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1. Introduction

The design and implementation of effective speckle patterns on 
two-dimensional measurement surfaces are key to enhance the 
accuracy of digital image correlation (DIC), along with suitable 
displacement and strain field estimation algorithms [1,2]. The 
accuracy of DIC measurements was studied as a function of mean 
speckle size and subset size, for which desirable ranges were 
reported [3–5]. Several techniques have been used to create

speckle patterns, depending on the specimen dimensions and 
materials. Spray paint or toner powders are typically used for 
larger specimens, whereas lithography is preferred for smaller 
patterns [6]. The resulting speckle patterns are characterized by 
non-repetitiveness and high contrast between light and dark 
areas. As shown by Wang et al. [7] for translation in two planar 
directions, x and y, the form of the covariance matrix for the 
displacement vector, d, is written in Eq. (1):
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where: d is the displacement vector, (u,v), in the x and y direction, 
respectively; σI is the standard deviation in the intensity pattern 
noise (gray levels); and I¼ I(x,y) is the reconstructed deformed 
intensity pattern (gray levels). If the gradients in both directions 
are independent, then the off-diagonal term tends to zero, and the 
matrix is approximately diagonal. In this case, the standard 
deviation in each displacement component, σu and σv, can be 
written per Eq. (2):
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where “high contrast” corresponds to the summation of high 
gradients in intensity within a subset, increasing the denominator 
and reducing variability in the measured displacement. With 
maximum range between brightest and darkest regions, smooth 
transitions in intensity across the camera’s dynamic range can be 
accurately reconstructed by interpolation algorithms, offering the 
potential for high accuracy when performing subset matching with 
DIC algorithms. Thus, the gray level distribution within the speckle 
pattern can be used as a measure of the effectiveness of a speckle 
pattern [8]. Schreier et al. [9] proposed the implementa-tion of 
low-pass image filters in the pre-processing stage to produce 
blurring, either by defocusing the camera’s optics prior to image 
acquisition or by applying digital filters on the acquired image data. 
The latter option is more attractive as it allows for better control of 
the parameters selected to produce blurring. In fact, digital filters 
are commonly used in image processing. For example, Berg et al. 
[10] and Cantatore et al. [11] implemented digital filters to produce 
image blurring, thereby improving the accuracy of algorithms for 
edge detection.

The effect of digital image pre-filtering on the uncertainty in 
two-dimensional DIC measurements is discussed in this paper for 
the specific case of high-contrast speckle patterns whose particle 
shape, mean size and on-center spacing are designed for use in 
efficient patterning of large areas (“designer patterns”). This case 
represents instances where numerically-designed speckle patterns 
are applied to the measurement surface through different techni-
ques, such as using laser-printed adhesive coatings on fiber-
reinforced polymer composite coupons [12], or spray-painting 
through a flexible polymer stencil placed against the surface of 
concrete and masonry specimens [13] as demonstrated in Fig. 1. 
These solutions are especially appealing and practical for large 
regions of interest (i.e., having sides of the order of meters) on full-
scale specimens such as structural concrete and masonry walls (Fig. 
12) or portions of bridge girders, when spray-painting or using 
toner powders is less practical and may pose aliasing problems 
whereas using relatively large speckles (e.g., through time-
consuming manual painting) may result in an insufficient spatial 
resolution [13]. The resulting “designer patterns” are characterized 
by speckles with well-defined edges and consistent shape and 
spacing, making their frequency content fundamentally different 
from that of typical spray-painted patterns. In the latter case, pre-
processing image blurring can be effective in reducing the bias 
error [9,14]. However, the concurrent reduction in noise level and 
intensity pattern gradients (i.e., numerator and denominator for σu
and σv in Eq. (2), respectively) may result in a negligible change or 
even an increase in measurement uncertainty.

The methodology followed in this study employs numerical 
simulations where images are pre-processed using Gaussian low-
pass (blurring) filters [15]. First, the effect of blurring is examined 
on a numerically built speckle pattern as a function of the standard

40 mm

Fig. 1. Numerically designed speckle pattern on 2.43 � 2.49 m concrete and 
masonry wall surface: (a) spray painting through stencil; (b) close-up of 
150 � 120 mm speckle pattern area; and (c) stereo vision system setup with 
specimen ready for in-plane load test [13].

deviation of the Gaussian kernel (i.e., filter cut-off frequency). 
The resulting patterns are used to quantify the DIC measurement 
uncertainty for the case of constant, linear, quadratic and cubic 
displacement fields and the associated strain fields. The robustness 
of the simulation procedure is verified through experiments where 
a planar specimen with a “designer pattern” is subjected to 
a constant displacement. For comparison purposes, the effect of 
image blurring is also assessed on a speckle pattern that is 
representative of typical spray-painted ones [16,17] subjected to 
constant displacements. Finally, the stability of the relation 
between Gaussian standard deviation and measurement uncer-
tainty is tested via numerical simulations using different levels of



image noise representative of real-case scenarios, subset sizes, and
frequency contents in the “designer pattern”.

