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Abstract— Inaccurate machine parameters can cause 

orientation errors and instability in field oriented control 

schemes relying on model-based estimations. This paper analyzes 

the accuracy and stability of two field oriented control schemes 

for a stand-alone DFIG, where the field orientation is affected by 

the stator inductance and stator/mutual inductance ratio. After 

deriving a reduced-order model accounting for parameter 

mismatch, the paper deduces a formula to calculate the field 

orientation error as a function of the inductance mismatch, 

revealing parameter sensitivities. A stability analysis is then 

carried out proving that overestimating the stator/magnetizing 

inductance ratio may trigger instabilities in case of high load 

level, whereas underestimation allows always stable operation. 

The theoretical insight is supported with simulation and test 

results on a laboratory rig.  
 

Index Terms— doubly fed induction generators (DFIG), field-

oriented control, stand-alone, sensitivity, stability analysis. 
 

NOMENCLATURE 

G     integral of the error in PI controllers 

i, v    current, voltage 

Ls, Lm, Lr   stator, magnetising, rotor inductance 

Rs, Rl, Rr   stator, load, rotor resistance 

     orientation error  

ss
*   

actual and reference stator flux angle 

msr 
 

rotor, slip position 

s
  

stator inductance,
 
inductance-ratio mismatch index 

     rotor leakage factor:  1–Lm
2
/LsLr 

s     stator flux linkage 

s, m, sr  stator, shaft, slip angular frequency 
 

Subscripts and Superscripts 

d, q      stator flux oriented frame 

r, s    rotor, stator 

I, V    current, voltage loop 

,     stationary frame 

*     reference value 

¯     space vector 

^     estimated quantity 

I. INTRODUCTION 

OUBLY-FED induction generators (DFIGs) are a viable 
solution for variable-speed, constant-frequency power 
generation [1]. They have been widely adopted in wind 

energy conversion systems since the early nineties of the 20
th
 

century because of the cheap power electronics, with a back-
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to-back converter rated to about 30% of the turbine power [2]. 
During the last twenty years a considerable amount of studies 
has been carried out on grid-connected DFIGs, providing full 
understanding on control issues and solutions. The main 
limitations of DFIGs during faults on the grid were recognized 
as soon as grid codes introduced requirements for low-voltage 
ride-through capability [3]. The conflict between reduced 
ratings for the power converter and Low-Voltage Ride-
Through (LVRT) capability demand has stimulated large-scale 
research across academia and industry, resulting in a variety of 
enhanced control schemes which provide adequate response 
during voltage sags [4]. More recently, research has focused 
also on operation under distorted grid voltage to assess 
techniques for torque ripple and stator current distortion 
mitigation [5]-[8]. DFIGs have also been proposed for virtual 
inertia implementation in wind farms, relying on the direct 
connection of stator to the grid and cheap power electronics 
[9] compared to other solutions.  
DFIGs operating in stand-alone mode have been investigated 
too, especially for electrification in remote areas, islanded 
operation during black-outs, and variable-frequency onboard 
generation as well [10]-[23]. Stand-alone controls implement 
the integral of the set-point frequency as a reference angle for 
the stator flux linkage. Subsequently, the measured [10],[15] 
or estimated [13]-[14],[16]-[18] rotor position is subtracted 
from the flux angle to calculate the slip angle.  Asymptotic 
field orientation along either stator flux [10]-[21] or voltage 
[22],[23] is then achieved in different ways. Closed-loop 
schemes [15]-[17] need stator flux estimation and at least one 
dedicated controller to force the q-axis flux component to zero 
directly. Flux estimation relies on different techniques such as 
stator EMF integration [14], state observers and flux-current 
relationships [15]-[17]. However, this adds complexity to the 
control layout and can potentially cause offset drift issues in 
the integrator or further sensitivity to parameter variation, 
especially when machine inductances are involved. On-line 
estimation of machine inductances might mitigate the impact 
of saturation in the main magnetic path, but at the price of an 
additional controller and gain tuning procedure [25].  In 
contrast, open-loop implementation [10] imposes the 
orientation just by forcing the q-axis rotor current to track a 
reference derived from the flux-current algebraic relationship. 
This scheme has gained wide popularity, being used also in 
more sophisticated control layouts including sensorless control 
[13], compensation for current harmonics absorbed by non-
linear loads [18]-[19], unbalance and zero-sequence currents 
[20] and integration with storage [21]. The same principle can 
be adopted in DFIG-DC systems [24]. 
According to [10], the open-loop FOC scheme needs one less 
PI controller than closed-loop controls such as [15], and 
avoids stator flux estimation. Both [10] and [15] however 
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require the knowledge of the stator and magnetizing 
inductances to implement the orientation mechanism.  

