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1. Introduction

Backward stochastic differential equations (BSDEs), introduced in the seminal paper by Par-
doux and Peng [22], have emerged over the last years as a major topic in probability, especially
through its deep connection with nonlinear PDEs and associated probabilistic numerical meth-
ods, and stochastic control in mathematical finance. A solution to a standard BSDE on a filtered
probability space (Ω , F , (Ft )0≤t≤T , P) generated by an Rd -valued Brownian motion W , is a
pair of a progressively measurable process (Y, Z) satisfying:

Yt = ξ +

 T

t
F(s, Ys, Zs)ds −

 T

t
ZsdWs, 0 ≤ t ≤ T, (1.1)

where the generator F is a progressively measurable function, and the terminal data ξ is FT -
measurable. In the Markovian case where ξ(ω) = g(WT (ω)), F(t, ω, y, z) = f 0(Wt (ω), y, z),
for some continuous functions g and f 0 on Rd and Rd

× R × Rd , it is well-known from [23]
that BSDE (1.1) provides a Feynman–Kac formula to the semi-linear partial differential equation
(PDE):

∂v

∂t
+

1
2

tr(D2
xv) + f 0(x, v, Dxv) = 0, on [0, T ) × Rd , (1.2)

with terminal condition v(T, ·) = g, through the relation: Yt = v(t, Wt ), 0 ≤ t ≤ T . We
also notice that when the function f 0 is in the form: f 0(x, z) = supa∈A[ f (x, a) + a.z], for
some function f on Rd

× A, with A compact set of Rd , then the semi-linear PDE (1.2) is the
Hamilton–Jacobi–Bellman equation for a stochastic control problem, where the controller can
affect only the drift of the Brownian motion: Wt +

 t
0 αsds, by a progressively measurable pro-

cess α valued in A, and with a running gain function f . The extension of a standard BSDE driven
by a Brownian motion and an independent Poisson random measure was considered in [30,2],
and is shown to be related in a Markovian framework to semi-linear integro-PDE.

The notion of reflected BSDE was introduced by El Karoui et al. [7], and consists in the
addition (resp. subtraction) of a nondecreasing process to the standard BSDE (1.1) in order to
keep the solution Y above (resp. below) a lower (resp. upper) obstacle, and chosen in a minimal
way via the so-called Skorohod condition. Existence and uniqueness results for reflected BSDEs
under general assumptions on the obstacle have been investigated in several papers, among oth-
ers [9,18,26]. We also mention works by [12,8] for reflected BSDEs driven by Brownian motion
and Poisson random measure. An important application of reflected BSDE is its connection to
optimal stopping problems and its associated variational inequalities in the Markovian case.

The extension to fully nonlinear PDE, motivated in particular by uncertain volatility model
and more generally by stochastic control problem where control can affect both drift and dif-
fusion terms of the state process, generated important recent developments. Soner, Touzi and
Zhang [29] introduced the notion of second order BSDEs (2BSDEs), whose basic idea is to re-
quire that the solution verifies the equation Pα a.s. for every probability measure in a non domi-
nated class of mutually singular measures. This theory is closely related to the notion of nonlinear
and G-expectation of Peng [24]. Alternatively, Kharroubi and Pham [17], following [16], intro-
duced the notion of BSDE with nonpositive jumps. The basic idea was to constrain the jumps-
component solution to the BSDE driven by Brownian motion and Poisson random measure, to
remain nonpositive, by adding a nondecreasing process in a minimal way. A key feature of this
class of BSDEs is its formulation under a single probability measure in contrast with 2BSDEs,
thus avoiding technical issues in quasi-sure analysis, and its connection with fully nonlinear HJB



equation when considering a Markovian framework with a simulatable regime switching diffu-
sion process, defined as a randomization of the controlled state process. This approach opens
new perspectives for probabilistic scheme for fully nonlinear PDEs as currently investigated
in [15].

In this paper, we define a class of reflected BSDEs with nonpositive jumps and upper obsta-
cle. As in the case of doubly reflected BSDEs with lower and upper obstacles, related to Dynkin
games, our BSDE formulation involves the introduction of two nondecreasing processes, one
corresponding to the nonpositive jump constraint and added in a minimal way, and the other
associated to the upper reflection, satisfying the Skorohod condition, and acting in the opposite
direction. The first aim of this paper is to prove the existence and uniqueness of a minimal solu-
tion to reflected BSDEs with nonpositive jumps and upper obstacle. We use a double penalization
approach, and the main issue is to obtain uniform estimates on both penalized nondecreasing pro-
cesses associated on one hand to the nonpositive jumps constraint and on the other hand to the
upper obstacle. This is achieved under some regularity assumptions on the upper obstacle. It is
worth mentioning that the running order of the limits in the double penalization is crucial, in
contrast with the case of upper and lower reflection. Indeed, we do not have comparison results
on the jump-component solution of a BSDE, and so a priori rather few information on the se-
quence of nondecreasing processes associated to the jump constraint, whereas one can exploit
comparison results on the Y -component of a BSDE in order to derive useful monotonicity prop-
erty for the sequence of nondecreasing processes associated to the upper obstacle. Once, we get
uniform estimates, we conclude by a monotonic convergence theorem for BSDEs. We also prove
a dual game representation formula for the minimal solution to our BSDE, in terms of equivalent
probability measures and discount processes.

The main motivation for considering such class of upper-reflected BSDEs with nonpositive
jumps arises from a zero-sum stochastic differential game between a controller and a stopper: the
controller can manipulate a state process Xα in Rd through the selection of the control α valued
in A, while the stopper has the right to choose the duration of the game via a stopping time τ .
The stopper would like to minimize his expected cost:

E
 τ

0
f (Xα

t , αt )dt + g(Xα
τ )


, (1.3)

over all choices of τ , while the controller plays against him by maximizing (1.3) over all choices
of α. Controller-and-stopper game problem was studied in [13] when the state process Xα is
a one-dimensional diffusion, in [14] by a martingale approach and in [10] by BSDE methods,
but only when the drift is controlled. General existence results for optimal actions and saddle
point were recently obtained in [21] in a non Markovian and non dominated framework by
exploiting the theory of nonlinear expectations. We also mention the recent papers [20,19] where
the authors considered 2BSDE with reflection, in connection with optimal stopping and Dynkin
game under nonlinear expectation. In the Markovian case where both drift b(Xα, α) and diffusion
term σ(Xα, α) of the state process Xα are controlled (hence in a non dominated framework),
the recent paper [3] proved the existence of the game value, by a comparison principle for the
associated Hamilton–Jacobi–Bellman Isaacs equation:

max

−

∂v

∂t
− sup

a∈A


b(x, a).Dxv +

1
2

tr(σσ ᵀ(x, a)D2
xv) + f (x, a)


; v − g


= 0,

on [0, T ) × Rd . (1.4)



Our second main result is to connect the minimal solution to our reflected BSDE with nonpositive
jumps to a general Markovian controller-and-stopper game problem through the HJB Isaacs
equation (1.4). We follow the idea in [4,17] by a randomization of the state process Xα , and
thus consider a regime switching forward diffusion process X with drift b(X t , It ) and diffusion
coefficient σ(X t , It ), where It is a pure jump process associated to the Poisson random measure
driving the BSDE. The minimal solution Yt to the reflected BSDE with nonpositive jumps, with
terminal data ξ = g(XT ), upper obstacle Ut = u(t, X t ), and generator f (X t , It , Yt , Z t ), is
written in this Markovian framework as: Yt = v(t, X t , It ) for some deterministic function v. It
appears as in [17] that actually v does not depend on a in the interior of A as a consequence of
the non positivity jumps constraint, and we show that v is a viscosity solution to the general HJB
Isaacs equation (1.4) where the generator f (x, a, v, σ ᵀ Dxv) may depend also on v and Dxv.

The rest of the paper is organized as follows. Section 2 gives a detailed formulation of reflected
BSDE with nonpositive jumps and upper obstacle. Section 3 is devoted to the existence of a
minimal solution to our BSDE by a double penalization approach. We derive in Section 4 a dual
game representation formula for the BSDE minimal solution. Section 5 makes the connection
of the minimal BSDE-solution to fully nonlinear variational inequalities of HJB Isaacs type.
We conclude in Section 6 by indicating some possible extensions to our paper. Finally, in the
appendix, we recall some useful comparison results for BSDE with jumps, and state a monotonic
convergence theorem, which extends to the jump case the result in [26].

2. Reflected BSDE with nonpositive jumps

Let (Ω , F , P) be a complete probability space on which are defined a d-dimensional Brown-
ian motion W = (Wt )t≥0 and a Poisson random measure µ on R+ × A, where A is a compact
subset of Rq , endowed with its Borel σ -field B(A). We assume that W and µ are indepen-
dent, and µ has an intensity measure λ(da)dt for some finite measure λ on (A, B(A)). We set
µ̃(dt, da) = µ(dt, da) − λ(da)dt the compensated martingale measure associated to µ, and
denote by F = (Ft )t≥0 the completion of the natural filtration generated by W and µ.

We fix a finite time duration T < ∞ and we denote by P the σ -field of F-predictable subsets
of Ω × [0, T ]. Let us introduce some additional notations. We denote by:

• Lp(Ft ), p ≥ 1, 0 ≤ t ≤ T , the set of Ft -measurable random variables X such that
E|X |

p < ∞.
• S2 the set of real-valued càdlàg adapted processes Y = (Yt )0≤t≤T such that

∥Y∥
2
S2 := E


sup

0≤t≤T
|Yt |

2


< ∞.

• Lp(0, T), p ≥ 1, the set of real-valued adapted processes (φt )0≤t≤T such that

∥φ∥
p
Lp(0,T)

:= E
 T

0
|φt |

pdt


< ∞.

• Lp(W), p ≥ 1, the set of Rd -valued P -measurable processes Z = (Z t )0≤t≤T such that

∥Z∥
p
Lp(W) := E

 T

0
|Z t |

2dt

 p
2


< ∞.

• Lp(µ̃), p ≥ 1, the set of P ⊗ B(A)-measurable maps L: Ω × [0, T ] × A → R such that

∥L∥
p
Lp(µ̃)

:= E
 T

0


A

|L t (a)|2λ(da)dt

 p
2


< ∞.



• L2(λ) the set of B(A)-measurable maps ℓ: A → R such that

|ℓ|2L2(λ)
:=


A

|ℓ(a)|2λ(da) < ∞.

• K2 the set of nondecreasing predictable processes K = (Kt )0≤t≤T ∈ S2 with K0 = 0, so that

∥K∥
2
S2 = E|KT |

2.

We are then given three objects:

1. A terminal condition ξ ∈ L2(FT ).
2. A generator function F : Ω ×[0, T ]×R×Rd

×L2(λ) → R, which is a P ⊗ B(R)⊗ B(Rd)⊗

B(L2(λ))-measurable map, satisfying:
(i) The square integrability condition:

E
 T

0
|F(t, 0, 0, 0)|2dt


< ∞.

(ii) The uniform Lipschitz condition:
|F(t, y, z, ℓ) − F(t, y′, z′, ℓ′)| ≤ CF


|y − y′

| + |z − z′
| + |ℓ − ℓ′

|L2(λ)


,

for all t ∈ [0, T ], y, y′
∈ R, z, z′

∈ Rd , and ℓ, ℓ′
∈ L2(λ), where CF is some positive

constant.
(iii) The monotonicity condition:

F(t, y, z, ℓ) − F(t, y, z, ℓ′) ≤


A
(ℓ(a) − ℓ′(a))γ (t, y, z, ℓ, ℓ′, a)λ(da), (2.1)

for all t ∈ [0, T ], y ∈ R, z ∈ Rd , and ℓ, ℓ′
∈ L2(λ), where γ : Ω × [0, T ] × R × Rd

×

L2(λ) × L2(λ) × A → R is a P ⊗ B(R) ⊗ B(Rd) ⊗ B(L2(λ)) ⊗ B(L2(λ)) ⊗ B(A)-
measurable map satisfying: 0 ≤ γ (t, y, z, ℓ, ℓ′, a) ≤ Cγ , for all t ∈ [0, T ], y ∈ R,
z ∈ Rd , ℓ, ℓ′

∈ L2(λ), and a ∈ A, for some positive constant Cγ .
3. An upper barrier U ∈ S2 satisfying UT ≥ ξ , almost surely.

Let us now consider our problem of reflected BSDE with nonpositive jumps. We say that a
quintuple (Y, Z , L , K +, K −) ∈ S2

× L2(W) × L2(µ̃) × K2
× K2 is a solution to the upper-

reflected BSDE with nonpositive jumps with data (ξ, F, U ) if the following relation holds:

Yt = ξ +

 T

t
F(s, Ys, Zs, Ls)ds + K +

T − K +
t − (K −

T − K −
t )

−

 T

t
ZsdWs −

 T

t


A

Ls(a)µ(ds, da), 0 ≤ t ≤ T, a.s. (2.2)

together with the jump constraint

L t (a) ≤ 0, dP ⊗ dt ⊗ λ(da) a.e. (2.3)

and the upper constraint

Yt ≤ Ut , 0 ≤ t ≤ T, a.s. (2.4) T

0
(Ut− − Yt−)d K −

t = 0, a.s. (2.5)

We look for the minimal solution (Y, Z , L , K +, K −), in the sense that for any other solution
(Ỹ , Z̃ , L̃, K̃ +, K̃ −) to the reflected BSDE with nonpositive jumps (2.2)–(2.5), it must hold that
Y ≤ Ỹ .



Remark 2.1. We have chosen to formulate the BSDE (2.2) directly in terms of the random
measure µ instead of the compensated random measure µ̃ since we dealt with finite intensity
measure λ(A) < ∞. Of course, one can formulate equivalently the BSDE (2.2) in terms of µ̃ by
changing the generator F to:

F̃(t, y, z, ℓ) = F(t, y, z, ℓ) −


A

ℓ(a)λ(da).