2. Methodology

The effect of pre-processing image blurring on DIC measure-
ment uncertainty is investigated via numerical simulations on a 
predefined speckle pattern, as recently demonstrated by Zappa et 
al. [18] for the case of dynamic applications. The methodology is 
summarized in the flow chart in Fig. 2. The simulations are 
implemented using Matlab Image Processing Toolbox (The Math-
Works, Inc., Natick, MA). A 4000 � 4000 pixel array with eight-bit 
quantization is numerically constructed and an ordinate grid of 
black circular speckles is superimposed as shown in Fig. 3(a). The 
speckles have a diameter of 45 pixel and on-center spacing of 60 
pixel along the horizontal, x, and vertical, y, directions. Then, each 
of the orthogonal coordinates, x and y, of the centroid of each 
speckle is perturbed by adding an integer displacement, thus 
avoiding image resampling. The integer value is randomly 
extracted from a uniform distribution in the 725-pixel range to 
render the high-resolution speckle pattern in Fig. 3(b).

High-resolution speckle pattern

Deformed high-resolution image

Implement anti-aliasing 
filtering and down sampling

Impose simulated 
displacement field

Reference high-resolution image

Implement anti-aliasing 
filtering and down sampling

Implement anti-aliasing 
filtering and down sampling

Deformed low-resolution imageReference low-resolution image

Gaussian blurring for
selected σ (σ = 0, 0.25 .. 2)

Deformed filtered imageReference filtered image

DIC analysis

Gaussian blurring for
selected σ (σ = 0, 0.25 .. 2)

High-resolution image
(reference or deformed)

Implement anti-aliasing 
filtering and down sampling

Filtered high-resolution image
(reference or deformed)

Gaussian blurring for
selected σ (σ = 0, 0.25 .. 2)

DIC analysis

Filtered low-resolution image
(reference or deformed)

Fig. 2. Flowchart of methodology: (a) Gaussian blurring of down-sampled (“low-
resolution”) image; and (b) modified subroutine for Gaussian blurring of high-
resolution pattern prior to down-sampling.

Fig. 3. Numerical simulation of speckle pattern: (a) high-resolution ordinate grid, 
1000 � 1000 pixel subset; (b) high-resolution speckle pattern, 1000 � 1000 pixel 
subset; and (c) low-resolution speckle pattern, 100 � 100 pixel subset.

The intensity pixel range in the resulting image is then narrowed 
from 0 to 255 (identifying speckles and background, respectively) 
to 30–225, thus following a routine practice to prevent pixel 
saturation in real-case scenarios. Fig. 3(c) shows a 100 � 100 pixel



subset of the resulting 400 � 400 pixel low-resolution speckle 
pattern, which is produced by anti-aliasing filtering and down-
sampling by ten times the original high-resolution speckle pattern 
in Fig. 3(b). A window-based finite impulse response (FIR) low-pass 
filter is used for the anti-aliasing filtering of the high-resolution 
images before down-sampling, where the cut-off frequency is a 
function of the scaling factor. This operation aims at removing 
frequency content that could be aliased in the low-resolution 
images [17]. Quantization noise is introduced by the eight-bit 
image representation. In the low-resolution speckle pattern, the 
speckles have a diameter of 4.5 pixel and an average on-center 
spacing of 6 pixel. The resulting coverage factor (i.e., percentage of 
dark pixels in the image) is 42%, which lies within the desirable 40–
70% range to minimize measurement uncertainty [19].