The effects of parameters’ mismatch have been investigated 
mainly for grid-connected DFIGs and with major focus on the 
stability of the current control loops, but with little attention to 
the outer loops realizing field orientation in stand-alone 
systems. In grid-connected DFIGs, stator-flux orientation is 
usually achieved using the estimated stator flux angle from the 
integration of stator EMFs. The stator resistance is then the 
only parameter affecting the steady-state orientation accuracy. 
These schemes, however, suffer from poorly-damped and even 
unstable stator flux modes in the case of very high-bandwidth 
rotor current controllers [29],[28], regardless of parameter 
mismatch. In grid voltage oriented control, on the other hand, 
the damping of stator-flux modes is rotor-current independent 
[30]. The rotor current time-constant mismatch due to leakage 
inductance inaccuracies or rotor resistance drifts is another 
cause of instability which has been analyzed in [26], but such 
mismatches do not cause any steady-state orientation error.  

Despite the major attention paid to the stability of current 
control loops, the impact of the inductance mismatch on the 
orientation mechanism in stand-alone DFIG control schemes 
remains substantially uninvestigated. The key peculiarity of 
stand-alone open-loop schemes [10], [13],[18]-[20] compared 
to grid-connected ones is that they set the q-axis reference 
rotor current with an algebraic constraint involving the stator 
current and the stator to magnetizing inductance ratio, instead 
of deriving it from the torque or power reference. The 
sensitivity study in [27] analyzes steady-state orientation 
inaccuracy and instability caused by mismatched inductances 
in MRAS observers for sensorless DFIG control, but the study 
focusses only on the rotor position estimation with no mention 
to the stator angle accuracy and stability in stand-alone mode.  
This paper investigates the behavior of control schemes [10] 
and [15] when they operate with inaccurate inductances. After 
building a general dynamical model, the paper derives a 
formula to calculate the steady-state orientation error and 
discusses the impact of inductances’ inaccuracies on stability. 
The analysis proves that the stator/magnetizing inductance 
ratio is the main factor which affects instability.  
Overestimation of the inductance ratio might trigger 
instabilities – especially at high load levels, while an 
underestimation generally allows stable operation. 

II. BACKGROUND  

A. DFIG equations. 

Fig. 1 shows the layout of a stand-alone DFIG system and 

Fig. 2 introduces the relevant reference frames for the field 

oriented control of the DFIG based on the stator flux linkage. 

The DFIG model in per unit (p.u.) is written in the stator flux 

oriented frame (dq) as follows: 
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Fig. 1. Open-loop stand-alone DFIG. 

 
Fig. 2. Reference frames in the DFIG RSC control .  

B. Stand-alone FOC schemes. 

This paper considers the control schemes proposed in [10] and 

[15]. The general common concept for the RSC control is 

described in Fig. 3: the rotor position is measured by an 

encoder and transformed in electrical rad/s, though sensorless 

implementations have been proposed too in [13] and [16]. The 

classical inner current control based on PI regulators 

[2],[10],[26] is adopted to enforce the rotor current commands 

which come from the outer PI voltage controller and the 

orientation constraint, respectively.  

 
Fig. 3. Control scheme for the RSC.  
 

Field orientation along the stator flux linkage is achieved in 

two steps: 

1) using the integral of the reference frequency s
*
 (1 p.u. or 

250 rad/s) as reference angle s
*
 for the stator frame  

dtsbs 
**

         (4) 

2) forcing, through the RSC, the appropriate q-axis reference 

rotor current irq
*
 using a suited mechanism which depends 

on the considered scheme as outlined below and in Fig. 4.  
 

Open-loop FOC [10] 

In this case, irq
*
 is derived from (3) by assuming sq =0 
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Closed-loop FOC [15] 

Closed-loop scheme [15] adopts a Luenberger flux-observer 

and an extra PI controller to directly force the q-axis stator 

flux linkage to zero and generate the required irq
*
.  
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Eq. (7)-(8) give the flux observer formulation of [15]-[16]: 

b (denoted with “” in [16]) sets the desired dynamics. 