In this case, the monotonicity condition (2.1) for F̃ holds with a measurable map γ̃ satisfying:
−1 ≤ γ̃ (t, y, z, ℓ, ℓ′, a) ≤ Cγ̃ , for all t ∈ [0, T ], y ∈ R, z ∈ Rd , ℓ, ℓ′

∈ L2(λ), and a ∈ A,
for some positive constant Cγ̃ . This condition is consistent with the assumption required in
comparison Theorem 4.2 in [27]. �

Remark 2.2 (Uniqueness of the Minimal Solution). . Uniqueness of a minimal solution holds
in the following sense: if (Y, Z , L , K +, K −) and (Y, Z̃ , L̃, K̃ +, K̃ −) are minimal solutions to
(2.2)–(2.5), then Y = Y ′, Z = Z ′, L = L ′, and K +

− K −
= K̃ +

− K̃ −. As a matter of fact, the
uniqueness of the Y component is clear by definition. Then, denoting by K := K +

− K −, and
K̃ := K̃ +

− K̃ −, which are predictable finite variation processes, we have t

0


F(s, Ys, Zs, Ls) − F(s, Ys, Z̃s, L̃s)


ds + Kt − K̃t

+

 t

0
(Z̃s − Zs)dWs +

 t

0


A
(L̃s(a) − Ls(a))µ(ds, da) = 0,

for all t ∈ [0, T ], almost surely. The uniqueness of Z = Z̃ follows by identifying the Brownian
part and the finite variation part, while the uniqueness of (L , K ) = (L̃, K̃ ) is obtained by
identifying the predictable part, and by recalling that the jumps of µ are totally inaccessible. �

The main feature in this class of BSDEs is to consider a reflection constraint on Y in addition
to the nonpositive jump constraint as already studied in [16,17]. Moreover, we deal with an
upper barrier U associated to a nondecreasing process K −, which is subtracted in (2.2) from the
nondecreasing process K + associated to the nonpositive constrained jumps. In order to ensure
that the problem of getting a minimal solution to (2.2)–(2.5) is well-posed, and similarly as
in [17], we make the assumption that there exists a supersolution to the BSDE with nonpositive
jumps, namely:

(H0) There exists (Ȳ , Z̄ , L̄, K̄ +) ∈ S2
× L2(W) × L2(µ̃) × K2 satisfying the BSDE with

nonpositive jumps:

Ȳt = ξ +

 T

t
F(s, Ȳs, Z̄s, L̄s)ds + K̄ +

T − K̄ +
t

−

 T

t
Z̄sdWs −

 T

t


A

L̄s(a)µ(ds, da), 0 ≤ t ≤ T, a.s. (2.6)

and

L̄ t (a) ≤ 0, dP ⊗ dt ⊗ λ(da) a.e. (2.7)

We shall see later in the Markovian case (see Remark 5.2) how this condition (H0) is directly
satisfied.



3. Existence and approximation by double penalization

This section is devoted to the existence of the minimal solution to (2.2)–(2.5). We use a
penalization approach and introduce the doubly indexed sequence of BSDEs with jumps:

Y n,m
t = ξ +

 T

t
F(s, Y n,m

s , Zn,m
s , Ln,m

s )ds + K n,m,+
T − K n,m,+

t − (K n,m,−
T − K n,m,−

t )

−

 T

t
Zn,m

s dWs −

 T

t


A

Ln,m
s (a)µ(ds, da), (3.1)

for n, m ∈ N, where K n,m,+ and K n,m,− are the nondecreasing continuous processes in K2

defined by

K n,m,+
t = m

 t

0


A
(Ln,m

s (a))+λ(da)ds, K n,m,−
t = n

 t

0
(Us − Y n,m

s )−ds.

Here we use the notation f+ = max( f, 0) and f− = max(− f, 0) to denote the positive and
negative parts of f . Notice that this penalized BSDE can be written as

Y n,m
t = ξ +

 T

t
Fn,m(s, Y n,m

s , Zn,m
s , Ln,m

s )ds −

 T

t
Zn,m

s dWs

−

 T

t


A

Ln,m
s (a)µ(ds, da),

with a generator Fn,m given by

Fn,m(t, y, z, ℓ) = F(t, y, z, ℓ) + m


A
(ℓ(a))+λ(da) − n(Ut − y)−, a.s.

for (t, y, z, ℓ) ∈ [0, T ] × R × Rd
× L2(λ). Observe that the generator Fn,m satisfies the

assumptions of square integrability and uniform Lipschitzianity, which ensure by Lemma 2.4
in [30] the existence and uniqueness of a solution (Y n,m, Zn,m, Ln,m) ∈ S2

× L2(W) × L2(µ̃)

to the BSDE with jumps (3.1). Notice also that Fn,m satisfies the monotonicity condition (2.1),
is increasing in m for any fixed n, and decreasing in n for any fixed m. Thus, by the comparison
Theorem A.1, we deduce that (Y n,m)n,m inherits the same property:

Y n+1,m
≤ Y n,m

≤ Y n,m+1, ∀ n, m ∈ N. (3.2)

We shall first fix m, and let n to infinity, and then let m to infinity (the order of the limits
is important here, see Remark 3.2). The key point, as in the case of doubly reflected BSDEs
related to Dynkin games, is to deal with the difference of the nondecreasing processes K n,m+

and K n,m,−, and the main difficulty is to prove their convergence towards respectively the
nondecreasing processes K + and K −, which appear in the minimal solution to the reflected
BSDE with nonpositive jumps we are looking for. We have to impose some regularity conditions
on the upper barrier process that will be precised later.

For fixed m, let us now consider the reflected BSDE with jumps:

Y m
t = ξ +

 T

t
Fm(s, Y m

s , Zm
s , Lm

s )ds − (K m,−
T − K m,−

t )

−

 T

t
Zm

s dWs −

 T

t


A

Lm
s (a)µ(ds, da), 0 ≤ t ≤ T, a.s. (3.3)



and

Y m
t ≤ Ut , 0 ≤ t ≤ T, a.s. (3.4) T

0
(Ut− − Y m

t−)d K m,−
t = 0, a.s. (3.5)

where

Fm(t, y, z, ℓ) = F(t, y, z, ℓ) + m


A
(ℓ(a))+λ(da), a.s. (3.6)

for (t, y, z, ℓ) ∈ [0, T ]×R×Rd
× L2(λ). We know from Theorem 4.2 in [12] that there exists a

unique solution (Y m, Zm, Lm, K m,−) ∈ S2
× L2(W) × L2(µ̃) × K2 to the reflected BSDE with

jumps (3.3)–(3.5).

Remark 3.1. Note that in [12] the existence of (Y m, Zm, Lm, K m,−) is proved using a fixed
point argument and not through the penalized sequence (Y n,m, Zn,m, Ln,m), except for the
particular case where the generator Fn,m(t, ω) does not depend on y, z, ℓ, see Theorem 4.1 and
Remark 4.1(i) in [12]. The reason is that in [12] the authors do not impose any monotonicity
condition on the generator F and therefore they do not have at disposal a comparison theorem
for BSDEs with jumps. Nevertheless, under our monotonicity condition (2.1) and by means of the
comparison Theorem A.1, the existence of (Y m, Zm, Lm, K m,−) can be proved via the penalized
sequence (Y n,m, Zn,m, Ln,m). This program is carried out in [8], Theorem 5.1, even though under
the additional hypothesis that the barrier U is a P -measurable process. More precisely, it can be
shown that Y m is obtained as the decreasing limit of Y n,m when n goes to infinity:

Y m
t = lim

n→∞
↓ Y n,m

t , 0 ≤ t ≤ T, a.s.

and this convergence also holds in L2(0, T). Furthermore, (Zn,m, Ln,m) converges weakly to
(Zm, Lm) in L2(W ) × L2(µ̃), and we have the strong convergence

(Zn,m, Ln,m) → (Zm, Lm) in Lp(W) × Lp(µ̃), as n → ∞,

for any p ∈ [1, 2), while

K n,m,−
t ⇀ K m,−

t weakly in L2(Ft ), as n → ∞

for all 0 ≤ t ≤ T . �

We first derive the following important property on the sequence of nondecreasing processes
(K m,−).

Lemma 3.1. The sequence of processes (K m,−)m satisfies:

K m,−
t − K m,−

s ≤ K m+1,−
t − K m+1,−

s , 0 ≤ s ≤ t ≤ T, a.s., ∀m ∈ N. (3.7)

Proof. By definition of K n,m,−, and from (3.2), we clearly have for all n, m ∈ N:

K n,m,−
t − K n,m,−

s ≤ K n,m+1,−
t − K n,m+1,−

s , 0 ≤ s ≤ t ≤ T, a.s.

Thus, by passing to the (weak) limit as n goes to infinity, we get the required result. �



By (3.2), we see that (Y m )m is a nondecreasing sequence: Y m 
≤ Y m+1, and we denote:

Y t := Y 0
t , 0 ≤ t ≤ T,

which thus provides a lower bound for the sequences (Y m) and (Y n,m):

Y t ≤ Y m
t ≤ Y n,m

t , 0 ≤ t ≤ T, ∀n, m ∈ N. (3.8)

Moreover, under condition (H0), we observe that the quintuple (Ȳ , Z̄ , L̄, K̄ +, K̄ −) satisfies
A(L̄ t (a))+λ(da) = 0 dt ⊗ dP a.e. so that

Fn,m(t, Ȳt , Z̄ t , L̄ t ) ≤ F(Ȳt , Z̄ t , L̄ t ), dt ⊗ dP a.e.

By the comparison Theorem A.1, we then get an upper bound for the sequences (Y m) and
(Y n,m):

Y m
t ≤ Y n,m

t ≤ Ȳt , 0 ≤ t ≤ T, ∀n, m ∈ N. (3.9)

By standard arguments, we now state some estimates on the doubly indexed sequence
(Y n,m, Zn,m, Ln,m, K n,m,+) expressed in terms of (K n,m,−).

Lemma 3.2. Let assumption (H0) hold. Then there exists a positive constant C, such that for all
n, m ∈ N,

∥Y n,m
∥

2
S2 + ∥Zn,m

∥
2
L2(W)

+ ∥Ln,m
∥

2
L2(µ̃)

+ ∥K n,m,+
∥

2
S2

≤ C


E|ξ |

2
+ E

 T

0
|F(s, 0, 0, 0)|2ds +

Y
2

S2 +
Ȳ

2
S2 + ∥K n,m,−

∥
2
S2


. (3.10)

Proof. In what follows we shall denote by C > 0 a generic positive constant depending only on
T , λ(A), and the Lipschitz constant of F , which may vary from line to line. Proceeding as in the
proof of Lemma 3.3 in [17], we apply Itô’s formula to |Y n,m

s |
2 between t and T , and get after

some rearrangement:

E|Y n,m
t |

2
+ ∥Zn,m1[t,T ]∥

2
L2(W)

+ ∥Ln,m1[t,T ]∥
2
L2(µ̃)

= E|ξ |
2
+ 2E

 T

t
Y n,m

s F(s, Y n,m
s , Zn,m

s , Ln,m
s )ds − 2E

 T

t


A

Y n,m
s− Ln,m

s (a)λ(da)ds

+ 2E
 T

t
Y n,m

s d K n,m,+
s − 2E

 T

t
Y n,m

s d K n,m,−
s . (3.11)

By the linear growth condition on F , the inequality ab ≤ a2/2 + b2/2, and recalling that
λ(A) < ∞, we get

2E
 T

t
Y n,m

s F(s, Y n,m
s , Zn,m

s , Ln,m
s )ds − 2E

 T

t


A

Y n,m
s− Ln,m

s (a)λ(da)ds

≤ CE
 T

t
|Y n,m

s |
2ds +

1
2

E
 T

0
|F(s, 0, 0, 0)|2ds

+
1
2
∥Zn,m1[t,T ]∥

2
L2(W)

+
1
2
∥Ln,m1[t,T ]∥

2
L2(µ̃)

. (3.12)



From the bounds (3.8)–(3.9) on Y n,m : Y ≤ Y n,m
≤ Ȳ , and thanks to the inequality 2ab ≤

a2/α + αb2 for any constant α > 0, we have

2E
 T

t
Y n,m

s d K n,m,+
s − 2E

 T

t
Y n,m

s d K n,m,−
s

≤
1
α

Y
2

S2 +
Ȳ

2
S2


+ αE|K n,m,+

T − K n,m,+
t |

2
+ αE|K n,m,−

T − K n,m,−
t |

2

≤
1
α

Y
2

S2 +
Ȳ

2
S2


+ 3αE|K n,m,−

T − K n,m,−
t |

2
+ 2αE|K n,m

T − K n,m
t |

2,

where we set K n,m
t := K n,m,+

t − K n,m,−
t , so that E|K n,m,+

T − K n,m,+
t |

2
≤ 2E|K n,m

T − K n,m
t |

2
+

2E|K n,m,−
T − K n,m,−

t |
2. Together with (3.12) and (3.11), this yields:

E|Y n,m
t |

2
+

1
2
∥Zn,m1[t,T ]∥

2
L2(W)

+
1
2
∥Ln,m1[t,T ]∥

2
L2(µ̃)

≤ CE
 T

t
|Y n,m

s |
2ds + E|ξ |

2
+

1
2

E
 T

0
|F(s, 0, 0, 0)|2ds +

1
α

Y
2

S2 +
Ȳ

2
S2


+ 3αE|K n,m,−

T − K n,m,−
t |

2
+ 2αE|K n,m

T − K n,m
t |

2. (3.13)

Now, from the relation (3.1), we have

K n,m
T − K n,m

t = Y n,m
t − ξ −

 T

t
F(s, Y n,m

s , Zn,m
s , Ln,m

s )ds

+

 T

t
Zn,m

s dWs +

 T

t


A

Ln,m
s (a)µ(ds, da),

so that by the linear growth condition on F :

E|K n,m
T − K n,m

t |
2

≤ C


E|ξ |

2
+ E

 T

0
|F(s, 0, 0, 0)|2ds + E|Y n,m

t |
2

+ E
 T

t
|Y n,m

s |
2ds + ∥Zn,m1[t,T ]∥

2
L(W)2

+ ∥Ln,m1[t,T ]∥
2
L2(µ̃)