The derivation of low-resolution images by down-sampling 
their high-resolution counterparts is pursuant to mimicking real-
case scenarios. A similar approach, where numerical binning was 
implemented in lieu of low-pass anti-aliasing filtering, was enlisted 
by Reu [17] to quantify the errors in DIC when simulating a rigid 
target shift (i.e., zero strain). Any deformations may be

imposed on a given high-resolution image, which simulates an 
actual DIC measurement area, while the associated down-sampled 
low-resolution image simulates the image acquired using a digital 
camera. This procedure does not require arbitrary interpolation of 
the final image, which would be necessary when simulating sub-
pixel displacements and deformations directly in the final image. In 
this study, pre-defined displacement and strain fields are imposed 
on the high-resolution speckle pattern. For the case of simulated 
rigid motion (constant displacement), the imposed integer 
displacements in the high-resolution images result in sub-pixel 
displacements in the low-resolution images [17]. Con-versely, 
when a variable displacement field is imposed in order to simulate 
strains, then bicubic image re-sampling of the high-resolution 
images is implemented [20]. The effect of Gaussian filtering of the 
reference and deformed low-resolution images is studied through a 
parametric analysis of the standard deviation of the Gaussian 
kernel vis-à-vis DIC measurement uncertainty. In particular, 
filtering is applied to: (a) down-sampled images following the 
methodology in Fig. 2(a) and (b) high-resolution images prior to 
down-sampling to assess the effect of the order of the blurring 
operation following the methodology in Fig. 2(b).

Fig. 4. Blurring effect of Gaussian filter on low-resolution speckle pattern (30�30 pixel subset) for different standard deviations, σ, and associated image spectra.



Gaussian filters are two-dimensional filters [15] that are often used 
for image processing purposes. The impulse response of Gaussian 
filters is the well-known bell-shaped function whose smoothness 
enables the minimization of ringing, while binomial filtering 
enables the definition of computationally efficient Gaus-sian filters 
for Weierstrass transform [21]. In the (x,y) spatial domain, the 
convolution matrix of Gaussian filters is rendered as a zero-mean 
Gaussian function described by Eq. (3):

Gðx; yÞ ¼ 1
2πσ2

e
� x2 þ y2

2σ2

� �
ð3Þ

where σ denotes the standard deviation of the Gaussian “bell”. In 
the frequency domain, different standard deviations of the Gaus-
sian kernel describe a family of filters with different cut-off 
frequencies.

The Gaussian standard deviation, σ, used in this parametric study 
ranges from 0 to 2 pixel when applied to down-sampled images 
(Fig. 2(a)), and from 0 to 20 pixel when applied to the original (10 � 
) high-resolution images (Fig. 2(b)). A zero σ indi-cates the absence 
of filters, and increasing values are associated with filters that 
produce more blurring. For a given σ, the filter is applied to the 
image matrices through their convolution with the Gaussian kernel. 
The effect of blurring of down-sampled images is illustrated in Fig. 4 
for 30 � 30 pixel portions of the reference 400 � 400 pixel images. 
The image spectral amplitudes are shown together with the 
superimposed |FFT| amplitude profile along the x direction, and the 
mean value of the spectra is set to zero to facilitate graphical 
representation; similar trends are obtained when blurring and then 
down-sampling the high resolution images. In Fig. 4, the peak 
amplitude is associated with a frequency that corresponds to the 
average spacing of the speckles. It is noted that the main frequency 
content lies in the fx range below the main peak, and the effect of 
moderate blurring (σr1 pixel) is to minimize the high-frequency 
contributions to the right of the peak while slightly reducing the 
amplitude of the low-frequency content. The magnitude of the 
frequency response function, |FRF|, for different Gaussian standard 
deviations is shown in Fig. 5; by  filtering using σr1 pixel, it is 
shown that the higher frequencies are reduced without noticeable 
perturbations in the main range, whereas further increases in 
blurring results in the progressive attenuation of the main 
frequency content.

The DIC analysis of the filtered images is performed using the 
software Vic-2D 2009 (Correlated Solutions, Inc., Columbia, SC). 
A 15� 15 pixel subset size and step of 5 pixel are considered. The 
subset size was selected to provide a nominally isotropic and 
homogeneous random pattern. An eight-tap optimized interpola-
tion method is implemented. A zero-normalized sum of squared 
difference correlation criterion is selected to compensate for the 
scaling and offset in the intensity pattern, thus mimicking real-case 
applications. A 5 � 5 subset decay kernel matrix is used to derive 
strain values [6].

3. Effect of image filter pre-processing

The results for the following cases are presented and discussed
separately: (a) constant horizontal (along x) displacement and zero 
strain; and (b) higher-order (linear, quadratic and cubic) displace-
ment functions with non-zero horizontal strain fields (zero vertical 
strain is imposed). In particular, the simulation of cubic 
displacement fields aims at testing the filters when the subset 
matching cannot be exact, since the DIC software used implements 
a second-order matching shape function [6].

