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This paper presents a mathematical model for robust production planning. The model helps fashion apparel suppliers in making
decisions concerning allocation of production orders to different production plants characterized by different lead times and
production costs, and in proper time scheduling and sequencing of these production orders. The model aims at optimizing
these decisions concerning objectives of minimal production costs and minimal tardiness. It considers several factors such as the
stochastic nature of customer demand, differences in production and transport costs and transport times between production
plants in different regions. Finally, the model is applied to a case study. The results of numerical computations are presented. The
implications of the model results on different fashion related product types and delivery strategies, as well as the model’s limitations
and potentials for expansion, are discussed. Results indicate that the production planning model using conditional value at risk
(CVaR) as the risk measure performs robustly and provides flexibility in decision analysis between different scenarios.

1. Introduction

This contribution deals with production planning problems
of fashion apparel products. Fashion apparel products belong
to the most important consumer goods. Global retail rev-
enues amounted to $1,032 billion in 2009 and are expected
to grow to $1,163 billion by 2016 [1].

Production planning for fashion apparel products has to
cope with demand uncertainties. Accordingly, the uncertain
nature of the customer demand has to be taken into consider-
ation by generating the production plan and in particular the
production quantities, in order to meet uncertain customer
demand in the best way possible and maximize the profit, by
minimizing production costs.

In this case, production planning, in particular the
correct placement of production orders concerning place,
or region, of production, as well as time scheduling and
sequencing of production orders, is of high economic impor-
tance for fashion apparel suppliers. However, at the time
of generating the production plan, the predicted customer

demands are largely uncertain. Therefore, it is crucial to
produce a robust production plan, which can manage the risk
resulting from the demand forecast. This risk trade-off can be
achieved by constraining the objective function or problem
limits with CVaR. Indeed, CVaR intends to protect against
undesirable realization of uncertain parameters beyond the
expected evaluation due to the uncertainty of system param-
eters [2].

Existing papers dealing with the robust optimization in
fashion apparel do not take into account the risk of losing
more than an acceptable level of profits due to write-offs
caused by an overly optimistic demand forecast, or earning
less than a desired target profit due to an overly pessimistic
demand forecast. This paper is the first study to address this
problem for the fashion apparel industry.

To deal with this uncertainty in customer demand in
the apparel industry, we propose a risk-constrained profit-
expected maximization model. This model considers the
stochastic nature of customer demand and generates a pro-
duction plan which indicates the quantities of each product



that should be produced, the start of the production of each
product, and the facility in which the products have to be
produced. The objective is to maximize the total profit of
productions by means of CVaR.

Consideration of risk in the optimization problem has a
crucial role in optimization under uncertainty, particularly
when the optimization problem has to deal with the losses
that might be incurred under conditions of unfavorable
demand. To consider the risk of erroneous demand forecasts,
a loss function f(X,s) will be defined, where X represents
a decision vector and s is a vector representing uncertainty
related to the future values of a number of stochastic parame-
ters of the problem. These stochastic parameters, presented by
the vector s, are governed by probability distribution P,. Once
the loss function f is defined, we denote the distribution
function of f by ¢(X,8) = P{s | f(X,s) < B}, which
corresponds to the probability that the value of the loss
function, for each realisation of a scenario of the vector s, and
for a fixed X, does not exceed the value 8. In this context,
for a specified confidence value & € [0,1[, that could be
equal to 0,90 or 0,95 in some applications, «-VaR denotes
the probability that the expected value of the loss function
exceeds S only in (1 — «) - 100% for all possible realisations
of stochastic parameters, which can be seen as the worst-
case scenario. Based on the definition of value at risk (VaR),
conditional value at risk (CVaR) is defined as the mean of the
tail distribution exceeding VaR [3].