. (3.14)

By choosing α > 0 such that 2αC ≤ 1/4, and plugging this estimate of E|K n,m
T − K n,m

t |
2 into

(3.13), we get for all 0 ≤ t ≤ T :

3
4

E|Y n,m
t |

2
+

1
4
∥Zn,m1[t,T ]∥

2
L2(W)

+
1
4
∥Ln,m1[t,T ]∥

2
L2(µ̃)

≤ CE
 T

t
|Y n,m

s |
2ds +

5
4

E|ξ |
2
+

3
4

E
 T

0
|F(s, 0, 0, 0)|2ds

+
1
α

Y
2

S2 +
Ȳ

2
S2


+ 3αE|K n,m,−

T − K n,m,−
t |

2

≤ C

Y
2

S2 +
Ȳ

2
S2 + E|ξ |

2
+ E

 T

0
|F(s, 0, 0, 0)|2ds


+ 12α∥K n,m,−

∥
2
S2 , (3.15)

where we used again the bounds Y ≤ Y n,m
≤ Ȳ and the inequality E|K n,m,−

T − K n,m,−
t |

2

≤ 4E|K n,m,−
T |

2. This proves, taking t = 0 in (3.15), the required estimate (3.10) for



(Zn,m, Ln,m), and also for K n,m,+ by (3.14), and recalling that E|K n,m,+
T |

2
≤ 2E|K n,m

T |
2

+ 2E|K n,m,−
T |

2. Finally, the estimate for ∥Y n,m
∥S2 in (3.10) follows as usual from the relation

(3.1), Burkholder–Davis–Gundy inequality, and the estimates for (Zn,m, Ln,m, K n,m,+). �

The key point is now to obtain a uniform estimate on K n,m,−, and consequently uniform
estimates on (Y n,m, Zn,m, Ln,m, K n,m,+) in view of Lemma 3.2. Let us introduce the following
set of probability measures. For m ∈ N, let Vm be the set of P ⊗ B(A)-measurable processes
valued in (0, m], V = ∪m Vm , and given ν ∈ V , consider the probability measure Pν equivalent
to P on (Ω , FT ) with Radon–Nikodym density:

dPν

dP


Ft

= ζ ν
t := Et

 .

0


A
(νs(a) − 1)µ̃(ds, da)


,

where Et (·) is the Doléans–Dade exponential. Indeed, since ν ∈ V is essentially bounded, and
λ(A) < ∞, it is known that ζ ν is a uniformly integrable martingale (see e.g. Lemma 4.1
in [17]), and so defines a probability measure Pν . Moreover, ζ ν

T ∈ Lp(FT ) for any p ≥ 1.
Notice that the Brownian motion W remains a Brownian motion W under Pν , while the effect of
the probability measure Pν , by Girsanov’s theorem, is to change the compensator λ(da)dt of µ

under P to νt (a)λ(da)dt under Pν . We then denote by µ̃ν(dt, da) := µ(dt, da) − νt (a)λ(da)dt
the compensated martingale measure of µ under Pν .

Inspired by [11] (see also [5]), we make the following regularity assumption on the upper
barrier:

(H1) There exists a nonincreasing sequence of processes (U k)k such that:

(i) limk→∞ U k
t = Ut , for all 0 ≤ t ≤ T , a.s.

(ii) For any k ∈ N, U k is in the form:

U k
t = U k

0 +

 t

0
υk

s ds +

 t

0
ϑk

s dWs, 0 ≤ t ≤ T, a.s.

where (υk)k ⊂ L2(0, T) and (ϑk)k ⊂ L2(W).
(iii) There exists some p > 2 such that:

sup
k∈N

 T

0
E


ess sup

ν∈V
Eν


sup

t≤s≤T


|U k

s |
p

+ |υk
s |

p
+ |ϑk

s |
p

|Ft


dt

+

 T

0
E


ess sup

ν∈V
Eν


sup

t≤s≤T

F(s, 0, 0, 0)
p

|Ft


dt < ∞.

We shall see later in the Markovian framework how Assumption (H1) is automatically
satisfied, see Remark 5.3. The following key lemma states a uniform estimate for K n,m,− under
condition (H1).

Lemma 3.3. Under condition (H1), we have

sup
n,m∈N

K n,m,−


S2 < ∞.

Proof. Let (U k)k be in the form as in assumption (H1)(ii) and consider for positive integers
n, m, k, the difference Ȳ n,m,k

:= Y n,m
− U k , which is then expressed in backward form



as:

Ȳ n,m,k
t = ξ − U k

T +

 T

t


F(s, Y n,m

s , Zn,m
s , Ln,m

s ) + υk
s


ds

+ m
 T

t


A
(Ln,m

s (a))+λ(da)ds − n
 T

t
(Us − U k

s − Ȳ n,m,k
s )−ds

−

 T

t


Zn,m

s − ϑk
s


dWs −

 T

t


A

Ln,m
s (a)µ(ds, da). (3.16)

Now, by the Lipschitz condition of F in (y, z), and the monotonicity condition (2.1) of F in ℓ,
we have for all n, m ∈ N:

F(t, Y n,m
t , Zn,m

t , Ln,m
t ) = F(t, 0, 0, 0) + α

n,m
t Y n,m

t + β
n,m
t .Zn,m

t

+


A

γ
n,m
t (a)Ln,m

t (a)λ(da) − δ
n,m
t ,

for some sequence of bounded predictable processes (αn,m) valued in R, (βn,m) valued in
Rd , uniformly bounded in n, m, a nonnegative sequence of predictable process (δn,m), and a
nonnegative sequence of bounded P ⊗ B(A)-measurable maps (γ n,m), uniformly bounded in
n, m. Plug this decomposition of F into (3.16), and let us consider the process {Γ n,m

ts , t ≤ s ≤ T }

of dynamics:

dΓ n,m
ts = Γ n,m

ts [(αn,m
s − n)ds + βn,m

s dWs], t ≤ s ≤ T, Γ n,m
tt = 1,

and given explicitly by:

Γ n,m
ts = e−n(s−t)e

 s
t α

n,m
u du Mn,m

ts , Mn,m
ts =

Es
 .

0 β
n,m
u dWu


Et

 .

0 β
n,m
u dWu

 , t ≤ s ≤ T,

where Et (·) is the Doléans–Dade exponential. Since βn,m is a bounded process, we see that
{Mn,m

ts , t ≤ s ≤ T } is a uniformly integrable martingale, with Mn,m
tT ∈ Lp(FT ) for any p ≥ 1.

By applying Itô’s formula to the product {Γ n,m
ts Ȳ n,m,k

s , t ≤ s ≤ T }, we then obtain:

Ȳ n,m,k
t = Γ n,m

tT


ξ − U k

T


+

 T

t
Γ n,m

ts

F(s, 0, 0, 0) + αn,m

s U k
s + βn,m

s ϑk
s + υk

s


ds

+

 T

t
Γ n,m

ts

nȲ n,m,k

s − n(Us − U k
s − Ȳ n,m,k

s )− − δn,m
s


ds

+

 T

t


A
Γ n,m

ts

γ n,m

s (a)Ln,m
s (a) + m(Ln,m

s (a))+ − νs(a)Ln,m
s (a)


λ(da)ds

−

 T

t
Γ n,m

ts

Zn,m

s − ϑk
s + Ȳ n,m,k

s βn,m
s


dWs

−

 T

t


A
Γ n,m

ts Ln,m
s (a)µ̃ν(ds, da),

for any ν ∈ V , where we introduced the compensated measure µ̃ν of µ under Pν . By choosing
ν = νn,m,ε

∈ V defined by: ν
n,m,ε
t (a) = (γ

n,m
t (a) + m)1{Ln,m

t (a)≥0} + (γ
n,m
t (a) + ε)1{Ln,m

t (a)<0},
for some arbitrary ε > 0, we see that:

γ
n,m
t (a)Ln,m

t (a) + m(Ln,m
t (a))+ − ν

n,m
t (a)Ln,m

t (a) = −εLn,m
t (a)1{Ln,m

t (a)<0}.



Observe also that

nȲ n,m,k
t − n(Ut − U k

t − Ȳ n,m,k
t )− − δn,m

s ≤ 0, 0 ≤ t ≤ T, a.s.

since U ≤ U k , and δn,m
≥ 0. Recalling that ξ ≤ UT ≤ U k

T , the explicit expression of Γ n,m , and
the fact that (αn,m), (βn,m) are uniformly bounded in (t, ω, n, m), we then get the existence of
some positive constant C such that:

Ȳ n,m,k
t ≤ C

 T

t
e−n(s−t)Mn,m

ts

|F(s, 0, 0, 0)| + |U k

s | + |ϑk
s | + |υk

s |

ds

− ε

 T

t


A
Γ n,m

ts Ln,m
s (a)1{Ln,m

s (a)<0}λ(da)ds

−

 T

t
Γ n,m

ts

Zn,m

s − ϑk
s + Ȳ n,m,k

s βn,m
s


dWs

−

 T

t


A
Γ n,m

ts Ln,m
s (a)µ̃νn,m,ε

(ds, da), (3.17)

for any n, m, k ∈ N \ {0}, ε > 0. Denote by Sn,m,k
t =

 t
0 Γ n,m

0s


Zn,m

s − ϑk
s + Ȳ n,m,k

s β
n,m
s


dWs ,

0 ≤ t ≤ T , which is a Pν-local martingale, for any ν ∈ V , by recalling that W remains a
Brownian motion under Pν . From Burkholder–Davis–Gundy, Bayes formula, Cauchy–Schwarz,
and Doob inequalities, we have

Eν


sup
0≤t≤T

|Sn,m,k
t |


≤ CEν


⟨Sn,m,k⟩T


= CEν

 T

0
|Γ n,m

0t |2|Zn,m
t − ϑk

t + Ȳ n,m,k
t β

n,m
t |2dt


≤ CE


ζ ν

T sup
0≤t≤T

Γ n,m
0t

 T

0
|Zn,m

t − ϑk
t + Ȳ n,m,k

t β
n,m
t |2dt


≤ C


E


|ζ ν

T |
4E

sup
0≤t≤T

|Γ n,m
0t |

4 1
4


E

 T

0
|Zn,m

t − ϑk
t + Ȳ n,m,k

t β
n,m
t |2dt


≤ C


E


|ζ ν

T |
4E

|Mn,m
0T |

4 1
4


E

 T

0
|Zn,m

t − ϑk
t + Ȳ n,m,k

t β
n,m
t |2dt


< ∞, (3.18)

where we used the fact that αn,m , βn,m are bounded processes, Zn,m , ϑk lie in L2(W), and
Ȳ n,m,k in L2(0, T). Therefore, Sn,m,k is a uniformly Pν-integrable martingale for any ν ∈ V ,
and similarly we show that

 t
0


A Γ n,m

ts Ln,m
s (a)µ̃ν(ds, da) is a Pν-martingale. Hence, by taking

conditional expectation with respect to Pνn,m,ε
into (3.17), we have for all n, m, k ∈ N \ {0},

ε > 0:

Ȳ n,m,k
t ≤

C

n
Eνn,m,ε


sup

t≤s≤T
Mn,m

ts

|F(s, 0, 0, 0)| + |U k

s | + |ϑk
s | + |υk

s |

|Ft


− εEνn,m,ε

 T

t


A
Γ n,m

ts Ln,m
s (a)1{Ln,m

s (a)<0}λ(da)ds|Ft





≤
C

n
ess sup

ν∈V
Eν


sup

t≤s≤T
Mn,m

ts

|F(s, 0, 0, 0)| + |U k

s | + |ϑk
s | + |υk

s |

|Ft


+εE

ζ νn,m,ε

T

ζ νn,m,ε

t

 T

t


A
Γ n,m

ts |Ln,m
s (a)|λ(da)ds|Ft


, 0 ≤ t ≤ T, (3.19)

from Bayes formula. Now, for ε ≤ m, we see that νn,m,ε
≤ ν̄n,m

:= γ n,m
+ m, and so:

0 ≤
ζ νn,m,ε

T

ζ νn,m,ε

t
≤

ζ ν̄n,m

T

ζ ν̄n,m
t

exp
 T

t


A

ν̄n,m
s (a)λ(da)ds


. (3.20)

This shows that

lim
ε→0

εE
ζ νn,m,ε

T

ζ νn,m,ε

t

 T

t


A
Γ n,m

ts |Ln,m
s (a)|λ(da)ds|Ft


= 0, 0 ≤ t ≤ T, (3.21)

and so by sending ε to zero in (3.19):

(U k
t − Y n,m

t )− = (Ȳ n,m,k
t )+

≤
C

n
ess sup

ν∈V
Eν


sup

t≤s≤T
Mn,m

ts

|F(s, 0, 0, 0)| + |U k

s | + |ϑk
s | + |υk

s |

|Ft


≤

C

n
ess sup

ν∈V
Eν


sup

t≤s≤T
|Mn,m

ts |
p

p−2 + sup
t≤s≤T


|F(s, 0, 0, 0)|

p
2

+ |U k
s |

p
2 + |ϑk

s |
p
2 + |υk

s |
p
2

|Ft


for all 0 ≤ t ≤ T , and p > 2, by Young inequality. Recall that W is a Brownian motion under
Pν , and so {Mn,m

ts , t ≤ s ≤ T } is a martingale under Pν , for any ν ∈ V . By Doob’s inequality,
we then have with q = p/(p − 2) > 1:

Eν


sup
t≤s≤T

|Mn,m
ts |

q
|Ft


≤

 q

q − 1

q
Eν


|Mn,m

tT |
q
|Ft


≤

 q

q − 1

q
exp


q(q − 1)∥β∥

2
∞(T − t)


,

where ∥β∥∞ is a uniform bound of (βn,m), hence independent of n, m and ν ∈ V . We then
deduce that

(U k
t − Y n,m

t )−

≤
C

n


1 + ess sup

ν∈V
Eν


sup

t≤s≤T


|F(s, 0, 0, 0)|

p
2 + |U k

s |
p
2 + |ϑk

s |
p
2 + |υk

s |
p
2

|Ft


for all 0 ≤ t ≤ T , n, m, k ∈ N \ {0}. By Cauchy–Schwarz inequality, we then obtain:

E

n

 T

0
(U k

t − Y n,m
t )−dt

2

≤ C


1 +

 T

0
E


ess sup

ν∈V
Eν


sup

t≤s≤T


|F(s, 0, 0, 0)|p

+ |U k
s |

p
+ |ϑk

s |
p

+ |υk
s |

p
|Ft


dt


.