Unlike in [15], and as in [16], ssiR̂  is directly calculated 

with the stator current rather than via (𝜓𝑠/𝐿̂𝑠-(𝐿̂𝑚/𝐿̂𝑠)𝑖𝑟̅). 
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The caret “^” upon inductances in (4)-(7) denotes that they are 

generally affected by inaccuracies, due to saturation impact 

and limitations of commissioning procedures. The same 

symbol on electrical variables also reflects the inaccuracy 

caused by using the reference angle s
*
 instead of the actual 

stator flux position s
 
in reference frame transformations.  

The GSC is synchronized to the local grid created by the 

DFIG and is in charge of regulating the power factor and the 

dc-link voltages. The control of the GSC is not considered in 

this analysis: the reader is referred to [10] for further details. 

 
Fig. 4. Field orientation mechanisms. Top: open-loop scheme [10]. Bottom: 

closed-loop scheme [15],
ssiR̂ is directly measured as in [16]. 

III. SENSITIVITY ANALYSIS 

A. Basic assumptions. 

In order to clarify the analysis approach in the easiest 

possible way, this paper focusses on a purely resistive stand-

alone load. For the same reason, the GSC converter is 

neglected as it generally operates at unity power factor and is 

decoupled from the RSC by the dc-link electrolytic capacitor. 

Section V comments on how to extend the analysis approach 

to incorporate the GSC and deal with more general loads. The 

stator resistance is also neglected as it is normally much lower 

than the load resistance. Under these assumptions, the stand-

alone DFIG is represented by the equivalent circuit in Fig. 5. 

Should the GSC be included in a simplified way, resistor Rl 

may be the parallel of load resistor Rload and resistor ((1-

s)/s)Rload with s = (s
*
-m)/s

*
 = slip – representing the GSC 

according to the steady-state power balance across a DFIG. 

The stator voltage is established across Rl because of the stator 

current flow: 
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Fig. 5. Simplified equivalent circuit for the stand-alone DFIG with resistive 

load.  

 

The speed is treated as a constant, as in wind-turbine-driven 

DFIGs the outer control loops (powers or voltage and flux) are 

faster than the mechanical dynamics. This assumption is 

usually adopted also in LVRT studies which involve large 

perturbations [4]. This section presents full derivations for the 

model of [10] whilst the details for [15] are given in the 

Appendix I.  

B. Orientation error impact on frame transformations. 

  Using inaccurate inductances as well as s
*
 to drive the 

stator flux leads to an inherent orientation error in all the 

space-vectors referred to the dq frame by the control algorithm 

in [10], [15]. The orientation error  is defined as   

ss  *
 .        (10) 

where s is the actual stator flux angle. Orientation error  has 

a deep impact on any quantity transformed from stator or rotor 

frames into the control frame and vice-versa. The RSC current 

feed-back space vector, for instance, transforms to the field-

oriented frame as follows 
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After suppressing subscripts “dq” in space vectors, (11) gives  
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Similarly, error impacts on the rotor voltage applied to the 

DFIG via the RSC. Using an entirely similar approach to (12) 

and neglecting the RSC switching delay yields 
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A relationship similar to (12) holds for stator currents îsd and 

îsq, so q-axis reference rotor current irq
*
 (5) is rewritten as 
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In the last equality in (14) the stator current has been resolved 

in terms of stator flux and rotor current by (3-a). This is why 

the inner bracket in (14) comprises tuned inductances only. 

After introducing mismatch indices  and s  
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the q-axis reference rotor current (14) becomes  
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Notice that ≠ causes a coupling between q-axis reference 

current and flux, d- and q-axis actual rotor currents in (16). 

Equations (12), (13) and (16) are the key relationships to 

incorporate parameter mismatches into the dynamical model. 