The model is applied to a problem based on a case study
in the apparel industry. Different factories located in different
countries manufacture a number of product types and sell
these products to customers in Europe. The orders consist of
the type of products, delivery date, and quantity. Usually, the
quantity demand of a product i is of stochastic nature and
having a probability distribution p(i). After collecting orders,
the production plan has to be generated for the next season
by considering the manufacturing capacity, production cost,
and transport cost while satisfying a CVaR constraint in order
to maximize the expected total profit.

In order to generate different possible demand realisa-
tions for the mathematical model, different scenarios of Q
are generated by means of Monte Carlo simulation, using the
demand probability distribution of each product within the
set of products.

The paper is structured as follows: the next chapter
will provide some additional information on production
planning and demand uncertainty in the apparel industry.
The subsequent chapter studies some of the literature on
robust production planning under demand uncertainty. After
that, our model will be described and subsequently applied
to a case study that includes three scenarios (a pessimistic
scenario, a normal scenario, and an optimistic scenario) dif-
fering in customer demand. These three scenarios have been
proposed in order to cover different potential realizations
of customer demand, which can occur but are not known
at the time of planning. Thereby, the customer demand can
be estimated as low (pessimistic estimate), normal (normal
estimate), or high (optimistic estimate), based on historic
data and the recommendations of experts. The paper ends
with a conclusion and an outlook on further research.
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2. Production Planning and Demand
Uncertainty in Apparel Industry

Manufacturing and finishing of ready-to-wear garments are
a complex process involving often a large number of collabo-
rating parties within a production network [4]. These include
garment manufacturers and their raw material suppliers,
procurement agencies, logistic service providers, and retailers
[5].

Due to limited potential for automation and price impor-
tance in competition, production of fashion apparel products
has been largely outsourced to low wage countries, often
situated either in East Asia, the Near East, in particular
in China, Turkey, Bangladesh, India, and Vietnam. Due to
the absence of technical constraints and availability of sub-
contractors, production can be shifted with few constraints
between different regions. However, the large majority of
the products are still sold in Europe and North America,
even though rising domestic demand in Asian countries,
such as China, has started to increasingly compete for local
production resources [6-8]. In this context, many European
garments suppliers have reduced the depth of their own
production, or dropped it, and have adapted their role
towards planning and coordinating activities within apparel
supply chains, integrating garment manufacturers and raw
materials suppliers, logistic service providers, and retailers
[9]. The wide geographic distribution of supply chains results
in considerable lead times of apparel production, due to the
time needed for procurement of raw materials, and the time
needed for transport of products from the production plants
to the customers [10, 11].

In addition to low product costs, quality and reliability
of logistic services are crucial for economic success in the
apparel branch. Fashion apparel products are characterized
by rapid product obsolescence. The sales seasons for a period
of a few months or even weeks are short in comparison to
their long production lead and delivery times. This increases
the importance of adherence to delivery dates. On average,
95% of stock keeping units change for every new sales season,
at least twice or four times a year [5, 12]. The production
cycle is characterized by fixed seasonal cycles with fixed
dates for product offers, orders, and deliveries, which are
repeated production volumes based on aggregation of the
retail preorders. However, as in practice production and
distribution lead times usually exceed the length of the
delivery times expected by customers, production planning
and procurement of raw materials have to start before the
end of the preorder period, using forecasts of total demand
based on the orders arrived so far. Products may also be
produced in larger quantities than if only based on preorders,
with the excess offered directly from the warehouses to called
postorders as long as stocks last [13].

Once their sales season has ended, articles, which have
not been sold so far, can be sold only for reduced prices and
thus with reduced profit in the next season. Thus, at the end of
a sales season, the stock levels of the products should ideally
be close to zero. On the other hand, stocks should not run out
before the end of the sales period. Reproduction of successful
products during a sales season is not possible due to the long
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delivery times [12]. For these reasons, demand forecasting has
to be considered an important input of production planning
and supply chain planning models. Generally, forecasting of
potential sales permeates all aspects of business operations
[14]. Customer demand for fashion products is volatile and
may vary broadly for different variants of the same product.
Demand fluctuations are difficult to predict at the time of
production planning. Optimistic forecasts may lead to over-
stocks and higher production costs and cause markdowns.
Pessimistic forecasts may lead to loss of opportunity revenues
for potential sales that could not be realized and to customer
dissatisfaction with later brand changes.