By taking p > 2 as in Assumption (H1)(iii), and then sending k to infinity in the l.h.s. of the
above inequality, we get the required uniform estimate on K n,m,−. �



Corollary 3.1. Let assumptions (H0) and (H1) hold. Then, we have

sup
m∈N


∥Y m

∥S2 + ∥Zm
∥L2(W) + ∥Lm

∥L2(µ̃) + ∥K m,+
∥

2
S + ∥K m,−

∥S2


< ∞,

where K m,+
t := m

 t
0


A


Lm

s (a)

+
λ(da)ds.

Proof. From the bounds (3.8) and (3.9), we already have the uniform estimate for ∥Y m
∥S2 .

Moreover, by Lemmata 3.2 and 3.3, we have the uniform estimates:

sup
n,m∈N


∥Zn,m

∥L2(W) + ∥Ln,m
∥L2(µ̃) + ∥K n,m,+

∥S2 + ∥K n,m,−
∥S2


< ∞.

We deduce that the weak limits (Zm, Lm, K m,−) of (Zm,n, Lm,n, K n,m,−) when n goes to
infinity, are also uniformly bounded in L2(W) × L2(µ̃) × S2. From the strong convergence
of Ln,m to Lm in Lp(µ̃), 1 ≤ p < 2, we see by definition of K n,m,+ and K m,+ that K n,m,+

T
converges strongly to K m,+

T in Lp(FT ), when n goes to infinity. Moreover, since (K n,m,+
T )n is

uniformly bounded in L2(FT ), it also converges weakly to K m,+
T in L2(FT ). It follows that

(K m,+)m inherits from (K n,m,+)n,m the uniform estimate in S2. �

We can now state the main result of this section as a consequence of the monotonic conver-
gence theorem stated in Appendix B, which extends to the Brownian–Poisson filtration frame-
work the result of Peng and Xu [26].

Theorem 3.1. Let assumptions (H0) and (H1) hold. Then there exists a minimal solution
(Y, Z , L , K +, K −) ∈ S2

× L2(W) × L2(µ̃) × K2
× K2 to the reflected BSDE with nonpositive

jumps (2.2)–(2.5), where:
(i) Y is the increasing limit of (Y m)m .

(ii) (Z , L) is the strong (resp. weak) limit of (Zm, Lm)m in Lp(W) × Lp(µ̃), with p ∈ [1, 2),
(resp. in L2(W) × L2(µ̃)).

(iii) K +
t is the weak limit of (K m,+

t )m in L2(Ft ), and K −
t is the strong limit of (K m,−

t )m in
L2(Ft ), for any 0 ≤ t ≤ T .

Proof. We already know that (Y m)m is a nondecreasing sequence in S2, which converges to
some Y , which satisfies Y ≤ Y ≤ Ȳ from (3.8) and (3.9), and so lies in S2. By Lemma 3.1 and
Corollary 3.1, we then see that the sequence (Y m, Zm, Lm, K m,+, K m,−)m solution to the BSDE
(3.3) satisfies all the conditions of the monotonic limit Theorem B.1. This provides the existence
of (Z , L , K +, K −) ∈ L2(W)×L2(µ̃)×K2

×K2 as in the assertions (ii) and (iii) of Theorem 3.1
such that the quintuple (Y, Z , L , K +, K −) solves (2.2).

From the strong convergence in L1(µ̃) of (Lm)m to L , and since λ(A) < ∞, we have

E
 T

0


A


Lm

t (a)

+
λ(da)dt


−→ E

 T

0


A


L t (a)


+
λ(da)dt


,

as m goes to infinity. Moreover, since K m,+
T = m

 T
0 (L t (a))+λ(da)dt is bounded in m in

L2(FT ), this implies that

E
 T

0


A


L t (a)


+
λ(da)dt


= 0,

which means that the constraint (2.3) is satisfied. The upper reflection (2.4) is obviously satisfied
from (3.4) and by sending m to infinity. Let us now check the Skorohod reflecting condition
(2.5). We recall from (3.5) that

 T
0 (Ut− − Y m

t−)d K m,−
t = 0. Together with the fact that



Ut− − Y m
t− ≥ Ut− − Yt− ≥ 0, this yields

 T
0 (Ut− − Yt−)d K m,−

t = 0. Since (K m,−
t )m converges

strongly to K −
t in L2(Ft ) for all t , and by Lemma 3.1, this implies that the measure d K m,−

converges weakly to d K −, and so
 T

0 (Ut− − Yt−)d K −
t = 0 a.s.

It remains to prove the minimality condition. Let (Ỹ , Z̃ , L̃, K̃ +, K̃ −) be another solution to
the reflected BSDE with nonpositive jumps (2.2)–(2.5). We then see that

 t
0


A(L̃s(a))+λ(da)ds

= 0, and thus F(t, Ỹt , Z̃ t , L̃ t ) = Fm(t, Ỹt , Z̃ t , L̃ t ), for 0 ≤ t ≤ T . From the comparison
Theorem A.2, we deduce that Y m

t ≤ Ỹt , 0 ≤ t ≤ T . Taking the limit with respect to m, this
proves the minimality condition: Yt ≤ Ỹt , 0 ≤ t ≤ T . �

Remark 3.2. The order of the limits: first let n to infinity, and then let m to infinity, is crucial
in our approach. Indeed, by sending first n to infinity, we get a nondecreasing sequence of
processes (K m,−)m (see Lemma 3.1), which is a required property for applying the monotonic
convergence theorem in Theorem 3.1. On the other hand, if we would first let m to infinity in the
double sequence (Y n,m, Zn,m, Ln,m, K n,m,+, K n,m,−), then we would obtain a minimal solution
(Ŷ n, Ẑn, K̂ n,+) to the BSDE with nonpositive jumps:

Ŷ n
t = ξ +

 T

t
F(s, Ŷ n

s , Ẑn
s , L̂n

s )ds − n
 T

t
(Us − Ŷ n

s )−ds + K̂ n,+
T − K̂ n,+

t

−

 T

t
Ẑn

s dWs −

 T

t


A

L̂n
s (a)µ(ds, da), 0 ≤ t ≤ T, (3.22)

L̂n
t (a) ≤ 0, dP ⊗ dt ⊗ λ(da) a.e.

and (Ŷ n)n is a nonincreasing sequence, converging to some Ŷ ≥ Y by (3.2). But neither K n,+,
which is the weak limit of K n,m,+, as m goes to infinity, nor K n,−

t := n
 t

0 (Us − Ŷ n
s )−ds, satisfy

monotonicity properties in n, which prevents to apply the monotonic convergence theorem to
the sequence (Ŷ n, Ẑn, K̂ n,+, K̂ n,−)n , and thus to identify Ŷ = Y as the minimal solution to the
reflected BSDE with nonpositive jumps. This differs from the case of doubly reflected BSDEs
where one can send indifferently first m or n to infinity. �

4. Dual game representation

In this section, we consider the case where the generator F(t, ω) does not depend on y, z, ℓ,
and we provide a dual game representation of the minimal solution to the reflected BSDE with
nonpositive jumps in terms of a family of equivalent probability measures and discount factors. In
addition to the set of probability measures Pν , ν ∈ V = ∪m Vm defined in the previous section, let
us introduce for any n ∈ N, the set Θn of F-progressively measurable processes valued in [0, n],
and set Θ = ∪n Θn , which shall represent the set of discount processes. Inspired by Proposition
6.2 in [5] and the dual representation in Section 4 of [17], we prove an explicit representation
formula for the minimal solution to the reflected BSDE with nonpositive jumps.

Proposition 4.1. (i) For any n ∈ N and m ∈ N \ {0}, the solution to the penalized BSDE
(3.1) admits the following dual representation formula:

Y n,m
t = ess sup

ν∈Vm

ess inf
θ∈Θn

G t (ν, θ) = ess inf
θ∈Θn

ess sup
ν∈Vm

G t (ν, θ),

for all 0 ≤ t ≤ T , where

G t (ν, θ) := Eν

e−

 T
t θs dsξ +

 T

t
e−

 s
t θr dr F(s) + θsUs


ds|Ft


.



(ii) Under assumptions (H0) and (H1), the minimal solution to the reflected BSDE with nonpos-
itive jumps (2.2)–(2.5) is explicitly represented as:

Yt = ess sup
ν∈V

ess inf
θ∈Θ

G t (ν, θ), 0 ≤ t ≤ T . (4.1)

Proof. (i) Fix n ∈ N and m ∈ N \ {0}. For θ ∈ Θ , by applying Itô’s rule to the product of the
processes e−


·

0 θs ds and Y n,m in (3.1), and by introducing the compensated measure µ̃ν(dt, da)

under Pν for ν ∈ V , we obtain:

Y n,m
t = e−

 T
t θs dsξ +

 T

t
e−

 s
t θr dr F(s) + θsUs


ds

+

 T

t


A

e−
 s

t θr dr m(Ln,m
s (a))+ − νs(a)Ln,m

s (a)

λ(da)ds

−

 T

t
e−

 s
t θr dr n(Us − Y n,m

s )− + θs(Us − Y n,m
s )


ds

−

 T

t
e−

 s
t θr dr Zn,m

s dWs −

 T

t


A

e−
 s

t θr dr Ln,m
s (a)µ̃ν(ds, da).

By same arguments as in (3.18) (see also Lemma 4.2 in [17]), we can check that the Pν local
martingales {

 s
t e−

 u
t θr dr Zn,m

u dWu, t ≤ s ≤ T } and {
 s

t


A e−

 u
t θr dr Ln,m

u (a)µ̃ν(du, da), t ≤

s ≤ T } are actually uniformly integrable Pν-martingales, so that by taking conditional
expectation under Pν :

Y n,m
t = G t (ν, θ) + Eν

 T

t


A

e−
 s

t θr dr m(Ln,m
s (a))+ − νs(a)Ln,m

s (a)

λ(da)ds

−

 T

t
e−

 s
t θr dr n(Us − Y n,m

s )− + θs(Us − Y n,m
s )


ds|Ft


, (4.2)

and this relation holds for any ν ∈ V , and θ ∈ Θ . Now, observe that for any ν ∈ Vm , hence
valued in (0, m], we have

m(Ln,m
t (a))+ − νt (a)Ln,m

t (a) ≥ 0, 0 ≤ t ≤ T, a ∈ A, a.s.

and for ν = νε
∈ Vm defined by: νε

t (a) = m1{Ln,m
t (a)≥0} + ε1{Ln,m

t (a)<0}, for arbitrary ε ∈ (0, m],
we have

m(Ln,m
t (a))+ − νε

t (a)Ln,m
t (a) = −εLn,m

t (a)1{Ln,m
t (a)<0}, 0 ≤ t ≤ T, a ∈ A, a.s.

Similarly, for any θ ∈ Θn , hence valued in [0, n], we have

n(Ut − Y n,m
t )− + θt (Ut − Y n,m

t ) ≥ 0, 0 ≤ t ≤ T, a.s.

and for θ∗
∈ Θn defined by: θ∗

t = n1{Y n,m
t ≥Ut }

, we have

n(Ut − Y n,m
t )− + θ∗

t (Ut − Y n,m
t ) = 0, 0 ≤ t ≤ T, a.s.

Therefore, by (4.2), we get

G t (ν, θ∗) ≤ Y n,m
t = G t (ν

ε, θ∗) + εRn,m,ε
t (θ∗), ∀ν ∈ Vm, (4.3)

≤ G t (ν
ε, θ) + εRn,m,ε

t (θ),

≤ G t (ν
ε, θ) + εRn,m,ε

t (0), ∀θ ∈ Θn, (4.4)



for all ε ∈ (0, m], where we set:

Rn,m,ε
t (θ) := Eνε

 T

t


A

e−
 s

t θr dr
|Ln,m

s (a)|λ(da)ds|Ft


.

For fixed m, and by viewing the BSDE (3.1) as a penalized BSDE in n for the upper-reflected
BSDE with generator Fm in (3.6), we have by standard arguments based on Itô’s lemma, uniform
estimates in n for (Y n,m, Zn,m, Ln,m) in S2

×L2(W)×L2(µ̃) (see Theorem 4.2 in [8]). Actually,
these arguments show that for all 0 ≤ t ≤ T , there exists some real-valued Ft -measurable
random variable Cm

t such that

sup
n∈N

E
 T

t


A

|Ln,m
s (a)|2λ(da)ds|Ft


≤ Cm

t . (4.5)

Moreover, since νε
≤ m, we see as in (3.20) that ζ νε

T /ζ νε

t ≤ em(T −t)λ(A)ζm
T /ζm

t , where ζm is
the Radon–Nikodym density of dPν/dP for ν = m. Thus, by Cauchy–Schwarz inequality, there
exists some real-valued Ft -measurable random variable C̃m

t such that

sup
n∈N

Rn,m,ε
t (0) ≤ C̃m

t , (4.6)

for all ε ∈ (0, m]. Now, by (4.3), we have: ess inf θ∈Θn ess sup ν∈Vm
G t (ν, θ) ≤ Y n,m

t , and by
(4.4), we get:

Y n,m
t ≤ ess sup

ν∈Vm

ess inf
θ∈Θn

G t (ν, θ) + εRn,m,ε
t (0).