C. Dynamical model. 

The most convenient formulation for the dynamical model 

adopts the stator-flux-oriented frame dq and state variables 

{s, , GId, GIq, GV, ird, irq} where “G” stands for the generic 

error integral (either current or voltage). State equations for s 

and  are readily derived from (1) with stator voltage (9), and 

with the stator current and frequency expressed as a function 

of s, ird, irq, and with (3-a) and (4), respectively. 
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Due to ≠0, (17)-(18) account for ψ̂𝑞≠0, as caused by the 

parameter mismatch. The voltage PI-controller state-equation 

defines the integral GV of the stator voltage error as follows 
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The voltage controller returns d-axis reference current ird
*
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The state-equations of rotor current PI controllers define the 

integrals of rotor current errors built with reference currents 

{ird
*
, irq

*
} (16) and (20) and feedback currents from (12) 
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The outputs of rotor current controllers added to decoupling 

terms 𝐷̂𝑑 and 𝐷̂𝑞 (A6) in Appendix I give the reference rotor 

voltages 
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Finally, rotor equation (2) is split into real and imaginary parts 

(23) rewritten in terms of {s, , GId, GIq, GV, ird, irq} with (1) 

and (3). Rotor voltages vrd
 
and vrq come from (13) with (22) 

for vrd
*
and vrq

*
 – where ird

*
and irq

*
 are given in (14) and (20): 
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The resulting state-space model for scheme [10] comprises 

ODEs (17)-(18), (21) and (23). For the closed-loop scheme 

[15], (A4) is to be included too and governs additional state 

variable G (integral of estimated flux component ψ̂𝑞). The 

formulation for irq
*
 is now (A5) instead of (16).  

D. Steady-state orientation error. 

At steady-state, all the derivatives in the state-space model are 

zero. Since Rs≈0, (17)-(19) and (1) give immediatelys=s
*
, 

s=Vs
*
/s

*
, ird =s/Lm and irq =(Ls/Lm)(Vs

*
/Rl). The error 

equation for  depends on the considered scheme.  
 

Open-loop FOC [10]. Replacing (16) into (21-b) – with 

dGIq/dt=0, gives 
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 Introducing steady state values for stator flux and rotor 

currents into (24) and solving with respect to  yields  
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Closed-loop FOC [15]. In this case the equation for  comes 

from (A3) after setting dG/dt=0, and is 𝜓̂𝑞(s, , ird, irq)=0. 

By using the steady state values for s, ird, and irq, and some 

algebraic manipulations,   𝜓̂𝑞(s, , ird, irq)=0 becomes 
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 Solving (26) with respect to  yields  
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As expected, (25) and (27) predict =0 in case of no mismatch, 

namely when  =1 and s =1.  



   

 

Steady-state error integrals GId, GIq and GV come from (22) 

and (20) respectively, where reference voltages are found by 

inverting (13) with {vrd
*
,vrq

*
} from (23) and replacing steady-

state s, ird, irq and  from (25) or (27), being at steady-state 

𝑖𝑟̅
∗=𝑖̂𝑟̅  (12). The steady-state value of G – only relevant to 

scheme [15], is found from (A5). 

Equations (16) and (25) show that the scheme in [10] is only 

sensitive to , i.e. to the accuracy of the inductance ratio 

𝐿̂𝑠/𝐿̂𝑚. In contrast, and according to (A3) and (27), the closed-

loop scheme [15] is sensitive to both , and s namely to 𝐿̂𝑠 
and 𝐿̂𝑚 individually. The cut-off frequency b of the flux 

Luenberger observer, however, has an important impact on the 

sensitivity to s (i.e. 𝐿̂𝑠). When b>>s
* 

(= 1 p.u.) the effect of 

s becomes less and less significant and (27) tends to (25). 

IV. STABILITY ANALYSIS  

Stability is assessed with the eigenvalue analysis on the state 

matrix associated with equations (17)-(18), (21), (23), and, for 

[15], also (A4), once they are linearized around a steady-state 

point derived with the procedure in Section III-D.  

It is worth mentioning that a further reduction of the model in 

Section III-C is possible by assuming rotor current controllers 

with infinite dynamics and then reducing the set of state-

variables to {s, , GV}, plus G for [15]. This simplified 

approach allows stability conditions to be worked out 

analytically and shows that instability in the open-loop scheme 

[10] occurs if and only if >1, regardless to load level, 

machine parameters and voltage controller design. Although 

the stability condition ≤1 is too restrictive from a 

quantitative point of view, it outlines the scenario >1 as 

potentially critical. In the reality, the finite dynamics of rotor 

current controllers enlarges the stability domain towards -

values slightly higher than unity. The beneficial impact of 

finite current bandwidth is also well-known for the stator-flux 

stability [28] in grid-connected DFIGs. This is why current 

controllers have to be taken into account and their bandwidth 

is considered as a main input for the stability analysis, along 

with mismatch index  and p.u. load resistance Rl.  