On the other hand, traditional statistical forecasting
methods are difficult to apply [15]. Specifically developed
demand forecasting models often use soft computing meth-
ods, such as artificial neural networks [16], fuzzy logic, and
evolutionary procedures [12, 17]. In addition, the integration
of preorder information as well as expert judgments has
produced accurate forecasts [18]. Most of these models have
not been integrated into standard business software and are
difficult to use, with sometimes mixed quality of the forecasts.
Order fulfilment and product delivery failures, such as stock-
outs, or increased storage costs and product depreciation
write-offs continue to affect profits in the apparel branch in
a very unfavourable way. It is estimated that, due to the long
lead times and demand forecasting difficulties mentioned in
the second section of this chapter, up to 30%-40% of high-
fashion articles cannot be sold during the short sales season
before the life expectancy of the article expires [19]. The
need to cope with this situation and the impetus to realize
Quick Response concepts have resulted in vertical integration
of apparel suppliers and retailers in a number of cases
[20]. Vertically integrated suppliers generally achieve better
reaction to market changes due to shortened reaction times
and more closely integrated information flows. However,
these advantages cannot easily be copied by most traditional
suppliers, which are often small or medium sized enterprizes.
Still, it is estimated that they have to write off up to 15%-20%
of their high-fashion articles [19].

3. Literature Review on Problem Related
Production Planning

Production and distribution operations are two key functions
in the supply chain. In general, the supply chain management
procedures emphasize production scheduling more than the
distribution scheduling, because distribution is more flexible.
When integrated supply chain management of production
and distribution is realized, the resources are used more
efficiently [21]. In a comprehensive review of integrated
scheduling approaches Mula et al. showed that over 44 papers
have been published between 1989 and 2009 [22].

In general, master, tactical, and operational planning
levels can be separated. The purpose of most models is to
minimize the total cost of the supply chain. Some work at the
master planning level, integrating procurement in addition to
production and distribution scheduling, is described in [23].
Most of the models focus on tactical planning, considering

different demand levels, costs, and capacities, and use cen-
tralized scheduling approaches. Scholz-Reiter et al. showed a
scalable graph-based scheduling approach, which is focused
on the operational level and real-time scheduling [24]. A
large variety of OR techniques have been applied, comprising
mathematical optimisation, heuristics, and metaheuristics,
but it could be observed that most of the papers focus on
deterministic solutions [22].

The special conditions of production planning for fashion
products have received some studies as well. The work in
[25] described a networked production planning process
in a fashion oriented apparel supply chain. The production
planning process was found to be an important area of
improvement for a network in a time-based logic; shortening
the production planning period, in fact, significantly affects
the weighted average delivery anticipation. It leads, however,
to increase setup and transportation costs due to the greater
number of jobs generated during a campaign. Scheduling of
integrated production and distribution systems in dynamic
environments holds a potential to improve efliciency but
also poses a challenging planning task due to its compu-
tational complexity. Long lead times, external and internal
perturbations in productive processes, unstable business
environments, and contextual differences (e.g., institutional,
economic, and cultural) emphasize the relevance to the
argued integration [26]. Three types of aggregate produc-
tion planning methods for the apparel industry have been
proposed in [27]. These allow changing a production model
seasonally according to actual demands, or maintaining the
same production model for several seasons with production
for inventory. The mentioned work on integrated production
and distribution planning does not deal with stochastic input
data, such as demands. The work in [28] studied empirically
the impact of the subsidy policy on total factor productivity
for the example of Chines cotton production.