By (4.6), we see in particular that εRn,m,ε
t (0) → 0 a.s. as ε goes to zero. Since we always have

ess sup ν∈Vm
ess inf θ∈Θn G t (ν, θ) ≤ ess inf θ∈Θn ess sup ν∈Vm

G t (ν, θ), this shows that

Y n,m
t = lim

ε→0
G t (ν

ε, θ∗) = ess sup
ν∈Vm

ess inf
θ∈Θn

G t (ν, θ)

= ess inf
θ∈Θn

ess sup
ν∈Vm

G t (ν, θ), (4.7)

i.e. (νε, θ∗) ∈ Vm × Θn is an ε-saddle point for G t (ν, θ).
(ii) By sending m to infinity into (4.7), and recalling that Y m

= limn Y n,m , we get:

Y m
t = ess inf

θ∈Θ
ess sup

ν∈Vm

G t (ν, θ) ≥ ess sup
ν∈Vm

ess inf
θ∈Θ

G t (ν, θ). (4.8)

On the other hand, for arbitrary n0 ∈ N, we see that for any θ ∈ Θn0 and any n ≥ n0:

n(Ut − Y n,m
t )− + θt (Ut − Y n,m

t ) ≥ 0, 0 ≤ t ≤ T, a.s.,

which implies, from (4.2),

Y n,m
t ≤ G t (ν, θ)

+ Eν
 T

t


A

e−
 s

t θr dr m(Ln,m
s (a))+ − νs(a)Ln,m

s (a)

λ(da)ds|Ft


, (4.9)

for any ν ∈ V , θ ∈ Θn0 , and n ≥ n0. Now note that, since Ln,m
→ Lm strongly in Lp(µ̃),

p ∈ [1, 2), then, up to a subsequence, Ln,m
→ Lm dP ⊗ dt ⊗ λ(da) almost everywhere.



Moreover, as already recalled in step (i) of the proof, we have uniform estimates in n for
(Ln,m) ∈ L2(µ̃), namely, from (4.5) with t = 0,

sup
n∈N

E
 T

0


A

|Ln,m
s (a)|2λ(da)ds


≤ Cm

0 , (4.10)

for some positive constant Cm
0 . Then, sending n to infinity in (4.9) we obtain, from Lebesgue’s

dominated convergence theorem,

Y m
t ≤ G t (ν, θ)

+ Eν
 T

t


A

e−
 s

t θr dr m(Lm
s (a))+ − νs(a)Lm

s (a)

λ(da)ds|Ft


, (4.11)

for any ν ∈ V , θ ∈ Θn0 . Since Θ = ∪n Θn , from the arbitrariness of n0 we conclude that (4.11)
remains true for all θ ∈ Θ . Take ν̃ε

∈ Vm defined by: ν̃ε
t (a) = m1{Lm

t (a)≥0} + ε1{Lm
t (a)<0}, for

arbitrary ε ∈ (0, m], so that

m(Lm
t (a))+ − νε

t (a)Lm
t (a) = −εLm

t (a)1{Lm
t (a)<0}, 0 ≤ t ≤ T, a ∈ A, a.s.,

and thus by (4.11):

Y m
t ≤ G t (ν̃

ε, θ) + ε R̃m,ε
t (θ) ≤ G t (ν̃

ε, θ) + ε R̃m,ε
t (0), ∀θ ∈ Θ, (4.12)

for all ε ∈ (0, m], where we set:

R̃m,ε
t (θ) := Eν̃ε

 T

t


A

e−
 s

t θr dr
|Lm

s (a)|λ(da)ds|Ft


.

Using again the uniform estimate (4.10) and the fact that, up to a subsequence, Ln,m
→ Lm

dP ⊗ dt ⊗ λ(da) a.e., we obtain, from (4.5) and Lebesgue’s dominated convergence theorem,

E
 T

t


A

|Lm
s (a)|2λ(da)ds|Ft


≤ Cm

t .

Moreover, as in step (i) of the proof, since ν̃ε
≤ m we see that ζ ν̃ε

T /ζ ν̃ε

t ≤ em(T −t)λ(A)ζm
T /ζm

t .
Thus, by Cauchy–Schwarz inequality, it follows that, for all ε ∈ (0, m],

R̃m,ε
t (0) ≤ C̃m

t ,

with the same real-valued Ft -measurable random variable C̃m
t as in (4.6). Then, from (4.12) we

get

Y m
t ≤ ess sup

ν∈Vm

ess inf
θ∈Θ

G t (ν, θ) + εC̃m
t ,

for all ε ∈ (0, m]. By sending ε to zero, and combining with (4.8), we obtain:

Y m
t = ess inf

θ∈Θ
ess sup

ν∈Vm

G t (ν, θ)

= ess sup
ν∈Vm

ess inf
θ∈Θ

G t (ν, θ). (4.13)

Finally, by sending m to infinity into (4.13), we obtain the dual relation (4.1) for Y =

limm Y m . �



Remark 4.1. We do not know in general if one can switch in (4.1) the essential infimum and
supremum. Actually, by considering Ŷ n

= limm Y n,m the minimal solution to the BSDE with
nonnegative jumps (3.22), one could show by similar arguments as in the second part (ii) of
Proposition 4.1 that:

Ŷ n
t = ess inf

θ∈Θn

ess sup
ν∈V

G t (ν, θ) = ess sup
ν∈V

ess inf
θ∈Θn

G t (ν, θ),

so that Ŷ := limn Ŷ n satisfies:

Ŷt = ess inf
θ∈Θ

ess sup
ν∈V

G t (ν, θ).

However, as pointed out in Remark 3.2, we cannot conclude whether Ŷt is equal or strictly greater
than Yt . �

5. Connection with HJB Isaacs equation for controller-and-stopper games

In this section, we show how the minimal solution to our class of reflected BSDEs with
nonpositive jumps provides a probabilistic representation (hence a Feynman–Kac formula) to
fully nonlinear variational inequalities of Hamilton–Jacobi–Bellman (HJB) Isaacs type arising in
a controller/stopper game, when considering a suitable Markovian framework.

5.1. The Markovian framework

We are given two measurable functions b : Rd
× Rq

→ Rd and σ : Rd
× Rq

→ Rd×d and
we introduce the forward Markov regime-switching process (X, I ) in Rd

× Rq governed by:

d X t = b(X t , It )dt + σ(X t , It )dWt (5.1)

d It =


A
(a − It−)µ(dt, da). (5.2)

Therefore, the coefficients b and σ , appearing in the dynamics of the diffusion process X , change
according to the pure jump process I , which is associated to the Poisson random measure µ on
R+ × A. We make the following standard assumption on the forward coefficients b and σ :

(HFC) There exists a constant C such that

|b(x, a) − b(x ′, a′)| + |σ(x, a) − σ(x ′, a′)| ≤ C

|x − x ′

| + |a − a′
|

,

for all x, x ′
∈ Rd and a, a′

∈ Rq .
It is well-known that under hypothesis (HFC) there exists a unique solution (X t,x,a, I t,a) =

(X t,x,a
s , I t,a

s )t≤s≤T to (5.1)–(5.2) starting from (x, a) ∈ Rd
× Rq at time s = t ∈ [0, T ].

Furthermore, we have the standard estimates: for all p ≥ 2, there exists some constant C p such
that

E


sup
t≤s≤T


|X t,x,a

s |
p

+ |I t,a
s |

p
≤ C p


1 + |x |

p
+ |a|

p, (5.3)

for all (t, x, a) ∈ [0, T ] × Rd
× Rq .

Remark 5.1. Notice that the constant C p in (5.3) depends only on p, T , and the growth linear
condition of b, σ in (HFC). Since the dynamics (5.1) of X is not changed by the change of



probability measure Pν , ν ∈ V (recall that W remains a Brownian motion under Pν), we then see
that for all p ≥ 2:

Eν


sup
s≤r≤T


|X t,x,a

r |
p

+ |I t,a
r |

p
|Fs


≤ C p


1 + |X t,x,a

s |
p

+ |I t,a
s |

p), t ≤ s ≤ T,

for all ν ∈ V , and thus: T

t
E


ess sup

ν∈V
Eν


sup

s≤r≤T


|X t,x,a

r |
p

+ |I t,a
r |

p
|Fs


ds ≤ C p(1 + |x |

p
+ |a|

p), (5.4)

for all (t, x, a) ∈ [0, T ] × Rd
× Rq . �

Regarding the reflected BSDE with nonpositive jumps, the terminal condition, the generator
function, and the barrier are given respectively by some continuous functions g : Rd

→ R,
f : Rd

× Rq
× R × Rd

→ R, and u : [0, T ] × Rd
→ R. We make the following assumptions

on the BSDE coefficients:
(HBC)

(i) The functions g, f (·, ·, 0, 0) and u satisfy a polynomial growth condition:

sup
x∈Rd ,a∈Rq

| f (x, a, 0, 0)|

1 + |x |h + |a|h
+ sup

t∈[0,T ],x∈Rd

|g(x)| + |u(t, x)|

1 + |x |h
< ∞,

for some h ≥ 0.
(ii) There exists some constant C such that:

| f (x, a, y, z) − f (x, a, y′, z′)| ≤ C

|y − y′

| + |z − z′
|

,

for all x ∈ Rd , a ∈ Rq , y, y′
∈ R, z, z′

∈ Rd .
(iii) u(T, x) ≥ g(x), for all x ∈ Rd , and there exists a nonincreasing sequence of functions

(uk)k lying in C1,2([0, T ] × Rd), and converging pointwisely to u such that the following
polynomial growth condition holds

sup
k∈N

sup
t∈[0,T ],x∈Rd

 ∂uk

∂t (t, x)

 + |Dx uk(t, x)| + |D2
x uk(t, x)|

1 + |x |h
< ∞,

for some h ≥ 0.

In this Markovian framework, the reflected BSDE with nonpositive jumps (2.2)–(2.5) takes
the form:

Yt = g(XT ) +

 T

t
f (Xs, Is, Ys, Zs)ds + K +

T − K +
t − (K −

T − K −
t )

−

 T

t
ZsdWs −

 T

t


A

Ls(a)µ(ds, da), 0 ≤ t ≤ T, a.s. (5.5)

with

L t (a) ≤ 0, dP ⊗ dt ⊗ λ(da) a.e. (5.6)

and

Yt ≤ u(t, X t ), 0 ≤ t ≤ T, a.s. (5.7)



 T

0
(u(t, X t ) − Yt−)d K −

t = 0, a.s. (5.8)

Notice that under (HFC) and (HBC) the terminal condition ξ(ω) = g(XT (ω)), the generator
F(t, ω, y, z, ℓ) = f (X t (ω), It−(ω), y, z), and the barrier Ut (ω) = u(t, X t (ω)) clearly satisfy
the standing assumptions 1–4 in Section 2. Let us now discuss about conditions (H0) and (H1)
in the two following remarks.

Remark 5.2. Condition (H0) is satisfied in our Markovian framework. Actually, it is shown in
Lemma 5.1 in [17] that under (HFC) and (HBC)(i), (ii), there exists for any initial condition
(t, x, a) ∈ [0, T ] × Rd

× Rq , a solution {(Ȳ t,x,a
s , Z̄ t,x,a

s , L̄ t,x,a
s , K̄ t,x,a,+

s ), t ≤ s ≤ T } to the
BSDE with nonpositive jumps (2.6)–(2.7) when (X, I ) = {(X t,x,a

s , I t,a
s ), t ≤ s ≤ T }, with

Ȳ t,x,a
s = v̄(s, X t,x,a

s ) for some deterministic function v̄ on [0, T ]×Rd satisfying the polynomial
growth condition:

sup
(t,x)∈[0,T ]×Rd

|v̄(t, x)|

1 + |x |r
< ∞

for some r ≥ 2. Such solution is constructed by Itô’s lemma from a smooth supersolution to

−
∂v̄

∂t
− sup

a∈A
[La v̄ + f (·, a, v̄, σ ᵀ(·, a)Dx v̄)] ≥ 0, on [0, T ) × Rd

v̄(T, x) ≥ g(x), x ∈ Rd ,

where

Laϕ = b(x, a).Dxϕ +
1
2

tr(σσ ᵀ(x, a)D2
xϕ),

which can be chosen equal to v̄(t, x) = C̄eρ(T −t)(1 + |x |
r ), with r = max(2, h), for C̄ and ρ

positive large enough. �

Remark 5.3. We also observe that assumption (H1) is satisfied in the present framework. More
precisely, given an initial condition (t, x, a) ∈ [0, T ] × Rd

× Rq , let us consider the process U k ,
k ∈ N, defined by:

U k
s := uk(s, X t,x,a

s ), t ≤ s ≤ T .

By Itô’s formula, U k is in the form of condition (H1)(ii), with

υk
s =

∂uk

∂t
(s, X t,x,a

s ) + b(X t,x,a
s , I t,a

s ).Dx uk(s, X t,x,a
s )

+
1
2

tr

σσ ᵀ(X t,x,a

s , I t,a
s )D2

x uk(s, X t,x,a
s )


,

ϑk
s = Dx uk(s, X t,x,a

s )ᵀσ(X t,x,a
s , I t,a

s ),

for all t ≤ s ≤ T , a.s., and we clearly see from (HFC), (HBC)(iii), and (5.3) that

E
 T

t
|υk

s |
2ds


+ E

 T

t
|ϑk

s |
2ds


< ∞.



