθβ Jββ 0

0 0 0 1

 (22a)

CSE =


chh 0 0 0
0 cθθ 0 0
0 0 cββ 0
0 0 0 2ξactω0act

 KSE =


khh 0 0 0

0 kθθ 0 0
0 0 kββ −kββ
0 0 0 ω2

0act


(22b)

Bs =


0
0
0

ω2
0act

 MA = q∞
2S

c


−CL,α̇ −l CL,α̇ 0 0
cCM,α̇ lcCM,α̇ 0 0

0 0 0 0
0 0 0 0

 (22c)

CA = q∞
2S

c


−CL,α −l CL,α −CL,β̇ 0

cCM,α lcCM,α cCM,β̇ 0

0 0 0 0
0 0 0 0

 (22d)

KA = q∞S


0 −CL,α −CL,β 0
0 cCM,α cCM,β 0
0 0 0 0
0 0 0 0

 (22e)

The related data are available in [38]. The actuator

state is here represented by the variable z, q∞ = 1/2ρ∞V
2
∞

is the dynamic pressure, S is the wing surface, l is the

relative distance between the elastic axis and the aero-

dynamic center of the wing and βC is the control input.

The actuator dynamics is included in the model consid-

ering also its compliance, according to the frequency-

domain formulation:

β(s) =
ω2
0act

s2 + 2ξactω0acts+ ω2
0act

βC(s)− Mβ

kββ
(23)

Mβ being the hinge moment acting on the aileron. The

compliance 1/kββ has been set to kββ = 2 kθθ to main-

tain a good level of positioning precision.

Two accelerometers are placed on the wing, one on the

leading edge and the other close to the control surface

hinge. Their dynamic model is assumed to be repre-

sented by a second order model, characterized by an

adequate bandwidth, i.e. ξ = 1, ω0 = 160, rad/s. The

signals coming from these accelerometers will be our

measured output, yM.

First of all, a linear flutter analysis is performed

by varying the flight speed and tracking the pitch and

plunge modes. All the simulations are performed at a

Mach number M∞ = 0.77, in the heavy gas R−12 [38].

The related results are shown in Figure 2. The flutter

speed is predicted to be V∞ = 108.58 m/s with an error

of 1.3 % with respect to the experimental value [38].

Following the interpretation of [1] we define some stan-

dard testing cases for our control law: response to ini-

tial conditions, response to input pulses, response to
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(a) Aeroelastic damping versus flight speed
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(b) Aeroelastic frequency versus flight speed

Fig. 2: Linear flutter analysis

random input with time varying flow velocity and any

response evaluated for a slightly different model (vari-

ations in mass, inertia, stiffness, etc.). Of particular in-

terest is also the effectiveness of the controller when

it is switched on only a certain amount of time after

the simulation starts. We choose to employ the first

two cases for tuning the control law, while the oth-

ers are considered in the verification phase. Extensive

numerical simulations have been carried out to under-

stand the behavior of the ID-RNN and CO-RNN and

to determine the correct networks topology in terms of

number of neurons and value of the various parame-

ters involved. In this case, the ID-RNN input is uID
n ={

yMT

n , βc,n,−1
}T

, while its output are the identified

accelerations. With regard to the CO-RNN, its input is

uCO
n =

{
yIDT

n+1, βc,n,−1
}T

and the output is the next

control effort βC,n+1 to be applied to the system. The
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bias term −1 is added to each input to improve the

network performance in following an eventual constant

reference [36]. The results of this numerical campaign

are summarized in Table 1.

ID-RNN CO-RNN

nx 6 5

η 6 · 10−2 8 · 10−2

ρ - 4 · 10−2

Sampling frequency 180 Hz

Table 1: Networks parameters

As also reported in [21], the number of neurons affects

the networks memory. Increasing nIDx , the robustness

and accuracy of the identified output is increased, as

well as the related computational cost is, while the

learning rate should be decreased to avoid possible un-

stable effects. The learning rates have been chosen as a

trade-off between fast learning (high ηID) and its sta-

bility (low ηID). On the other hand, the behavior of the

CO-RNN facing variations of nCO
x is much more com-

plicated, and this is probably due to the coupling be-

tween the two networks, well detailed in the training

algorithm section. Nevertheless, in the authors’ experi-

ence, good results are obtained by tuning the networks

with the same number of neurons, i.e. nIDx = nCO
x , with

the same learning rate, i.e. ηID = ηCO and a very low

value of the control penalty, i.e. ρ = 1 · 10−4. The pa-

rameters are then varied until a satisfactory solution is

achieved.

The results obtained in the first two test cases men-

tioned are displayed in Figures 3 and 4, where the re-

sponse of the accelerometer placed at the leading edge

is shown along with the related control effort. The de-

sign speed is V∞ = 120 m/s, well beyond the open loop

flutter limit. The initial condition assumed in the first

test case is q0 = (0.1, 0, 0, 0)
T

, while in the second case

the initial condition is homogenuous and a pulse of am-

plitude 5 deg is given to the actuator, at time t = 0.1 s.