Open-loop FOC [10]. Fig. 6 shows the stability regions 

(shaded areas) of the scheme [10] traced in the Rl - plane for 

different current controller bandwidths, considering a 3MW 

DFIG (top plot) and a 15 kW DFIG (bottom plot) at 

synchronism. Machine parameters are given in the Appendix. 

The stability region boundaries are obtained by detecting 

points (Rl, ) where the critical eigenvalue of the linearized 

model crosses the imaginary axis and moves into the right-

hand region of the complex plane.  

 

 
Fig. 6. Stability charts for open-loop FOC scheme [10] at synchronism. Top: 
3MW machine; bottom: 15 kW machine.  

Closed-loop FOC [15]. Although due to (19) this scheme is 

sensitive to both  and s, index s has not significant impact 

on the stability as long as =1. For this reason, stability charts 

are presented in Fig. 7 assuming s=1, and a standard design 

of the flux observer with b=2 p.u. [15]-[16].  

The extremely large and unrealistic -range explored in Figs. 

6 and 7 has been deliberately chosen to show the effect of the 

current controller bandwidth. From a practical point of view, 

the most interesting outcome from Figs. 6 and 7 is that the 

system can become unstable only when  >1, i.e. when the 

inductance ratio is overestimated. It can be concluded that 

schemes [10] and [15] perform in a similar way when operated 

close to rated-load conditions. Also, large DFIGs are more 

prone to instability, especially operating at full load or slightly 

overloaded: in that condition stability boundaries coalesce into 

a unique curve which tends to =1 as Rl→0. Underestimating 

the inductance ratio, on the other hand, does not cause 

instability, except for the pointless scenario =0.  
 

 

 
Fig. 7. Stability charts for closed-loop scheme [15] at synchronism. Top: 

3MW machine; bottom: 15 kW machine. 

 

 Stability regions are slightly affected by speed in different 

ways depending on the control scheme. In the open-loop 

scheme [10] they slightly expand and contract at sub- and 

super-synchronous speed, respectively. The closed-loop 

scheme in [15] exhibits an opposite behavior. Large machines 

working at full load and at the bounds of the speed range may 

become unstable for values  closer to unity. 

V. EXTENSION TO GENERAL LOADS  

The conclusions in Sections III-IV were derived under the 

assumption of purely resistive load and GSC with fast 

dynamics and working at unity power factor. In the reality, the 

stand-alone system is likely to supply generic resistive 



   

 

inductive loads and the GSC may or may not compensate part 

of the reactive power. The complete analysis of this case 

requires a much higher order model than that in Section III, in 

order to describe the load and the GSC filter and control 

dynamics. The load may be described with its operational 

(dynamic) impedance, though the changes in frequency – due 

to the dynamics of  as in (18), produce -dependent terms 

in the linearization. Despite being feasible, this approach 

prevents general conclusions on the stability to be drawn, 

because the eigenvalue analysis is to be applied to a specific 

configuration with many parameters. Nonetheless, the steady-

state orientation error can be still derived for a generic passive 

load in a relatively easy way, as at steady-state the “load + 

GSC” system is simply described by its equivalent impedance 

seen from stator terminals. It is more convenient to retain the 

parallel load resistor Rl and adopt power factor PFs at the 

stator terminals as an extra degree of freedom fully describing 

the combined effect of an inductive load and a specific set-

point for the reactive power shared by the GSC. Equation (25) 

and (27) can be generalized as in (28) by starting from (A3) 

and using the procedure explained in Section III-D with the 

updated steady-state d-axis current ird = s/Lm + 

(Ls/Lm)(Vs
*
/Rl)(Rl/Xl||) with Rl/Xl||=(1-PFs

2
)

½
/PFs – the other 

relevant steady-state values being identical to those given at 

the beginning of Section III-D. Quantity Xl|| is a reactance in 

parallel with Rl and representing the reactive component of the 

load: for a purely resistive load, PFs =1 and Xl||=→∞. 
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If PFs=1, (28) reduces to (27), and then to (25) if b/s
*
→∞. 