Moreover, by using (5.4), and again from the polynomial growth conditions on b, σ , F and uk in
(HFC), (HBC), there exists some p > 2 such that

sup
k∈N

 T

t
E


ess sup

ν∈V
Eν


sup

s≤r≤T


|U k

r |
p

+ |υk
r |

p
+ |ϑk

r |
p

|Fs


ds

+

 T

t
E


ess sup

ν∈V
Eν


sup

s≤r≤T

 f (X t,x,a
r , I t,a

r , 0, 0)
p

|Fs


ds

≤ C p(1 + |x |
p

+ |a|
p)

for all (t, x, a) ∈ [0, T ] × Rd
× Rq . �

From Theorem 3.1, we get, for any initial condition (t, x, a) ∈ [0, T ]×Rd
×Rq , the existence

of a minimal solution {(Y t,x,a
s , Z t,x,a

s , L t,x,a
s , K t,x,a,+

s , K t,x,a,−
s ), t ≤ s ≤ T } to the Markovian

reflected BSDE with nonpositive jumps (5.5)–(5.8) when (X, I ) = {(X t,x,a
s , I t,a

s ), t ≤ s ≤ T }.
Moreover, as we shall see in the next paragraph, this minimal solution is written in this Markovian
context as: Y t,x,a

s = v(s, X t,x,a
s , I t,a

s ), where v is a real-valued deterministic function defined on
[0, T ] × Rd

× Rq by

v(t, x, a) := Y t,x,a
t , (t, x, a) ∈ [0, T ] × Rd

× Rq . (5.9)

We aim at proving that this function v does not depend actually on the argument a in the
interior of A, and is connected to the fully nonlinear variational inequality of HJB Isaacs
type:

max

−

∂v

∂t
− sup

a∈A


Lav + f (·, a, v, σ ᵀ(·, a)Dxv)


; v − u


= 0, on [0, T ) × Rd (5.10)

v(T, x) = g(x), x ∈ Rd . (5.11)

5.2. Viscosity property of the penalized BSDE

Let us consider the Markovian penalized BSDE associated to (5.5)–(5.8)

Y n,m
t = g(XT ) +

 T

t
f (Xs, Is, Y n,m

s , Zn,m
s )ds

+ m
 T

t


A


Ln,m

s (a)

+
λ(da)ds − n

 T

t


u(s, Xs) − Y n,m

s


−

ds

−

 T

t
Zn,m

s dWs −

 T

t


A

Ln,m
s (a)µ(ds, da), 0 ≤ t ≤ T, (5.12)

and denote by {(Y n,m,t,x,a
s , Zn,m,t,x,a

s , Ln,m,t,x,a
s ), t ≤ s ≤ T } the unique solution to (5.12) when

(X, I ) = {(X t,x,a
s , I t,a

s ), t ≤ s ≤ T } for any initial condition (t, x, a) ∈ [0, T ] × Rd
× Rq .

From the Markov property of the jump–diffusion process (X, I ), we recall from [2] that
Y n,m,t,x,a

s = vn,m(s, X t,x,a
s , I t,a

s ), t ≤ s ≤ T , for some deterministic function vn,m defined
on [0, T ] × Rd

× Rq by

vn,m(t, x, a) := Y n,m,t,x,a
t , (t, x, a) ∈ [0, T ] × Rd

× Rq . (5.13)



Next, for fixed m, let us consider the limiting BSDE of (5.12) as n goes to infinity, that is the
reflected BSDE:

Y m
t = g(XT ) +

 T

t
f (Xs, Is, Y m

s , Zm
s )ds + m

 T

t


A


Lm

s (a)

+
λ(da)ds

− (K m,−
T − K m,−

t ) −

 T

t
Zm

s dWs −

 T

t


A

Lm
s (a)µ(ds, da), 0 ≤ t ≤ T, a.s.

(5.14)

and

Y m
t ≤ u(t, X t ), 0 ≤ t ≤ T, a.s. (5.15) T

0
(u(t, X t ) − Y m

t−)d K m,−
t = 0, a.s. (5.16)

and denote by {(Y m,t,x,a
s , Zm,t,x,a

s , Lm,t,x,a
s , K m,t,x,a,+

s ), t ≤ s ≤ T } the unique solution to
(5.14)–(5.16) when (X, I ) = {(X t,x,a

s , I t,a
s ), t ≤ s ≤ T } for any initial condition (t, x, a) ∈

[0, T ]×Rd
×Rq . Since Y n,m,t,x,a converges to Y m,t,x,a as n goes to infinity, we see from (5.13)

that Y m,t,x,a may be written as Y m,t,x,a
s = vm(s, X t,x,a

s , I t,a
s ), t ≤ s ≤ T , where vm is the

deterministic function defined on [0, T ] × Rd
× Rq by:

vm(t, x, a) := lim
n→∞

vn,m(t, x, a) = Y m,t,x,a
t , (t, x, a) ∈ [0, T ] × Rd

× Rq . (5.17)

From the convergence of Y m,t,x,a to the minimal solution Y t,x,a , when m goes to infinity, as
stated in Theorem 3.1, we deduce that Y t,x,a has indeed the form Y t,x,a

s = v(s, X t,x,a
s , I t,a

s ),
with a deterministic function v defined as the pointwise (nondecreasing) limit of (vm)m :

v(t, x, a) := lim
m→∞

vm(t, x, a) = Y t,x,a
t , (t, x, a) ∈ [0, T ] × Rd

× Rq . (5.18)

From the bounds (3.8)–(3.9), we have for all m ∈ N: v(t, x, a) ≤ vm(t, x, a) ≤ v̄(t, x),
(t, x, a) ∈ [0, T ] × Rd

× Rq , where v := v0 is associated to the reflected BSDE Y m for m =

0, and v̄ is the supersolution as defined in Remark 5.2. By the polynomial growth condition on
v̄, and also on v (see e.g. Lemma 3.2 in [6]), we deduce that vm , and thus also v by passing to
the limit, satisfy a polynomial growth condition: there exist some positive constant C and some
p ≥ 2, such that, for all m ∈ N:

|vm(t, x, a)| + |v(t, x, a)| ≤ C(1 + |x |
p

+ |a|
p), (5.19)

for all (t, x, a) ∈ [0, T ] × Rd
× Rq . As expected, for fixed m, the function vm

= vm(t, x, a)

associated to the reflected BSDE with jumps (5.14)–(5.16) is connected to the integro-differential
variational inequality:

max

−

∂vm

∂t
− b(x, a).Dxv

m
−

1
2

tr(σσ ᵀ(x, a)D2
xv

m) − f (x, a, vm, σ ᵀ(x, a)Dxv
m)

−


A


vm(t, x, a′) − vm(t, x, a)


λ(da′)

− m


A


vm(t, x, a′) − vm(t, x, a)


+
λ(da′); vm(t, x, a) − u(t, x)


= 0, (5.20)



for (t, x, a) ∈ [0, T ) × Rd
× Rq , together with the terminal condition:

vm(T, x, a) = g(x), (x, a) ∈ Rd
× Rq . (5.21)

More precisely, we have the following result, which may be proved by extending to the multidi-
mensional case Lemma 3.1 and Theorem 3.4 of [6], and by using Theorem A.1 as comparison
theorem for BSDEs with jumps.

Proposition 5.1. Let assumptions (HFC) and (HBC) hold. The function vm in (5.17) is a
continuous viscosity solution to (5.20)–(5.21), i.e., it is continuous on [0, T ]×Rd

×Rq , a viscosity
supersolution (resp. subsolution) to (5.21), i.e.

vm(T, x, a) ≥ (resp. ≤)g(x)

for any (x, a) ∈ Rd
× Rq , and a viscosity supersolution (resp. subsolution) to (5.20), i.e.

max

−

∂ϕ

∂t
(t, x, a) − b(x, a).Dxϕ(t, x, a) −

1
2

tr(σσ ᵀ(x, a)D2
xϕ(t, x, a))

− f (x, a, vm(t, x, a), σ ᵀ(x, a)Dxϕ(t, x, a)) −


A


ϕ(t, x, a′) − ϕ(t, x, a)


λ(da′)

− m


A


ϕ(t, x, a′) − ϕ(t, x, a)


+
λ(da′) ; vm(t, x, a) − u(t, x)


≥ (resp. ≤) 0 (5.22)

for any (t, x, a) ∈ [0, T ) × Rd
× Rq and any ϕ ∈ C1,2([0, T ] × (Rd

× Rq)) such that

(vm
− ϕ)(t, x, a) = min

[0,T ]×Rd×Rq
(vm

− ϕ) (resp. max
[0,T ]×Rd×Rq

(vm
− ϕ)). (5.23)

Remark 5.4. Notice that

vm(t, x, a) ≤ u(t, x), for all (t, x, a) ∈ [0, T ] × Rd
× Rq . (5.24)

Indeed, for any (t, x, a) ∈ [0, T ] × Rd
× Rq , since Y m,t,x,a

s = vm(s, X t,x,a
s , I t,a

s ), t ≤ s ≤ T ,
we deduce, from (5.15) that

E


1
s − t

 s

t


vm(r, X t,x,a

r , I t,a
r ) − u(r, X t,x,a

r )

dr


≤ 0

for all t < s ≤ T . Since (X t,x,a, I t,a) is càdlàg, in particular it is right-continuous at time t .
Therefore, (5.24) follows from the continuity of vm and u. �

5.3. HJB Isaacs equation

This paragraph is devoted to the derivation of the equation satisfied in the viscosity sense by
the function v in (5.18), by passing to the limit, as m goes to infinity, in the equation satisfied by
vm . The first step is to prove that v does not depend on a, which is basically a consequence of
the nonpositive jump constraint:

L t,x,a
s (a′) = v(s, X t,x,a

s , a′) − v(s, X t,x,a
s , I t,a

s− ) ≤ 0, dP ⊗ ds ⊗ λ(da′) a.e.

providing that the function v is continuous. However, as we do not know a priori that the function
v is continuous, we shall rely on (discontinuous) viscosity solution arguments as in [17], and



make the following conditions on the set A and the intensity measure λ:
(HA) The interior set Å of A is connected, and A = Adh( Å), the closure of its interior.
(Hλ)

(i) The measure λ supports the whole set Å: for any a ∈ Å and any open neighborhood O of a
in Rq we have λ(O ∩ Å) > 0.

(ii) The boundary of A: ∂ A = A\ Å, is negligible with respect to λ, i.e., λ(∂ A) = 0.

Proposition 5.2. Let assumptions (HFC), (HBC), (HA), and (Hλ) hold. Then the function v

does not depend on the variable a on [0, T ) × Rd
× Å:

v(t, x, a) = v(t, x, a′), a, a′
∈ Å, (5.25)

for all (t, x) ∈ [0, T ) × Rd .

Proof. The proof borrows most arguments from Section 5.3 in [17], and we only report here the
main steps and the points to be modified. First, we see from (5.24), and sending m to infinity
that:

v ≤ u on [0, T ] × Rd
× Rq . (5.26)

We next show that the function v is a viscosity supersolution to:

− |Dav(t, x, a)| = 0, (t, x, a) ∈ [0, T ) × Rd
× Å, (5.27)

i.e., for any (t, x, a) ∈ [0, T ) × Rd
× Å and any function ϕ ∈ C1,2([0, T ] × (Rd

× Rq)) such
that (v − ϕ)(t, x, a) = min[0,T ]×Rd×Rq (v − ϕ), we have

−
Daϕ(t, x, a)

 ≥ 0, i.e. Daϕ(t, x, a) = 0.

Indeed, let (t, x, a) ∈ [0, T ) × Rd
× Å and ϕ ∈ C1,2([0, T ] × (Rd

× Rq)) such that
0 = (v − ϕ)(t, x, a) = min[0,T ]×Rd×Rq (v − ϕ). We distinguish two cases.

(i) v(t, x, a) = u(t, x). From (5.26), we have

ϕ(t, x, a′) ≤ v(t, x, a′) ≤ u(t, x), ∀ a′
∈ Rq

and ϕ(t, x, a) = v(t, x, a) = u(t, x). It follows that ϕ(t, x, a) = maxa′∈Rq ϕ(t, x, a′), which
yields: Daϕ(t, x, a) = 0, since a ∈ Å.

(ii) v(t, x, a) < u(t, x). We may assume, without loss of generality, that ϕ satisfies the
polynomial growth condition sup(t,x,a)∈[0,T ]×Rd×Rq

|ϕ(t,x,a)|
1+|x |p+|a|p < ∞, with p as in (5.19). Then,

for any ε > 0, consider the test function

ϕε(t ′, x ′, a′) = ϕ(t ′, x ′, a′) − ε

|t ′ − t |2 + |x ′

− x |
2p

+ |a′
− a|

2p,
for all (t ′, x ′, a′) ∈ [0, T ] × Rd

× Rq . Since ϕε(t, x, a) = ϕ(t, x, a) and ϕε
≤ ϕ, with equality

if and only if (t ′, x ′, a′) = (t, x, a), we see that

(v − ϕε)(t, x, a) = strict min
[0,T ]×Rd×Rq

(v − ϕε).

From the continuity and the growth conditions of vm and ϕ, we see that there exists a bounded
sequence (tm, xm, am)m (we omit the dependence on ε) in [0, T ] × Rd

× Rq such that

(vm
− ϕε)(tm, xm, am) = min

[0,T ]×Rd×Rq
(vm

− ϕε).



By standard arguments, we obtain, up to a subsequence,

(tm, xm, am, vm(tm, xm, am))
m→∞
−→ (t, x, a, v(t, x, a)).

From the viscosity supersolution property of vm to (5.22) at (tm, xm, am), we find

−
∂ϕε

∂t
(tm, xm, am) − Lam ϕε(tm, xm, am)

− f (xm, am, vm(tm, xm, am), σ ᵀ(xm, am)Dxϕ
ε(tm, xm, am))

−


A


ϕε(tm, xm, a′) − ϕε(tm, xm, am)


λ(da′)

− m


A


ϕε(tm, xm, a′) − ϕε(tm, xm, am)


+
λ(da′) ≥ 0.

By sending m to infinity, and then ε to zero, we conclude as in the proof of Lemma 5.3 in
[17] that:


A


ϕ(t, x, a′) − ϕ(t, x, a)


+
λ(da′) = 0, which means under (Hλ) that ϕ(t, x, a) =

maxa′∈Rq ϕ(t, x, a′), i.e., Daϕ(t, x, a) = 0.
Finally, by arguing exactly as in Lemma 5.4 and Proposition 5.2 of [17], we obtain under the

additional condition (HA) the non dependence of v on a ∈ Å from the viscosity supersolution
property to (5.27). �

From Proposition 5.2, we can define by misuse of notation the function v on [0, T ) × Rd by:

v(t, x) = v(t, x, a), (t, x) ∈ [0, T ) × Rd ,

for any a ∈ Å, and we see that v satisfies a polynomial growth condition when x goes to in-
finity by (5.19). We finally state the viscosity property of v to the HJB Isaacs type equation
(5.10)–(5.11). Recall the definition of lower semicontinuous envelope v∗, and upper semicontin-
uous envelope v∗:

v∗(t, x) = lim inf
(t ′,x ′)→(t,x)

t ′<T

v(t ′, x ′) and v∗(t, x) = lim sup
(t ′,x ′)→(t,x)

t ′<T

v(t ′, x ′),

for all (t, x) ∈ [0, T ] × Rd .