Modern, large, and widely distributed production net-
works are subject to many forms of disturbances. Karimi,
Duffy, and Dashkovsky et al. performed research on how
to better deal with such dynamic influences. One possible
solution is to introduce autonomous control, that is, to allow
some parts of a large network to make their own decisions
based on local situation and available information. However,
stability of the network and robustness with respect to
external and internal disturbances and time delays in signals
must be assured to guarantee a reasonable performance and
vitality of the whole system. For this purpose their work
proposed an approach for controller design for large scale
autonomous work systems capable of coping with time delays
and explains its implementation and advantages on a concrete
example [29-31].

Robust optimization models try to formulate production
planning problems in a way that cost, or wastage, effects
of uncertainty or risks are minimized or expected profit
is maximized. A robust optimization model for a multisite
production medium-term planning problem is developed in
[32], based on the problems facing a multinational lingerie
company with production sites in East Asia. It generates a
cost minimal production plan for an uncertain environment
with associated probabilities of different economic growth



scenarios. The cost minimal production plan is less sensitive
to changes in the noisy and uncertain data. The work in [33]
dealt with a portfolio selection model in which the method-
ologies of robust optimization are used for the minimization
of the conditional value at risk of a portfolio of shares. The
work in [34] proposed a method for robust self-scheduling
based on CVaR. The proposed method is based on a security-
constrained optimal power flow (SCOPF) program that
explicitly treats the trade-off between risk and reward. The
work in [35] proposed a fuzzy mathematical programming
model for supply chain planning which considers supply,
demand, and process uncertainties. The model has been
formulated as a fuzzy mixed-integer linear programming
model where data are ill-known and modelled by triangular
fuzzy numbers. The fuzzy model provides the decision
maker with alternative decision plans for different degrees
of satisfaction. This proposal is tested by using data from a
real automobile supply chain. A supply chain design problem
for a new market opportunity with uncertain demand in
an agile manufacturing setting is considered in [36]. This
model integrates the design of supply chain and production
planning for the supply chain’s members and develops a
robust optimization formulation. A novel framework based
on conditional value at risk theory has been applied in [37] to
the problem of operational planning for large-scale industrial
batch plants under demand due date and amount uncertainty.
The objective of the proposed model is to provide a daily
production profile that not only is a tight upper bound on
the production capacity of the plant but also is immune to
the various forms of demand uncertainty. In further work,
The work in [38] applied a robust optimization framework,
as well as CVAR theory to the multisite operational plan-
ning problem under multiple forms of system uncertainty.
They considered different forms of system uncertainty such
as demand due date, demand amount, and transportation
time uncertainty in the model. Their objective is to ensure
the maximization of customer satisfaction along with the
minimization of resource misallocation.

A robust multiobjective mixed integer nonlinear pro-
gramming model is proposed by [39] to deal with a multisite,
multiperiod, multiproduct aggregate production planning
(APP) problem under uncertainty, considering two conflict-
ing objectives simultaneously, as well as the uncertain nature
of the supply chain. Their proposed model is solved as a
single-objective mixed integer programming model applying
the LP-metrics method. A two-stage real world capacitated
production system with lead time and setup decisions uncer-
tain production costs and customer demand is studied in
[40], using a robust optimization approach. A mixed-integer
programming (MIP) model is developed to minimize total
production costs.

4. Description of the Model

Our model maximizes expected profits in scenarios of
stochastic customer demand. The model generates produc-
tion plans containing the production quantities of each
product of a given product program, the production start of
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each product, and the production plants where the products
should be produced.

Notation. A set I of n products has to be manufactured,
under restriction of several time and resource constraints.
The forecast demand of each product to be manufactured is
uncertain and a probabilistic distribution is used to character-
ize this uncertainty. The manufacturing of different products
has to take place in just one of m different facilities located in
different countries.

Afacility j € Jhasafixed production cost CP;; to produce
the product 7, a fixed transport cost CT;, and a production
capacity CAP; of products which can be manufactured
during one period.