Notice that the green line in the plots, which represents

the ID-RNN response, perfectly replicates the real plant

response.

The performance indexes considered in the design are

the settling time, which should be as small as possi-

ble, i.e. Tset ≤ 5 s, and a limited control effort, i.e.

βC,max ≤ 5 deg. For the linear model these require-

ments are satisfied with ample margin.

The high fidelity model is composed by the pre-

vious servoelastic model coupled to the CFD solver

AeroFoam. After a convergence analysis performed on
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(b) Control effort

Fig. 3: Response to initial condition

steady state cases, a computational mesh composed by

103040 cells is employed. The effect of a moving aileron

is included by a smooth mesh deformation algorithm

based on radial basis functions [34]. At the same de-

sign test point as that of the previous analysis, a sam-

ple of the pressure field and leading edge acceleration

is given in Figure 5. As can be seen from the figures

reported above, the effect of a nonlinear aerodynamic

model is somewhat beneficial to the dynamics of the

whole aeroservoelastic system, because beyond the sta-

bility limit the wing oscillations are bounded by a limit

cycle and an exponential divergence, typical of linear

systems, does not occour. The control law designed in

the previous case is now applied without changing any

parameter. However, the networks training is kept ac-

tive in order to achieve the required level of adaptive-

ness in these verification simulations also. The results

relative to the response to non-null initial condition and

input noise with varying flight speed are shown in Fig-

ures 6 and 7, while the response to an input impulse at
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Fig. 4: Response to input pulse

V∞ = 125 m/s, switching on the controller at t = 0.5 s,

are shown in Figure 8. As it can be seen, the controller

designed on the low fidelity model is still able to sta-

bilize efficiently the nonlinear model under operational

conditions that were not seen before, a really apprecia-

ble feature of neural network-based controllers. To con-

clude we present a comparison of response and control

effort for the linear and nonlinear models, carried out

at V∞ = 130 m/s. The case considered is the response

to a 1 deg input pulse, applied at t = 0.2 s. The results

are shown in Figure 9. The two responses are quite dif-

ferent, this may be due to the effects of the nonlinear,

unsteady aerodynamic versus a linear, quasi-steady ap-

proximation. As a result, the control effort is greater at

the first response peaks in the nonlinear case, but with

a decay that is much more faster than its linear counter-

part. However, the stabilization task is carried out very

efficiently in both cases, with a maximum control effort

well below the quite conservative limit of 5 deg. Further

(a) Sample of numerical solution
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0.04

Time [s]
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 [
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(b) Limit cycle oscillation at V∞ = 120 m/s

Fig. 5: High fidelity representation of the BACT wing

numerical simulations have been carried out, resulting

in a new flutter speed of 134 m/s (25 % greater than the

nominal case), achieved while respecting the previously

cited limit on the control effort.

3.2 Helicopter vibrations reduction

The neural controller is then applied to an available

rotor model of the MBB Bo105 [44] to reduce hub vi-

brations. Among all solutions for individual blade con-

trol (IBC), we focus on active twist design [45,46]. The

Bo105 original blades are then replaced with actively

twisted ones, in such a way to include macro-fiber com-

posite (MFC) piezoelectric actuators distributed along

the blade span. They are oriented at ±45◦ relative to
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Fig. 6: Flight conditions

the blade spanwise axis, so to generate a high torque

control. The flex-beams of the original hingeless rotor

are left unchanged.

To represent the structural nonlinearities and to re-

produce the complex kinematic movement of the rotor

system, the multibody flexible model is built using MB-

Dyn [35]. The only flexible bodies are the blades, which

are modeled with 5 nonlinear geometrically exact fi-

nite volumes beam elements [47]. To compute the beam

properties of the piezoelectric actuated blade, the semi-

analytical approach, described in [48] and [49], is em-

ployed. The beam problem is decomposed into the one-

dimensional domain of the classical beam model and a

two-dimensional domain of the beam section, which is

solved by a finite element based analysis, as shown in

Figure 10. The blade section is designed through an op-

timization procedure to satisfy the constraints related

to the center of mass and the elastic axis, while maxi-

mizing the actuation power, as described in [50]. Rotor

data and the first blade frequencies are shown in Table
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Fig. 7: Response to noise with varying flight speed

2, where R is the radius, p is the pitch link location

behind the blade axis, ϑp is the precone angle, c is the

blade chord, ϑtw is the linear twist, Ω is the rotor an-

gular velocity, α is the shaft angle, νβ , νη and νθ are

the nondimensional first flap, lag and pitch frequency

of the blade respectively.

The aerodynamic model is based on the blade element

theory combined with Drees’ inflow model, along with

the sectional aerodynamic characteristics of a NACA

23012 airfoil. This simple aerodynamic theory is accu-

rate enough to reproduce the main charachteristics of

the rotor in forward flight and can be used in a prelim-

inary design.