Theorem 5.1. Let assumptions (HFC), (HBC), (HA), and (Hλ) hold. Then v is a viscosity
solution to (5.10)–(5.11) in the sense that it verifies:

(i) Viscosity supersolution property:

v∗(T, x) ≥ g(x), (5.28)

for any x ∈ Rd , and

max

−

∂ϕ

∂t
(t, x) − sup

a∈A


Laϕ(t, x) + f


x, a, v∗(t, x), σ ᵀ(x, a)Dxϕ(t, x)


;

v∗(t, x) − u(t, x)


≥ 0 (5.29)

for any (t, x) ∈ [0, T ) × Rd and any ϕ ∈ C1,2([0, T ] × Rd) such that (v∗ − ϕ)(t, x) =

min[0,T ]×Rd (v∗ − ϕ).
(ii) Viscosity subsolution property:

v∗(T, x) ≤ g(x), (5.30)



for any x ∈ Rd , and

max

−

∂ϕ

∂t
(t, x) − sup

a∈A


Laϕ(t, x) + f


x, a, v∗(t, x), σ ᵀ(x, a)Dxϕ(t, x)


;

v∗(t, x) − u(t, x)


≤ 0 (5.31)

for any (t, x) ∈ [0, T ) × Rd and any ϕ ∈ C1,2([0, T ] × Rd) such that (v∗
− ϕ)(t, x) =

max[0,T ]×Rd (v∗
− ϕ).

Proof. The proof is quite similar to the proof detailed in Section 5.4 of [17], and we report only
the main arguments and the points to be modified with respect to the proof in [17].

• Viscosity supersolution property (5.29): Since v is the pointwise limit of the nondecreasing
sequence of continuous functions (vm), and recalling (5.25), we know (see e.g. [1]) that v is
lower semicontinuous and so:

v(t, x) = v∗(t, x) = lim
m→∞

vm(t, x, a), ∀(t, x, a) ∈ [0, T ] × Rd
× Å.

Fix now (t, x) ∈ [0, T ) × Rd , and let ϕ ∈ C1,2([0, T ] × Rd) such that (v∗ − ϕ)(t, x) =

min[0,T ]×Rd (v∗ − ϕ). We already know from (5.26) that v∗ ≤ u, and so distinguish two cases:
(1) v∗(t, x) = u(t, x), then the viscosity supersolution property of v at (t, x) is obviously

satisfied.
(2) We have v(t, x) = v∗(t, x) < u(t, x). We may assume, without loss of generality, that ϕ

satisfies sup(t,x)∈[0,T ]×Rd
|ϕ(t,x)|
1+|x |p < ∞, with p as in (5.19). Then, take a ∈ Å and consider, for

any ε > 0, the test function

ϕε(t ′, x ′, a′) = ϕ(t ′, x ′) − ε

|t ′ − t |2 + |x ′

− x |
2p

+ |a′
− a|

2p,
for all (t ′, x ′, a′) ∈ [0, T ] × Rd

× Rq . Proceeding as in the proof of Proposition 5.2, step (ii), we
can find a bounded sequence (tm, xm, am)m (we omit the dependence on ε) in [0, T ] × Rd

× Rq

such that

(vm
− ϕε)(tm, xm, am) = min

[0,T ]×Rd×Rq
(vm

− ϕε)

and, up to a subsequence,

(tm, xm, am, vm(tm, xm, am))
m→∞
−→ (t, x, a, v(t, x)).

Therefore, recalling that v(t, x) < u(t, x) and using the continuity of u, we see that vm(tm,

xm, am) < u(tm, xm) for m large enough. As a consequence, from the viscosity supersolution
property (5.22) of vm at (tm, xm, am) with the test function ϕε, we then get:

−
∂ϕε

∂t
(tm, xm, am) − Lam ϕε(tm, xm, am)

− f (xm, am, vm(tm, xm, am), σ ᵀ(xm, am)Dxϕ
ε(tm, xm, am))

−


A


ϕε(tm, xm, a′) − ϕε(tm, xm, am)


λ(da′)

− m


A


ϕε(tm, xm, a′) − ϕε(tm, xm, am)


+
λ(da′) ≥ 0.

By sending firstly m to infinity, and afterwards ε to zero, then using that a is arbitrary in Å,
together with the continuity of the coefficients b, σ , and f in the variable a, we obtain the



required viscosity supersolution inequality:

−
∂ϕ

∂t
(t, x) − sup

a∈A


Laϕ(t, x) + f (x, a, v∗(t, x), σ ᵀ(x, a)Dxϕ(t, x))


≥ 0.

• Viscosity subsolution property (5.31): By (5.26), we have: v∗
≤ u on [0, T ) × Rd , and so it

remains to show the viscosity subsolution property of v to:

−
∂v

∂t
− sup

a∈A


Lav(t, x) + f


x, a, v(t, x), σ ᵀ(x, a)Dxv(t, x)


≤ 0.

This follows by same arguments as in [17] from the viscosity subsolution property of vm to:

−
∂vm

∂t
− b(x, a).Dxv

m
−

1
2

tr(σσ ᵀ(x, a)D2
xv

m) − f (x, a, vm, σ ᵀ(x, a)Dxv
m)

−


A


vm(t, x, a′) − vm(t, x, a)


λ(da′)

− m


A


vm(t, x, a′) − vm(t, x, a)


+
λ(da′) ≤ 0,

and by sending m to infinity under (Hλ)(ii).
• Finally, the viscosity supersolution and subsolution inequalities (5.28), (5.30) are proved by

same arguments as in [17]. �

Remark 5.5 (Zero-Sum Controller/Stopper Game). Let us consider the particular and important
case where the generator f (x, a) does not depend on (y, z), and u(t, x) = g(x). In this case,
the nonlinear variational inequality (5.10)–(5.11) is the HJB Isaacs equation associated to the
following zero-sum controller-and-stopper game: let us introduce the controlled diffusion process
in Rd

d Xα
s = b(Xα

s , αs)ds + σ(Xα
s , αs)dWs, (5.32)

where the control α ∈ A is an FW -progressively measurable process, valued in A, affecting
both drift and diffusion coefficient, possibly degenerate. Here FW denotes the natural filtration
generated by the Brownian motion W . Notice that the laws Pα of Xα under P, for α varying in A,
belong to a non dominated set of probability measures. Given (t, x) ∈ [0, T ] × Rd , and α ∈ A,
we denote by {X t,x,α

s , t ≤ s ≤ T } the solution to (5.32) starting from x at s = t . Let us also
define Tt,T as the set of all FW -stopping times valued in [t, T ] for 0 ≤ t ≤ T , and consider Πt,T
the set of stopping strategies π : A → Tt,T satisfying a non-anticipative condition as defined
in [3]. The upper and lower value functions of the controller/stopper game are given by:

V (t, x) := inf
π∈Πt,T

sup
α∈A

E
 π [α]

t
f (X t,x,α

s , αs)ds + g(X t,x,α
π [α]

)

,

V (t, x) := sup
α∈A

inf
τ∈Tt,T

E
 τ

t
f (X t,x,α

s , αs)ds + g(X t,x,α
τ )


, (t, x) ∈ [0, T ] × Rd .

It is shown in [3] that this game has a value, i.e., V = V = V , and that V is the unique viscosity
solution to (5.10)–(5.11) satisfying a polynomial growth condition. By combining this result
with Theorem 5.1, this shows that v = V . In other words, we have provided a representation of
HJB Isaacs equation, arising in zero-sum controller/stopper game, including control on possibly
degenerate diffusion coefficient, in terms of minimal solution to reflected BSDE with nonpositive



jumps. Furthermore, by combining with the dual game representation in Proposition 4.1, we
obtain an original representation for the value function of the controller-and-stopper game:

inf
π∈Π0,T

sup
α∈A

E
 π [α]

0
f (Xα

t , αt )dt + g(Xα
π [α]

)


= sup
α∈A

inf
τ∈T0,T

E
 τ

0
f (Xα

t , αt )dt + g(Xα
τ )


= sup

ν∈V
inf

θ∈Θ
Eν

 T

0
e−

 t
0 θs ds f (X t , It ) + θt g(X t )


dt + e−

 T
0 θt dt g(XT )


. �

6. Conclusion

We introduced in this paper a class of reflected BSDEs with nonpositive jumps and upper
obstacle, and showed in the Markov case its connection with fully nonlinear variational inequal-
ities arising typically in controller-and-stopper games with control both on drift and diffusion
term. Such representation suggests an original approach for probabilistic numerical schemes of
HJB Isaacs equations by discretization and simulation of this reflected BSDE with nonpositive
jumps. From a theoretical point of view, an open problem is to relate this class of BSDEs to gen-
eral controller-and-stopper games in the non Markovian case. A variation of our class of BSDEs
would be to consider reflected BSDEs with nonpositive jumps and lower obstacle, which is re-
lated to sup sup problem over control and stopping time, and in other words to optimal stopping
under nonlinear expectation. Actually, the proof of existence of a minimal solution by a double
penalization approach is simpler since it would involve the sum (instead of the difference) of two
nondecreasing processes. Another possible extension is the class of doubly reflected BSDEs with
nonpositive jumps motivated by Dynkin games under nonlinear expectation (see [19]).

Appendix A. Comparison theorems for sub and supersolutions to BSDEs with jumps

We provide in this section two comparison theorems for BSDEs with jumps. We first recall
a comparison theorem for sub and supersolutions to BSDEs driven by the Brownian motion W
and the Poisson random measure µ, for which we refer to Theorem 4.2 in [27] (see also Section
4.3 in [27] and Theorem 2.5 in [28]).

Theorem A.1. Let ξ1, ξ2
∈ L2(FT ) be two terminal conditions and let F1, F2

: Ω × [0, T ] ×

R × Rd
× L2(λ) → R be two generators satisfying the assumptions 2(i)–(iii) of Section 2. Let

(Y 1, Z1, L1, K 1,−) ∈ S2
× L2(W) × L2(µ̃) × K2 satisfying

Y 1
t = ξ1

+

 T

t
F1(s, Y 1

s , Z1
s , L1

s )ds − (K 1,−
T − K 1,−

t )

−

 T

t
Z1

s dWs −

 T

t


A

L1
s (a)µ(ds, da), 0 ≤ t ≤ T, a.s. (A.1)

and (Y 2, Z2, L2, K 2,+) ∈ S2
× L2(W ) × L2(µ̃) × K2 satisfying

Y 2
t = ξ2

+

 T

t
F2(s, Y 2

s , Z2
s , L2

s )ds + K 2,+
T − K 2,+

t

−

 T

t
Z2

s dWs −

 T

t


A

L2
s (a)µ(ds, da), 0 ≤ t ≤ T, a.s. (A.2)



If F1(t, Yt
1, Z t

1, L t
1) ≤ F2(t, Yt

1, Z t
1, L t

1) (resp. F1(t, Yt
2, Z t

2, L t
2) ≤ F2(t, Yt

2, Z t
2, L t

2)), 
dP ⊗ dt a.e., and ξ1 

≤ ξ2 a.s., then

Y 1
t ≤ Y 2

t , 0 ≤ t ≤ T, a.s.

We now state a comparison theorem between a Skorohod solution and a Skorohod supersolu-
tion, both driven by the Brownian motion W and the Poisson random measure µ. This slightly
extends Theorem 5.2 in [8].

Theorem A.2. Let ξ1, ξ2
∈ L2(FT ) be two terminal conditions and let F1, F2

: Ω × [0, T ] ×

R × Rd
× L2(λ) → R be two generators satisfying assumptions 2(i)–(iii) of Section 2. Let

(Y 1, Z1, L1, K 1,−) ∈ S2
× L2(W) × L2(µ̃) × K2 satisfying

Y 1
t = ξ1

+

 T

t
F1(s, Y 1

s , Z1
s , L1

s )ds − (K 1,−
T − K 1,−

t )

−

 T

t
Z1

s dWs −

 T

t


A

L1
s (a)µ(ds, da), 0 ≤ t ≤ T, a.s. (A.3)

and

Y 1
t ≤ Ut , 0 ≤ t ≤ T, a.s. T

0
(Ut− − Y 1

t−)d K 1,−
t = 0, a.s.

Furthermore, let (Y 2, Z2, L2, K 2,+, K 2,−) ∈ S2
× L2(W) × L2(µ̃) × K2

× K2 satisfying

Y 2
t = ξ2

+

 T

t
F2(s, Y 2

s , Z2
s , L2

s )ds + K 2,+
T − K 2,+

t − (K 2,−
T − K 2,−

t )

−

 T

t
Z2

s dWs −

 T

t


A

L2
s (a)µ(ds, da), 0 ≤ t ≤ T, a.s. (A.4)

and

Y 2
t ≤ Ut , 0 ≤ t ≤ T, a.s. T

0
(Ut− − Y 2

t−)d K 2,−
t = 0, a.s.

If ξ1
≤ ξ2 a.s. and F1(t, Y 1

t , Z1
t , L1

t ) ≤ F2(t, Y 1
t , Z1

t , L1
t ), dP ⊗ dt a.e., then

Y 1
t ≤ Y 2

t , 0 ≤ t ≤ T, a.s.