A product i € I has a delivery due date DD;, and if it is
supplied earlier than the recommended DD, that would cause
extra holding costs CH;, and if it is supplied later than the due
date DD; that would cause penalty costs PEC;.

The objective is to find a feasible plan, which determines
the quantity of each product to be produced and indicates
the start of production of each product i, manufactured from
facility j, to fulfil the stochastic demand and maximize the
total production profit.

Parameters. In the following, the parameters for the model are
defined.

T is set of planning periods, where k = |T'|.

t is index of the planning period t € {1,...k}.

] is set of facilities, where m = |J]|.

jis index of facility j € {1,...mj}.

I is set of products, where n = |I|.

i is index of producti € {1,...n}.

Q is set of all possible scenarios of stochastic variables
Q={12,...,8}

s is index of scenario res. Realisation of stochastic
variables s € [1, S], where S := |Q]

Dj is the demand of product i under scenario s.
P, is probability of scenario s.
SP; is the unit selling price for product i.

CP;; is the unit production cost for product i manu-
factured in facility j.

CT; is transport cost from the facility j in terms of
number of periods.

CH; is the unit inventory holding cost for product i at
the end of production.

SL,; is salvage value per unit for product i.
SR, is shortage penalty per unit for product i.

TT; is transport time from the facility j in terms of
number of periods.

DD; is delivery due date of product i in terms of
number of periods.
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PF; is penalty cost incurred to each late delivery for
product i when it is supplied later than the delivery
date DD;.

CAP;; is production capacity (units) for product i
during a period in facility j.

«a is confidence level of risk parameter CVaR, where
a € [0,1].

B is risk parameter.
A is weight presented on solution variance.

u is weight placed on model infeasibility which
controls the trade-off between solution and model
robustness.

Variables. Consider the following.
X; is quantity of product i that shall be produced
(decision variable).

Y;; is binary variable, which indicates whether prod-
uct i is produced in facility j (decision variable).

STP; is start period of the production of product i
(decision integer variable);

TP; is time required in periods to produce X; of

ExpEndP, is expected delivery date of product i in

1

period unit; ExpEndP; = STP; + TP, + ', Y;; - TT;
MIN; is quantity of product i effectively sold under
scenario s. MIN; = min(X;, Dj).

WAS; is wastage quantity of product i under scenario
s. WAS! = max(0, X; — D).

SHO; is shortage quantity of product i under scenario
s. SHO; = max(0, D; - X).

I; is binary variable, which indicates whether the
product i has to be held or not after its production
and transportation:

I =

1

{1, if ExpEndP; < DD; O

0, else.

Objective Function. The objective function has the following
components:

(1) sales revenue,

(2) production cost,

(3) transport cost,

(4) holding cost,

(5) penalty cost due to a late delivery,

(6) risk cost incurred for possible wastage cost,

(7) risk cost incurred for possible shortage cost.
The above components have been considered due to the fact

that they are the most important costs which can be mainly
affected by the decision variable of the model.

The objective is to maximize the total profit revenue
consisting of sales revenue gained by selling the products,
production (PC), transport (TC), penalty, holding (HC), and
other risk costs which can be incurred for possible wastage or
shortage quantities:

n
SR’ (sales revenue) = Z MIN: - SP;, ()
i=1
PC (production cost) = Z Z Y, X,CPy, (3)
i=1 j=1
TC (transport cost) = Z Z Y, X,CT,, (4)

i=1 j=1

n
HC (holding cost) = ) {I;- (DD, - ExpEndP) - X,CH,},

i=1

(5)
PEC (penalty cost)
L (6)
= Z {(1 - I,) (ExpEndP, - DD;) X;PF},
i=1
WC® (wastage cost) = » WAS; - SL, (7)
i1
n
SC’® (shortage cost) = Z SHO; - SR;. (8)

i=1
Equation (2) represents the total sales revenue due to selling
the set of products I. Equation (3) is the total production
cost of manufacturing the set of products I. Equation (4) is
the total transport cost of the set products I. Equation (5)
corresponds to the total holding cost of units of products,
which has to be stored in the warehouses for a determined
holding period. Equation (6) represents the total penalty cost
of supplying the set of products I later than the appropriate
delivery date. Equation (7) represents the wastage cost to
liquidate the overstocks set of products I. Equation (8)
represents an artificial penalty for the demand dissatisfaction
and subsequently to loss of opportunity revenue.