Due to the simple aerodynamic theory, there is no

interference among the blades and a single controller

can be designed for one blade only. The control strat-

egy is implemented as a stabilization problem, where a

certain measure has to be mantained as small as possi-

ble by the controller. We are interested in minimizing

the 4/rev harmonic of the blade root shear force Fz, so
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Fig. 8: Control switch on/off

Rotor data Bo105 blade Piezoelectric blade

R 4.9 m -

p 0.23 m -

ϑp 2.5◦ -

c 0.3025 m -

ϑtw −8◦ -

Ω 44.4 rad/s -

α 3◦ -

νβ 1.11 1.1

νη 0.69 0.73

νθ 3.63 3.89

Table 2: Bo105 data with original and piezoelectric

blade.

to reduce the vibratory load of the shear force at the

hub. To reduce the vibrations related to the two hub

moments, we decide to minimize the 3/rev harmonic

of the blade root shear force Fz as well, so acting in-
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Fig. 9: Comparison between linear and nonlinear model
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Fig. 10: Blade section discretization

directly on the blade root moment also. Therefore we

decided to apply a pass-band filter to the blade force so

to consider only the response related to the 3/rev and

the 4/rev harmonics of interest.

The identifier approximates on-line the nonlinear

map between the applied voltage on the blade V and the

filtered blade root shear force Fz, while the controller

computes the voltage on the blade minimizing its re-

sponse. Therefore, uID
n =

{
FM
z,n, Vn,−1

}T
and yIDn =

F ID
z,n for the ID-RNN, while uCO

n =
{
F ID
z,n+1, Vn,−1

}T
and yCO

n = Vn+1 for the CO-RNN.

As mentioned before, we design only a single controller

for the blade at azimuth Ψ = 0◦. Taking into account

the periodicity of the system, the same control signal is
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delayed and applied to the other blades.

MBDyn can be easily coupled to external codes using

bidirectional socket based communication protocols. In

this example, MBDyn is linked to Simulink to per-

form closed loop simulations. The interface is managed

through Matlab MEX-functions and the controller can

be entirely developed within the Simulink enviroment.

Two trim configurations, at advancing parameters

of µ = 0.23 and µ = 0.33, are analysed. The isolated ro-

tor is trimmed so that its mean values of the rotor hub

thrust and moments match the ones of table 3, with

a shaft angle of α=3 deg. We choose to use 120 time

steps per rotor revolution for both simulations. The

Rotor forces µ = 0.23 µ = 0.33

Tz, N 20010 20200

Mx, Nm 740 1030

My, Nm -85 -1400

Table 3: Rotor trim data.

controller parameters, which are shown in Table 4, are

tuned through simulations for the higher advancing ve-

locity case, where vibrations are significantly stronger.

To show the potentiality of the proposed adaptive con-

troller, the same parameters are used for other flight

conditions. Results for both cases are shown in Figures

11 and 13.

ID-RNN CO-RNN

nx 4 3

η 2 · 10−1 1 · 10−1

ρ - 1 · 10−4

Sampling frequency 800 Hz

Table 4: Networks parameters for Bo105 case

As can be seen in such figures, a great reduction

of vibratory loads is achieved thanks to the controller

activity and a reduction up to 90% is obtained in the

flight condition where the controller parameters have

been tuned. It is interesting to notice that even for the

flight condition at µ = 0.23 the results are good and the

drop of vibratory loads is satisfactory. Figures 12 and

14 show the filtered response of the blade root shear

force and the applied potential on the blades for both

flight conditions. The maximum amplitude of the elec-

tric potential remains within reasonable levels and it

doesn’t exceed peaks of 300 V. This is important for a

possible real implementation of such a solution.
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Fig. 11: Vibrations suppression at µ=0.23. Harmonic

comparison
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Fig. 12: Vibrations suppression at µ=0.23. Blade shear

force reduction and control activity.
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Fig. 13: Vibrations suppression at µ=0.33
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Fig. 14: Vibrations suppression at µ=0.33. Blade shear

force reduction and control activity.
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4 Concluding Remarks

In this work, a recurrent neural network based nonlinear

adaptive controller has been investigated for complex

aeroelastic problems. Thanks to its general formulation

and to the black-box approach, it can be easily em-

ployed in a large class of problems. The two examples

in this paper, being different in what concerns both the

physics and the tools used for their modeling, show the

RNN control capability to improve the performance of

flying machines.

In the first example, nonlinear limit cycle oscilla-

tions of the BACT wing occurring above the flutter

speed have been suppressed, while in the second one,

the vibratory loads of the Bo105 rotor have been sub-

stantially reduced in two flight conditions retaining the

same controller parameters.

Despite the potential of using a neural network ap-

proach, the choice of the controller parameters, such

as the number of neurons and the learning rate, is not

trivial and the search for a general rule remains an open

problem. When considering a practical implementation

of such a well performing controller, these issues should

be carefully addressed.

It is believed that to fully verify the strength and

weaknesses of a non linear adaptive RNN controller

there remains the need of focusing on more complex and

realistic applications, integrating true design specifica-

tions related to stability and response performances,

while trying to make the tuning process as self con-

tained as possible through the use of appropriate opti-

mization techniques.
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