Proof. Consider the following penalized BSDEs:

Y n,1
t = ξ1

+

 T

t
F1(s, Y n,1

s , Zn,1
s , Ln,1

s )ds − n
 T

t
(Us − Y n,1

s )−ds

−

 T

t
Zn,1

s dWs −

 T

t


A

Ln,1
s (a)µ(ds, da)

and

Y n,2
t = ξ2

+

 T

t
F2(s, Y n,2

s , Zn,2
s , Ln,2

s )ds + K 2,+
T − K 2,+

t − n
 T

t
(Us − Y n,2

s )−ds

−

 T

t
Zn,2

s dWs −

 T

t


A

Ln,2
s (a)µ(ds, da),



for all 0 ≤ t ≤ T , almost surely. By comparison Theorem A.1 we get Y n,1
t ≤ Y n,2

t , for all n ∈ N.
Recalling Remark 3.1, we have that Y n,1

t converges to Y 1
t . It remains to prove the convergence

of Y n,2
t towards Y 2

t .
Set Ỹ n,2

:= Y n,2
+ K 2,+, Ũ := U + K 2,+, ξ̃2

:= ξ2
+ K 2,+

T , and F̃2(t, y, z, ℓ) :=

F2(t, y − K 2,+
t , z, ℓ), for all 0 ≤ t ≤ T , y ∈ R, z ∈ Rd , ℓ ∈ L2(λ), almost surely. Then

Ỹ n,2
t = ξ̃2

+

 T

t
F̃2(s, Ỹ n,2

s , Zn,2
s , Ln,2

s )ds − n
 T

t
(Ũs − Ỹ n,2

s )−ds

−

 T

t
Zn,2

s dWs −

 T

t


A

Ln,2
s (a)µ(ds, da),

for all 0 ≤ t ≤ T , almost surely. Note that ξ̃2 verifies the square integrability condition and F̃2

satisfies assumptions 2(i)–(iii) of Section 2. Moreover, ŨT ∈ S2 and ŨT ≥ ξ̃2, almost surely.
Now, again from Remark 3.1, we have that Ỹ n,2 converges to Ỹ 2

= Y 2
+ K 2,+, and hence Y n,2

converges to Y 2. �

Appendix B. Monotonic limit theorem for BSDEs with jumps

We state a monotonic limit theorem for BSDEs driven by the Brownian motion W and the
Poisson random measure µ. This extends the monotonic limit Theorem 3.1 in [26] to the jump
case.

Theorem B.1. Let (Y m, Zm, Lm, K m,+, K m,−)m be a sequence in S2
×L2(W)×L2(µ̃)×K2

×

K2, with K m,+ continuous, solution to:

Y m
t = ξ +

 T

t
F(s, Y m

s , Zm
s , Lm

s )ds + K m,+
T − K m,+

t − (K m,−
T − K m,−

t )

−

 T

t
Zm

s dWs −

 T

t


A

Lm
s (a)µ(ds, da), 0 ≤ t ≤ T, a.s. (B.1)

such that

sup
m∈N

Y m


S2 +
Zm


L2(W)

+
Lm


L2(µ̃)

+
K m,+


S2 +

K m,−


S2


< ∞, (B.2)

and (Y m)m converges increasingly to Y ∈ S2. Suppose also that the sequence (K m,−)m satisfies:

K m,−
t − K m,−

s ≤ K m+1,−
t − K m+1,−

s , 0 ≤ s ≤ t ≤ T, a.s., (B.3)

for all m ∈ N. Then there exists (Z , L , K +, K −) ∈ L2(W) × L2(µ̃) × K2
× K2 such that

Yt = ξ +

 T

t
F(s, Ys, Zs, Ls)ds + K +

T − K +
t − (K −

T − K −
t )

−

 T

t
ZsdWs −

 T

t


A

Ls(a)µ(ds, da), 0 ≤ t ≤ T, a.s. (B.4)

Here (Z , L) is the strong (resp. weak) limit of (Zm, Lm)m in Lp(W) × Lp(µ̃), with p ∈ [1, 2),
(resp. in L2(W) × L2(µ̃)). Furthermore, K +

t is the weak limit of (K m,+
t )m in L2(Ft ), and

(K m,−
t )m converges strongly up to K −

t in L2(Ft ), for any 0 ≤ t ≤ T .



Proof. Step 1. Limit BSDE. From the boundedness condition (B.2) and the Hilbert structure of
L2(W)×L2(µ̃)×L2(0, T), there exists a subsequence, (Zmk , Lmk , F(·, Y mk , Zmk , Lmk ))k which
converges weakly to some (Z , L , G) ∈ L2(W)×L2(µ̃)×L2(0, T). Thus, for each stopping time
τ ≤ T , the following weak convergences hold in L2(Fτ ) as k → ∞: τ

0
F(s, Y mk

s , Zmk
s , Lmk

s )ds ⇀

 τ

0
G(s)ds, τ

0
Zmk

s dWs ⇀

 τ

0
ZsdWs, τ

0


A

Lmk
s (a)µ(ds, da) ⇀

 τ

0


A

Ls(a)µ(ds, da).

From (B.3), there exists K −
∈ K2, such that K −

t is the strong limit of (K mk ,−
t )k in L2(Ft ) for

all 0 ≤ t ≤ T . In particular, K mk ,−
τ ⇀ K −

τ . Moreover, since

K mk ,+
τ = Y mk

0 − Y mk
τ + K mk ,−

τ −

 τ

0
F(s, Y mk

s , Zmk
s , Lmk

s )ds

+

 τ

0
Zmk

s dWs +

 τ

0


A

Lmk
s (a)µ(ds, da)

we also have the weak convergence in L2(Fτ )

K mk ,+
τ ⇀ K +

τ := Y0 − Yτ + K −
τ −

 τ

0
G(s)ds

+

 τ

0
ZsdWs +

 τ

0


A

Ls(a)µ(ds, da),

as k → ∞. Note that E[(K +

T )2
] < ∞ and for any two stopping times 0 ≤ σ ≤ τ ≤ T , we have

K +
σ ≤ K +

τ since K m,+
σ ≤ K m,+

τ . From this it follows that K + is an increasing process. Observe
now that we have obtained the following decomposition for Y :

Yt = Y0 −

 τ

0
G(s)ds − K +

t + K −
t +

 t

0
ZsdWs +

 t

0


A

Ls(a)µ(ds, da). (B.5)

Since the processes K mk ,+ and K mk ,− are predictable, we deduce that K + and K − are also
predictable. Besides, by Lemmas 3.1 and 3.2 of [26], K +, K − and Y are càdlàg processes. Thus,
in the above decomposition of Y in (B.5), the components Z and L are unique. As a matter of
fact, the uniqueness of Z follows by identifying the Brownian parts and finite variation parts.
The uniqueness of L is then obtained by identifying the predictable parts and by recalling that
the jumps of µ are totally inaccessible. From the uniqueness of (Z , L), it follows that the whole
sequence (Zm, Lm)m converges weakly to (Z , L) in L2(W) × L2(µ̃).

Step 2. Properties of the process K +. We establish that the contribution of the jumps of K + is
mainly concentrated within a finite number of intervals with sufficiently small total length. More
precisely, we apply Lemma 2.3 in [25] to K +. Consequently, as in Lemma 2.3 in [25], for any
δ, ε > 0, there exists a finite number of pairs of stopping times (σk, τk), k = 0, . . . , N , with
0 < σk ≤ τk ≤ T , such that all the intervals (σk, τk] are disjoint and

E
N

k=0

(τk − σk) ≥ T −
ε

2
, E

N
k=0


σk<t≤τk

|∆K +
t |

2
≤

εδ

3
. (B.6)



We should note that in [25] the filtration is Brownian, therefore it is continuous, and hence each
stopping time σk can be approximated by a sequence of announceable stopping times. In our
case the stopping times σk’s are constructed as the successive times of jumps of the predictable
process K + with size bigger than some given positive level, therefore each σk is a predictable
stopping time and the approximation of σk by announceable stopping times is again possible. We
can thus argue exactly the same way as in Lemma 2.3 in [25] to derive both estimates in (B.6).

Step 3. Strong convergence. By applying Itô’s formula to |Y m
t − Yt |

2 on a subinterval (σ, τ ],
with 0 ≤ σ ≤ τ ≤ T , two stopping times, and recalling that K m,+ is continuous, we obtain:

E
Y m

τ − Yτ

2

= E
Y m

σ − Yσ

2
+ E

 τ

σ

|Zm
s − Zs |

2ds + E
 τ

σ


A

|Lm
s (a) − Ls(a)|2λ(da)ds

+ 2E
 τ

σ

(Y m
s − Ys)


G(s) − F(s, Y m

s , Zm
s , Lm

s )

ds

+ E


t∈(σ,τ ]

|∆K +
t − ∆K −

t + ∆K m,−
t |

2

+ 2E


(σ,τ ]

(Y m
s− − Ys−)d K +

s − 2E


(σ,τ ]

(Y m
s− − Ys−)d K −

s

− 2E


(σ,τ ]

(Y m
s − Ys)d K m,+

s + 2E


(σ,τ ]

(Y m
s− − Ys−)d K m,−

s

+ 2E


(σ,τ ]


A


Y m

s − Ys)(Lm
s (a) − Ls(a))λ(da)ds. (B.7)

Now, let us write
(σ,τ ]

(Y m
s− − Ys−)d K +

s =


(σ,τ ]


Y m

s− + ∆K m,−
s − Ys− + ∆K +

t − ∆K −
s


d K +

s

−


t∈(σ,τ ]

(∆K +
t )2

+


t∈(σ,τ ]

∆K +
t ∆(K −

s − K m,−
s ),

and observe that
(σ,τ ]

(Y m
s− − Ys−)d(K −

s − K m,−
s ) ≤ 0, and


(σ,τ ]

(Y m
s − Ys)d K m,+

s ≤ 0.

Therefore, by using the inequality 2ab ≥ −2b2
− a2/2, we obtain from (B.7)

E
 τ

σ

|Zm
s − Zs |

2ds +
1
2

E
 τ

σ


A

|Lm
s (a) − Ls(a)|2λ(da)ds

≤ E
Y m

τ − Yτ

2
+ 2λ(A)E

 τ

σ

Y m
s − Ys

2ds

+ 2E
 τ

σ

Y m
s − Ys

G(s) − F(s, Y m
s , Zm

s , Lm
s )

ds

− 2E


(σ,τ ]


Y m

s− + ∆K m,−
s − Ys− + ∆K +

s − ∆K −
s


d K +

s + 2E


t∈(σ,τ ]

|∆K +
t |

2

− 2E


t∈(σ,τ ]

∆K +
t ∆(K −

s − K m,−
s ) − E


t∈(σ,τ ]

|∆K +
t − ∆K −

t + ∆K m,−
t |

2,



≤ E
Y m

τ − Yτ

2
+ 2λ(A)E

 τ

σ

Y m
s − Ys

2ds

+ 2E
 τ

σ

Y m
s − Ys

G(s) − F(s, Y m
s , Zm

s , Lm
s )

ds

− 2E


(σ,τ ]


Y m

s− + ∆K m,−
s − Ys− + ∆K +

s − ∆K −
s


d K +

s + E


t∈(σ,τ ]

|∆K +
t |

2

by using the inequality 2a2
− 2ab − (a − b)2

≤ a2. We know that the first two terms on the
right-hand side of (B.7) converge to zero as m → ∞. The third term also tends to zero since
(G(·) − F(·, Y m, Zm, Lm))m is bounded in L2(0, T), and so by Cauchy–Schwarz inequality

E
 T

0

Y m
s − Ys

 G(s) − F(s, Y m
s , Zm

s , Lm
s )

ds → 0, as m → ∞.

For the fourth term, since K m,− is predictable, the predictable projection of Y m is pY m
t =

Y m
t− + ∆K m,−

t . Similarly, from (B.5) and since K + and K − are predictable processes, we see
that pYt = Yt− − ∆K +

t + ∆K −
t . By the dominated convergence theorem, we obtain

lim
m→∞

E


(σ,τ ]


Y m

s− + ∆K m,−
s − Ys− + ∆K +

s − ∆K −
s


d K +

s = 0.

For the last term in (B.7), we exploit the results in (B.6), regarding the contribution of the jumps
of K +. More precisely, we apply estimate (B.7) for each σ = σk and τ = τk , with σk, τk defined
in Step 2, and then take the sum over k = 0, . . . , N . It follows that

N
k=0

E
 τk

σk

|Zm
s − Zs |

2ds +
1
2

N
k=0

E
 τk

σk


A

|Lm
s (a) − Ls(a)|2λ(da)ds

≤

N
k=0

E
Y m

τk
− Yτk

2
+ 2λ(A)E

 T

0

Y m
s − Ys

2ds

+ 2E
 T

0

Y m
s − Ys

 G(s) − F(s, Y m
s , Zm

s , Lm
s )

ds +

N
k=0

E


t∈(σk ,τk ]

|∆K +
t |

2

− 2
N

k=0

E


(σk ,τk ]


Y m

s− + ∆K m,−
s − Ys− + ∆K +

s − ∆K −
s


d K +

s .

From the above convergence results, we deduce that

lim sup
m→∞

 N
k=0

E
 τk

σk

|Zm
s − Zs |

2ds +
1
2

N
k=0

E
 τk

σk


A

|Lm
s (a) − Ls(a)|2λ(da)ds



≤

N
k=0

E


t∈(σk ,τk ]

|∆K +
t |

2
≤

εδ

3
.

Therefore, following the same steps as in the proof of Theorem 2.1 in [25], we deduce that
the sequences (Zm)m and (Lm)m converge in measure, respectively, to Z and L . Since they are
bounded, respectively, in L2(W) and L2(µ̃), they are uniformly integrable in Lp(W) and Lp(µ̃),
for any p ∈ [1, 2). Thus, (Zm)m and (Lm)m converge strongly to Z and L in Lp(W) and Lp(µ̃),
respectively.



By the Lipschitz condition on F , we also have the strong convergence in Lp(0, T) of (F(·,

Y m, Zm, Lm))m to F(·, Y, Z , L). Since G(·) is the weak limit of (F(·, Y m, Zm, Lm))m in
L2(0, T), we deduce that G(·) = F(·, Y, Z , L). Therefore we obtain that (Y, Z , L , K +, K −)

satisfies the BSDE (B.4). �
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