The following formulation of robust problem is defined
according to Leung et al. [32].

We denote the profit function for each scenario s with

F, = [SR°+ WC’ - SC’ - PC-TC-HC-PEC]. (9)

The objective function, which represents the maximizing
expected profit of the production planning problem with the
demand uncertainty, is formulated as follows:

max E [profit]

Q QO
:max<[ZpSFS+)kZpS

s=1 s=1

Q
Fs - Z PS’FS,:|
s'=1

(10)



The first term of (10) is the mean value of the total profit. The
second term of (10) denotes the measure solution robustness
of the model. The third term in (10) represents the model
robustness and is used to penalize model infeasibility.

Constraints. First, we define the loss function as follows:

Vs € Q, f(X,s)= if(Xi,s) =WC +SC - f-SR".
i1
(11)

The objective function is subject to the following constraints:

Viel, ExpEndP, <k, (12)
viel, Y Y;=1, (13)
j=1
viel, STP;>0, (14)
Vi,i' €I, if Jue] sothat Y, =Y, =1, )
STP, < STP; then STP; > STP, + TP,,
VseQ, Pls|f(X,s)<0]<a. (16)

Constraint (12) ensures that the expected delivery date for
all products should not exceed the length of the planning
horizon k = |T|. Constraint (13) guarantees that the
production of a product i will take place only in one facility
j. Constraint (14) indicates that the start of production of
a product i is positive and integer. Constraint (15) ensures
that the production of more than one product cannot be
carried out in a parallel manner. Constraint (16) restricts the
probability of the loss function to be negative, for « - 100%,
which means that the undesirable realization of uncertainties
can restrict the loss function to be positive in only (1 — «) -
100%. As an example, for « = 0.95 the constraint (16) has to
be satisfied for 95% for all possible realizations of demand D;
foralli € I and for all s € Q.

5. Experimental Results for a Case Study
with Three Scenarios

In order to cover different potential realizations of customer
demand, three scenarios have been selected, including a “pes-
simistic” scenario characterized by assumed low customer
demand, a “normal” scenario characterized by average cus-
tomer demand, and an “optimistic” scenario characterized by
relatively high customer demand. These three scenarios take
into account the insecurity concerning customer demand for
the products. Different values have been chosen based on data
taken from a real case study.

In this section we analyze the behavior of the model
by means of a case study based scenario. The input data
parameters of the model are summarized in Tables 1 and 2.

Three different scenarios are considered as a basis for
application of the model and its numerical results. The
first scenario “pessimistic scenario” illustrates low demand
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TABLE 1: Input parameter used to solve the model.

Parameters Inputs
k=1T| 10
m =] 2
n=|I| 4

Transport cost from facility 1 300 (pro 1000

(China) product units)
Transport cost from facility 2 100 (pro 1000
(Turkey) product units)
Transport time from facility 1 3
(China)
Transport time from facility 2
(Turkey) 1
« 0.95
B 0.1
TABLE 2: Unit production parameters.
Product1 Product2 Product3 Product 4

Production

Minimum value 10000 7500 5000 8000

Maximum value 40000 30750 20750 31600
Production cost

Facility 1

Facility 2 3 2
Capacity

Facility 1 20000 20000 20000 20000

Facility 2 10000 10000 150000 10000
Penalty factor PF; 0.1 0.2 0.8 0.5
Delivery due date DD; 6 6 6 6
Shortage cost unit 5 4 5 9
Salvage cost unit 0.5 0.5 1
Unit selling price 8 6 8 14

forecasts for the next season. The second scenario “normal
scenario” represents the case when the customer demand
is normal. The third scenario “optimistic scenario” assumes
high customer demand. To characterize the uncertainties
of demand forecast of different products, a distribution
probability is applied. Figures 1 and 2 show an example of
the demand distribution, respectively, of the products under
pessimistic scenario and demand distribution of the product
1 for the three scenarios.