3.1. Constant displacement

3.1.1. Gaussian filtering of down-sampled images
The reference high-resolution image is subjected to a constant 

horizontal displacement from 0 to 10 pixel in 1 pixel steps, thereby 
obtaining 11 images. The derived low-resolution (400 � 400 pixel) 
images having a displacement range from 0 to 1 pixel in 0.1 pixel 
steps are then filtered. The effect of image filtering on the bias error 
of DIC measurements is illustrated in Fig. 6(a). Here, the mean 
difference (error) between the displacement measured using 
Vic-2D 2009, uDIC,ij, and the numerically imposed displace-ment, 
uIMP,ij, is presented as a function of the imposed displace-ment for 
representative values of the Gaussian standard deviation, σ, and is 
computed per Eq. (4)

Eu ¼
∑
NR

i ¼ 1
∑
NC

j ¼ 1
ðuDIC;ij�uIMP;ijÞ

NRNC
ð4Þ

where NR and NC indicate the number of rows and columns of the 
displacement matrix, respectively, and uIMP,ij is constant for any i 
and j as a constant displacement is imposed to the entire image. 
When the images are unfiltered (σ¼0 pixel), the typical trend of the 
interpolation bias is noted where the error function Eu has a 
sinusoidal shape in the sub-pixel displacement range, and reduces 
to zero at half pixel and at integer pixel values [7]. The maximum 
bias error is reduced by more than half when a filter with a standard 
deviation σ of 0.5 pixel is applied. Further increases in σ result in the 
progressive reduction in bias to near-zero values throughout the 
entire sub-pixel displacement range, thus indicat-ing that filtering 
enables the minimization of the average sub-pixel interpolation bias 
for pure translation cases. It is emphasized that zero Eu indicates 
only that the measured displacement values are distributed 
randomly around those of the imposed displacements (without a 
systematic bias on the measurement mean).

Fig. 6(b) presents the data dispersion (i.e., measurement 
uncertainty without bias contribution), which is given by the 
standard deviation of the measured displacements, STDEu, as a 
function of the imposed displacement for representative values of σ. 
STDEu is computed per Eq. (5):.

STDEu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
NR

i ¼ 1
∑
NC

j ¼ 1
ðuDIC;ij�uDICÞ2

NRNC

vuuuut ð5Þ

where uDIC is the average measured displacement. It is noted that 
image blurring produces a minimization of the data dispersion for 
Gaussian standard deviations in the range 0.5–1 pixel.

The maximum amplitude of the bias error is strongly depen-
dent on the test conditions, especially image noise and speckle 
pattern [17], and is difficult to estimate. In addition, in actual 
physical tests, the data variability is typically much larger than the 
bias effect, whose trend becomes evident only when averaging the 
displacements measured on multiple subsets subjected to the same 
displacement. As a result, the bias error on the displace-ment 
measured on a single subset cannot be precisely quantified

σ

σ

σ

σ
σ

σ

Fig. 5. Magnitude of frequency response function of Gaussian filters.



(and thus compensated for) and contributes to the measurement 
uncertainty. Therefore, the effect of image filtering on the DIC 
measurement uncertainty, where the contribution of both of bias 
and variability are included, is determined based on the root mean 
squared error, RMSEu, which is computed per Eq. (6)

RMSEu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
NR

i ¼ 1
∑
NC

j ¼ 1
ðuDIC;ij�uIMP;ijÞ2

NRNC

vuuuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eu

2þSTDEu
2

q
ð6Þ

The measurement uncertainty of a calibrated (i.e., with no bias) 
transducer is defined as the standard deviation of repeated 
measurement data [22]. For the purpose of this study, the effect of 
bias is incorporated in Eq. (6), where the squared difference 
between measured and imposed values is used in lieu of that 
between mean and measured values.

The effect of image filtering on the uncertainty of DIC measure-
ments is illustrated in Fig. 6(c), where RMSEu is presented as a 
function of the imposed displacement for representative values of 
σ. The zero RMSEu value in correspondence with integer pixel 
values (0, 1) of the imposed displacement reflects the fact that no 
noise is introduced in the simulated images. A similar trend is 
noted for σ¼0, 0.5 and 1 pixel, where the uncertainty is symme-
trically distributed in a quasi-parabolic fashion with respect to its 
maximum value at a displacement of 0.5 pixel, and decreases at 
increasing levels of blurring. For larger values of σ (up to 2 pixel), 
the maximum uncertainty increases and remains nearly constant 
in the entire sub-pixel range. Therefore, for the case of constant 
displacements, the DIC measurement uncertainty is minimized 
when applying a Gaussian pre-processing image filter with a 
standard deviation (and associated cut-off frequency) near 1 pixel, 
whereas a higher uncertainty is attained with less or more blurring 
filters. This finding is illustrated in Fig. 7(a), where the mean RMSEu
for each RMSEu curve for a given value of the Gaussian standard 
deviation, σ, is plotted as a function of the associated σ to 
conveniently show the relation between measure-ment 
uncertainty and image blurring. Through the application of a 
blurring filter with σ¼1 pixel, the mean RMSEu is reduced by 77%