Fig. 8 compares the steady-state orientation errors versus PFs 

for scheme [10] and [15] and for the 3MW and 15MW 

WRIMs respectively, according with (28). In scheme [10], 

leading (negative) PFs and <1 or lagging (positive) PFs and 

>1 have a strong and symmetrical impact on the trend of 

orientation error . This symmetry is not retained in [15], 

unless b>>s
*
.    

 

Fig. 8. Impact of the load power factor on the steady-state orientation error of 

schemes [10] and [15]. 

VI. SIMULATION STUDIES  

Simulations are carried out with a state-space Matlab-

Simulink model using the two machines of different ratings 

presented in the Appendix to show the impact on stability. The 

15 kW machine is also used in the test-rig.  Frequency and 

voltage set-points are set to 1 p.u., current and voltage PI 

controllers are designed with a bandwidth of 200 Hz and 10 

Hz respectively. Simulations explore the impact of different 

mismatch index values  at full load and synchronism. 

Stability is assessed by analyzing orientation error  and stator 

voltage magnitude vs responses under step changes of the 

inductance ratio mismatch index . In order to prove that <1 

does not trigger any instability, a double step from =1 to 

=0.8 and then up to =1.05 (or =1.27 for the 15 kW DFIG) 

is delivered first, showing fairly damped responses.  is 

subsequently increased with small steps until oscillations 

occur at some value >1. Figs. 8 to 10 present simulation 

results. 

Fig. 9 shows the behavior of the open-loop scheme [10] at 

full load (Rl=1 p.u.) under step changes in  for a 3MW (top) 

and 15kW machine (bottom). Markers “o” depict analytical 

values of  from (25), showing an excellent agreement with 

simulated values. Instability is triggered at =1.14 and =1.26 

respectively and causes growing oscillations in  and vs. 

Fig. 10 shows the behavior of the closed-loop scheme [15] 

under the same conditions used for Fig. 9 The instability is 

triggered for =1.11 (3MW DFIG) and =1.26 (15kW DFIG) 

respectively and gives rise to growing oscillations. The 

stability limits predicted by the eigenvalue analysis are 

=1.113 and =1.265 respectively.  The simulated orientation 

error values and those calculated with (27) show little 

discrepancies for the 15kW machine: they are likely to be due 

to the impact of stator resistance on the flux observer (7)-(8). 

Finally, Fig. 11 presents the response of the closed-loop 

scheme [15] under sudden changes of s from 1 to 0.6 and 

then to 1.4, with  =1 and for the 3MW DFIG. No instability 

and no oscillations appear in the response. 

 



   

 

 
Fig. 9. Response of open-loop FOC scheme [10] to step changes in . Top: 
5MW machine; bottom: 15 kW machine. 
 

 

 
Fig. 10. Response of closed-loop FOC scheme [15] to step changes in . Top: 

3MW machine; bottom: 15 kW machine.  

 
Fig. 11. Response of closed-loop scheme [15] to step changes in s. (3MW 

DFIG). 

VII. EXPERIMENTAL RESULTS 

The experimental setup comprises a 15kW wound-rotor 

induction machine driven by a DC motor drive and connected 

to a resistor bank acting as an ac load. The RSC is controlled 

with the DSpace DS1103 platform with a switching frequency 

of 5 kHz. The dc-link is energized using a diode-bridge 

supplied from the 400V mains and protected with a braking 

chopper to handle the energy flow coming from the rotor in 

super-synchronous operation. Current and voltage 

measurements are filtered with 1
st
-order low-pass filters with 

cut-off frequency set at 700 Hz. The bandwidths of current 

and voltage controllers are set to 200Hz and 10 Hz 

respectively. The stator load is a bank of five 58 resistors in 

parallel per-phase, each with rated current of 2A (0.1 p.u.), 

bringing the overall load resistance down to 1 p.u. In order not 

to exceed current limits in the resistors, the reference voltage 

is set at 0.5 p.u.. 

Fig. 12 shows the experimental response of the orientation 

error and stator voltage magnitude with the open-loop scheme 

[10] when  is varied in steps (by adjusting the ratio 𝐿̂𝑠/𝐿̂𝑚 in 

the control algorithm), first down to 0.7, then up to 1.2 and 

finally with increments of 0.02. The instability occurs at t37 

s (self-excited oscillations), and the VSI trips at t47 s.The 

second subplot in Fig. 12 compares the experimental trend of  

with theoretical values from (25) – marked with “x”, and show 

a very good agreement. The orientation error causes îrd and îrq 

estimated by the control to change, though the correct rotor 

currents ird and irq obviously remain constant because stator 

voltage and load are unvaried. Fig. 12 also confirms that 

values of  less than unity are not harmful. The experimental 

instability limit for  is 1.28, slightly higher than the 

theoretical prediction of 1.26. 