The risk to be considered from solving the model can
occur only because of wastage or shortage possibility. There-
fore, according to our definition of the loss function f(X,s) =
Y, f(X;s) = WC + SC° - 0.1 - SR®, the constraint (16)
for this case study ensures that the probability that the risk
costs incurring by, respectively, wastage and shortage costs do
not exceed the 10% (8 = 0.1) of the expected profit revenue
in 95% («¢ = 0.95) of all possible realization of stochastic
parameters.

The model has been efficiently solved by means of
frontline risk solver which supports the robust optimization
through CVaR.
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FIGURE 2: Demand distribution of product 1 in different scenarios.

5.1. Pessimistic Scenario. Table 3 lists the production plan in
a pessimistic scenario. The expected average profit of the
production for the next season is about 219000. Moreover,
the solution can guarantee that the loss function will be
negative in 96% cases of all possible realizations of stochastic
parameters (Figure 3).

5.2. Normal Scenario. In the normal scenario, the demand
of product 1 and product 4, respectively, has nearly doubled,
whereas the demand of product 2 and product 3 has been
slightly increased. This is due to the low penalty factor
of product 1 and product 4 which can be incurred for
each delayed delivery and for the capacity restriction of
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FIGURE 4: Profit and loss function distribution in a normal scenario.

TaBLE 3: Production plan with the demand quantities in a pes-
simistic scenario.

TABLE 4: Production plan with the demand quantities in a normal
scenario.

Product1l Product2 Product3 Product4

Demand next

17969 16549 10169 14945

season
Start of production 3 2 1 1
Expected delivery 6 6 5 4
date
Produced In

Facility 1 0 1 1

Facility 2 0 0 0

the facilities (Table 4). In this case, the expected average
profit is about 450000, and the loss function is negative in
97.5% of all possible realizations of the stochastic parameters
(Figure 4).

5.3. Optimistic Scenario. Since the optimistic scenario pre-
dicts a boom economic scenario, the production reaches its

Product1 Product 2 Product3 Product 4

Demand next season 32355 19682 14415 26284
Start of production 1 4 3 1
Expected delivery date 6 8 7 6
Produced in
Facility 1 0 1 1 1
Facility 2 1 0 0 0

maximum (Table 5). In this case, the average profit is about
665000, and the loss function is satisfied with 99.1% of all
possible realizations of the stochastic parameters (Figure 5).

6. Conclusion and Outlook

In this paper we have presented a risk-constrained profit-
expected maximization model for a textile industry scenario.
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FIGURE 5: Profit and loss function distribution in an optimistic scenario.

TABLE 5: Production plan with the demand quantities in an opti-
mistic scenario.

Product1 Product 2 Product3 Product 4

Demand next season 37933 29312 19410 31600
Start of production 1 4 3 1
Expected delivery date 6 9 7 6
Produced in
Facility 1 0 1 1 1
Facility 2 1 0 0 0

The forecast demand uncertainty has been explicitly con-
sidered in the model by means of the robust optimization
and conditional value at risk theory by introducing and
restricting a loss function. The robust optimization model
originally proposed by [32] was adopted as the benchmark
formulation of uncertainty considered in this paper. A case
study has been used to demonstrate the viability of the
proposed mathematical model. Results indicate that the
production planning model using CVaR as the risk measure
performs robustly and provides flexibility in decision analysis
between different scenarios. The next step will be the further
development of the profit maximization model to consider
other types of uncertainties, for example, concerning the
availability of the production plants, transportation means,
and demand due dates.
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