with respect to that of the unfiltered set of images (σ¼0 pixel). 
Similar results are obtained for standard deviations in the indica-
tive range 0.75–1.25 pixel, with a higher rate of increase in 
uncertainty for values below 0.75 pixel and above 1.25 pixel. 
Therefore, the effect of image blurring on the intensity pattern 
noise and image gradients (i.e., the numerator and denominator in 
Eq. (2), respectively) is such that the measurement uncertainty is 
minimized for σ in the range 0.75–1.25 pixel when using down-
sampled images with the speckle pattern in Fig. 3(b) and (c).

The relation between measurement uncertainty and σ is 
illustrated in Fig. 7(b), where the mean root mean squared error, 
RMSEε, for each curve of horizontal strain measured for a given σ is 
plotted as a function of the associated σ, with RMSEε for a given 
displacement being computed per Eq. (7)

RMSEε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
NR

i ¼ 1
∑
NC

j ¼ 1
ðεDIC;ij�εIMP;ijÞ2

NRNC

vuuuut ð7Þ

where the notation is similar to that of Eq. (6) and εIMP,ij ¼0 for any 
i and j when a zero strain is imposed to the entire image. The trend 
of mean RMSEε in Fig. 7(b) is similar to that of the mean RMSEu in 
Fig. 7(a), which is expected since the strain values, ε(x), are given as 
partial derivatives of the associated displacement functions, ∂u(x)/
∂x.

3.1.2. Gaussian filtering of high-resolution images before
down-sampling

Following the procedure in Fig. 2(b), Gaussian filtering was 
applied on the high-resolution images prior to down-sampling to 
assess the effect of the order of the blurring operation in 
comparison to Figs. 6 and 7. The bias error, Eu, data dispersion as 
the standard deviation of the measured displacements, STDEu, and 
measurement uncertainty as the root mean squared standard error 
(RMSEu) for translations between 0 and 1 pixel are presented for 
0rσr2 pixel in Fig. 8. In  Fig. 9, the relation between measure-
ment uncertainty and image blurring is illustrated by plotting the 
mean RMSEu for each RMSEu curve for a given value of the Gaussian 
standard deviation, σ, as a function of the associated σ.

σ

σ
σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

Fig. 6. Effect of Gaussian blurring (0rσr2 pixel) of down-sampled images on measurement bias, standard deviation, and uncertainty for constant displacement:
(a) Eu, (b) STDEu, and (c) RMSEu as function of imposed sub-pixel displacement.



The comparison of Fig. 7(a) with Fig. 9 shows similar trends in the 
mean RMSEu, with the main difference being a lower minimum 
error at a lower Gaussian filter size (0.00074 for σ¼0.75 pixel as 
opposed to 0.0015 for σ¼1 pixel) when applying the Gaussian filter 
to the high-resolution images.

3.2. Experimental verification of simulation procedure

Experiments for the case of constant displacement fields were 
performed to verify the robustness of the simulation procedure. 
The speckle pattern in Fig. 3(b) was printed and affixed onto the 
smooth surface of a rigid plate. The plate was attached to a 
coordinate measuring machine (CMM). The 160 � 160 mm pattern 
was framed by the 400 � 400 pixel sub-area of a digital camera 
with resolution of 640 � 480 pixel (Prosilica GE680, Allied Vision 
Technologies GmbH, Stadtroda, Germany) and lens with a nominal 
focal length of 8 mm. The distance between the image plane and 
the speckle pattern was tuned to yield a conversion factor of 
approximately 2.5 pixel/mm. The actual value was estimated via 
camera calibration. Constant horizontal displacements from 0 to 1 
pixel were imposed with 0.1 pixel steps, with a CMM displace-
ment uncertainty of 2 μm (i.e., 0.005 pixel). The images acquired 
were pre-filtered using different σ values, and then analyzed using 
a 15� 15 pixel subset size and step of 5 pixel.
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σ = 0.5 px