 
Fig. 12. Experimental response of open-loop FOC scheme [10] to step 

changes in  with the 15kW machine. Speed = 1.1 p.u. 
 

Fig. 13 shows the experimental response of the closed-loop 

scheme [15] after step changes of  similar to those in Fig. 12.  



   

 

 
Fig. 13. Experimental response of closed-loop FOC scheme [15] to step 

changes in  with the 15kW machine. Speed = 0.83 p.u.. 
 

Here, the instability occurs at t30 s and the inverter trips at 

t34 s. The experimental instability limit for  is now 1.28, 

yet again close to the theoretical prediction of 1.27 (Fig. 7-

bottom). The second subplot in Fig. 13 compares the 

experimental trend of orientation error  with theoretical 

values form (27) (markers x): the analytical prediction is fairly 

accurate though for >1 it tends to overestimate the error (e.g. 

for the last stable value =1.26: exp=0.44 rad, th=0.49 rad). 

This behavior has been observed also in simulation results (see 

Fig. 10-bottom), and the frequency of the unstable oscillations 

is comparable, considered the different scale for the time axes. 

The impact of a mismatch in s on the closed-loop scheme 

[15] is investigated in Fig. 14, which shows the experimental 

response to large step changes of s from 1 to 0.7 and then 

from 1 to 1.5 and vice-versa, while  is kept at unity. These 

perturbations result in large variations of error  closely 

predicted by (27) – as shown by markers x, but no instability 

occurs. Further tests were carried out at different speeds 

confirming the theory outlined in Sections III and IV.  

 
Fig. 14. Experimental response of closed-loop FOC scheme [15] to step 

changes in s with the 15kW machine. Speed = 0.83 p.u. 

VIII. CONCLUSIONS 

A study of how parameter mismatches affect accuracy and 

stability of two FOC schemes for stand-alone DFIGs was 

presented in this paper. A reduced-order dynamical model 

accounting for parameter mismatch was derived leading to a 

formula for predicting the steady-state orientation error and 

showing that the accuracy and stability are mainly affected the 

mismatch in the stator/rotor inductance ratio, and by load 

resistance. The model was validated by simulations and 

experiments, proving that an overestimation of the inductance 

ratio may trigger instabilities, especially at high load levels. 

This might suggest implementing an inductance ratio slightly 

reduced with respect to the rated value, leading to a small 

inaccuracy in the field orientation but providing some margin 

against instability.  The proposed analysis framework has been 

validated by experiments on a 15 kW test-rig and can be easily 

extended to other stand-alone DFIG controls simply by 

modifying the equation for the field orientation mechanism. 

 

 

APPENDIX I 

In order to reduce the model order, the flux observer is 

assumed to have infinite bandwidth: this assumption is 

consistent with the design guidelines in [15]-[16], as the flux 

observer is to be designed with a bandwidth much higher than 

that of the current loops. Therefore, (7) is to be rewritten at 

steady-state with 𝑅̂𝑠=0 and 𝑣̅𝑠
𝑠𝛼𝛽

=js
*
s, and using (8).     
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The imaginary part of (A2) rewritten with the indexes (15) is    
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The model for [15] includes an extra state equation similar to 

(19) for the PI controller forcing q-axis flux (A3) to zero: 
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Finally, irq
*
 in [15] is simply the output of the flux controller 
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Decoupling terms 𝐷̂𝑑 and 𝐷̂𝑞 in (22) for both [10] and [15] are 
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APPENDIX II 

3MW DFIG parameters: 690V, 3050A, 50Hz, 4-pole, Lm 3.8 

p.u., Lr 4 p.u., Ls 4 p.u., Rr 0.007 p.u., Rs 0.007 p.u..  

15 kW DFIG data (test-rig): 400 V,  20 A,  50 Hz, 6 poles, 

turns ratio 0.97, Lm 2.00 p.u., Lr 2.10 p.u., Ls 2.10 p.u., 

Rr 0.050 p.u., Rs 0.028 p.u..   
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