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

0 0.2 0.4 0.6 0.8 1

E u
  [

px
]

σ = 0.0 px

σ = 2.0 px

σ = 1.0 px

Sub-pixel displacement  [px]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0 0.2 0.4 0.6 0.8 1
Sub-pixel displacement  [px]

ST
D

E
u  

[p
x]

σ = 0.0 px

σ = 0.5 px

σ = 2.0 px

σ = 1.0 px

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0 0.2 0.4 0.6 0.8 1
Sub-pixel displacement  [px]

R
M

SE
u  

[p
x]

σ = 0.0 px

σ = 2.0 px

σ = 0.5 pxσ = 1.0 px

Fig. 8. Effect of Gaussian blurring (0rσr2 pixel) of high-resolution images (followed by down-sampling) on measurement bias, standard deviation, and uncertainty for
constant displacement: (a) Eu, (b) STDEu, and (c) RMSEu as function of imposed sub-pixel displacement.

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007

0 0.5 1 1.5 2
σ  [px]

M
ea

n 
R

M
SE

u  
[p

x]

Fig. 9. Relation between measurement uncertainty and Gaussian blurring of high-
resolution images (followed by down-sampling) for constant displacement: mean 
value of RMSEu for 0rσr2 pixel.

As shown in Fig. 6(a) and Fig. 8(a), the correct bias error form is 
recovered when no blurring occurs. However, when blurring the 
high-resolution image, a negligible bias is obtained for all σ values, 
which is an improvement with respect to the application of 
Gaussian filters on the down-sampled images. Comparison of Fig. 
6(b) with Fig. 8(b) and of Fig. 6(c) with Fig. 8(c) indicate that the 
results are similar in both cases, with the main difference being a 
nearly uniform error metric from 0.1 to 0.9 pixel of translation 
when applying the Gaussian filter to the high-resolution images.



It is noted that the position of the camera was assessed using a 
pose-estimation algorithm [23] to verify that the optical axis was 
perpendicular to the object surface, thus ensuring uniformity of the 
resultant displacement fields. To this end, a row of regularly spaced 
dark blobs was printed in known positions along the margin of the 
patterned area. By analyzing the position of the blobs in the 
acquired images, the relative three-dimensional position and 
orientation of the camera was estimated accurately and in real time, 
and the latter was corrected as needed. Possible effects of radial 
distortion of the lens were not compensated. In fact, the maximum 
imposed displacement of 1 pixel was reasonably expected to result 
in a negligible apparent strain. In addition, compensation of lens 
distor-tion effects entails a local approximation and resampling of 
the images, which may result in a loss of high-order brightness 
components that are of interest when studying Gaussian blurring. A 
mid-frequency discrete cosine transform (MF-DCT) algorithm [24] 
was used to verify and maximize the camera focus during the 
preparation of the experimental setup.

The effect of image filtering on the discrepancy between DIC 
measurements is illustrated in Fig. 10(a), where the mean dis-
crepancy, Du, between the measured displacement and that 
imposed by the CMM is presented as a function of the latter for 
representative values of σ. The mean discrepancy is computed

similar to Eu per Eq. (4), where the CMM displacements are used in 
lieu of the numerically imposed displacements. The results are in 
reasonable agreement with those from the numerical simulations 
in Fig. 6(a) both in terms of sub-pixel (sinusoidal) trend and 
decrease in bias error at increasing σ. The inevitably larger absolute 
values, and in particular the irregular trends for CMM 
displacements ranging between 0.7 and 1 pixel, are reasonably 
attributed to variable accidental vibrations of the camera and its 
unisolated support, along with the uncertainty of the movements 
imposed through the CMM.

The effect of image filtering on the standard deviation dis-
crepancy of the measured displacement, STDDu, is illustrated in Fig. 
10(b), where STDDu is presented as a function of the CMM 
displacement for representative values of σ. It is noted that image 
blurring minimizes the random component of the discrepancy 
(STDDu) for Gaussian standard deviations in the range 0.5–1 pixel 
when using the “designer pattern” in Fig. 3(b) and (c), consistent 
with the results of the numerical simulation in Fig. 6(b).

Finally, the measurement uncertainty is evaluated based on 
the root mean squared displacement discrepancy, RMSDu, which 
is computed by combining in quadrature Du and STDDu (similar 
to Eq. (6) for RMSEu, Eu and STDEu). RMSDu is presented in 
Fig. 10(c) as a function of the displacement for representative
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values of σ. The uncertainty is zero at zero CMM displacement as 
the reference image is compared with itself. For non-zero dis-
placements, the uncertainty is minimized by applying a filter with 
standard deviation near 1 pixel, consistent with the simulation 
results in Fig. 6(b). It is important to note that both the bias error 
and random component of the measured displacements can be 
reduced through image blurring, contributing to the minimization 
of measurement uncertainty when using “designer patterns” as in 
Fig. 3(b) and (c). The experimental verification is concluded by 
assessing the mean RMSDu and mean root mean squared strain 
discrepancy, RMSDε, vis-à-vis the Gaussian standard deviation, σ, as 
illustrated in Fig. 11(a) and (b), respectively. The RMSDε values are 
computed similar to RMSEε per Eq. (7), where the CMM strains are 
used in lieu of the imposed strains. Measurement uncertainty is 
minimized using Gaussian filters with σ in the range 0.75–1.25 
pixel, and increases with lower or higher levels of blurring. The 
results show a similar trend compared with the numerical 
simulations in Fig. 7(a) and (b), where the reduced effectiveness of 
filtering can be reasonably attributed to experimental factors such 
as vibrations and slight blurring induced by the optical elements.

3.3. Case of speckle pattern without well-defined particles

For comparison purposes, the effect of image blurring is 
assessed herein for a speckle pattern without well-defined parti-
cles, thus resulting in frequency spectra characterized by near-zero 
peaks, under constant displacements. The image set “High Contrast
—Subpixel Shift in X and Y Experimental Images” with the speckle 
pattern shown in Fig. 12 was selected from the open-access “Digital 
Image Correlation Challenge” dataset [16]. This speckle pattern is 
representative of typical spray-painted ones and is fundamentally 
different from the “designer patterns” in Fig. 1 (b) and Fig. 3(b) and 
(c), whose frequency contents include more well-defined regions of 
non-zero content with non-zero peaks (Fig. 4). The image set was 
obtained by Reu [17] and includes images with shifts ranging from 
0 to 1 pixel in 0.1 pixel steps.

The blurring effect is illustrated in Fig. 13 for a 30 � 30 pixel 
subset, where the image spectral amplitudes are shown together 
with the superimposed |FFT| amplitude profile along the x direc-
tion, and the mean value of the spectra is set to zero. It is noted that 
no appreciable changes in the non-zero frequency range and 
frequency peak are produced for σ up to 1 pixel. Conversely, for the 
representative “designer pattern” in Fig. 3(b) and (c), filtering with 
σ in the range 0.75–1 pixel results in images with similar contrast 
to that of the unfiltered “Digital Image Correlation Challenge” 
images as noted by comparing Fig. 4 with Fig. 13, but with a 
narrower non-zero frequency range and well-defined speckles as 
indicated by the reduced spectral peak at a spatial frequency fx
�1/6 pixel�1, clearly indicating a 6 pixel mean particle spacing (Fig. 
4). As a result, limited blurring of well-defined edges produces 
images that maintain a good contrast and can be

Fig. 12. Sample image of surface with speckle pattern without well-defined particle 
size [16,17].
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Fig. 13. Blurring effect of Gaussian filter on DIC Challenge speckle pattern (30 � 30 
pixel subset) [16,17] for different standard deviations, σ, and associated image 
spectra.

matched more accurately, as demonstrated via numerical simula-
tions (Figs. 6 and Fig. 8) and verified experimentally (Fig. 10).

For the speckle pattern without well-defined particles shown in 
Fig. 12 [16,17], the effect of image blurring on bias, standard 
deviation, and uncertainty for constant-displacement DIC mea-
surements are illustrated in Fig. 14(a), Fig. 14(b) and (c), respec-
tively. A moderate Gaussian filtering (σ¼0.75–1 pixel) produces a 
decrease in bias error, consistent with the findings of Schreier et al.
[8] and more recently Pan [14]. However, the effect on the intensity 
pattern noise level and gradients (Eq. (2)) is such that both 
standard deviation error and measurement uncertainty increase, 
albeit marginally. As noted by Wang [7], the measure-ment bias in 
DIC displacement data is composed of two parts:(a) noise-induced 
bias, which is a multiplicative combina-tion of interpolation 
inaccuracy and intensity pattern noise; and (b) interpolation 
induced bias. As shown in Fig. 14(a), when no blurring is present 
the well-known sinusoidal variation observed by Schreier et al. [9] 
and Pan [14] is noted. This trend is consistent with cases where the 
noise-induced bias is relatively small and the interpolation bias 
term is dominant. When blurring is present, there is a clear 
reduction in bias and a virtual elimina-tion of the sinusoidal trend, 
with a minimum occurring for σ in the range 0.75–1 pixel. Such a 
reduction can be qualitatively



understood by the fact that the Gaussian filters smooth intensity 
transitions so that interpolation is more accurate in representing 
the intensity variations between pixels. A more detailed discussion 
is presented in Section 4 of this paper. Finally, it is noted that such 
trends should be qualitatively similar for both “designer patterns” 
and spray-painted patterns having similar spatial variability in 
speckle size, a fact that is confirmed by directly comparing Fig. 8 (a) 
and Fig. 14(a).

3.4. Higher-order displacement fields

The horizontal displacement and strain field functions are 
expressed via Eq. (8) through Eq. (10):

uðxÞ ¼ εmaxx; εðxÞ ¼ εmax ð8Þ
for the case of linear displacement and constant strain,

uðxÞ ¼ εmax

2L
x2; εðxÞ ¼ εmax

L
x ð9Þ

for the case of quadratic displacement and linear strain, and

uðxÞ ¼ εmax

3L2
x3; εðxÞ ¼ εmax

L2
x2 ð10Þ

for the case of cubic displacement and quadratic strain, where L is
the length of the low-resolution image in the horizontal (x)
direction (400 pixel), and εmax is the maximum horizontal strain
imposed. For brevity, only numerical simulation results for max-
imum tensile strains between 250 and 20,000 mε are presented.
However, it is noted that similar results were attained for com-
pression strain fields with maximum compression strain between
�250 and �20,000 mε. These |εmax| values cover a relevant range
for representative structural materials subjected to service and
ultimate stress levels, such as concrete and masonry (ultimate
tensile strain �102 mε, ultimate compression strain �103 mε), steel
and aluminum (tensile yield strain �103 mε), and fiber reinforced
polymer composites (ultimate tensile strain �104 mε).

3.4.1. Linear displacement fields
The horizontal strain imposed is constant (i.e., εmax¼ε) and the

DIC strain measurement uncertainty is uniformly distributed in

the horizontal direction. For ε in the range 250–20,000 mε, Fig. 15 
presents the (mean) RMSEε per Eq. (7) for all 15 � 15 pixel subsets 
and for each constant strain profile measured for a given σ, plotted 
as a function of the associated σ. Similar to the case of constant 
displacement in Fig. 7(b), the uncertainty rapidly decreases as 
blurring filters are applied, and is minimized σ in the range 0.75–
1.25 pixel. The lower bound (σ¼0.75 pixel) is more effective at 
smaller strains (εo1000 mε). For linear displacement fields with 
strain �102–103 με (up to ε¼4000 mε for the data presented), the 
uncertainty increases for σ41.25 pixel and tends to converge to 
similar values irrespective of the deformation imposed and level of 
blurring, as illustrated in Fig. 15(a). Fig. 15(b) shows that for larger 
strains (ε¼20,000 mε for the data presented) Gaussian blurring with 
σ in the range 0.75–1.25 pixel results in a decrease in measurement 
uncertainty, albeit not as large as for ε �103 mε, whereas a higher 
level of blurring marginally increases the uncertainty. This result 
suggests that the contribution of Gaussian filtering to reducing the 
uncertainty in the sub-pixel range is predominant compared with 
that in larger ranges associated with larger deformations, that is, 
the uncertainty reduction in the sub-pixel range has a smaller 
impact on the RMSEε values in Fig. 15(b) compared with Fig. 15(a).

3.4.2. Quadratic and cubic displacement fields
For the case of quadratic, cubic and higher-order displacement 

fields, the uncertainty of horizontal strain measurements using 
unfiltered images is a function of the imposed strain, and thus 
varies along the x direction. To facilitate the graphical representa-
tion of the uncertainty as a function of the coordinate in the 
domain 0rxr400 pixel, and for displacement fields with differ-
ent maximum strain, the parameter RMSEε(x) is introduced in Eq. 
(11):

RMSEεðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
NC

j ¼ 1
ðεDIC;j�εIMP;jÞ2

NC

vuuuut ð11Þ

where, compared with Eq. (7), the DIC computations are performed 
only along the vertical (y) direction  for  1rjrNC (i.e., considering
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the columns of the displacement matrix), thus rendering RMSEε as a 
function of x, which  in  Eq. (7) is associated with the index i.

For the case of quadratic displacement and linear strain with 
different εmax, the function RMSEε(x) is presented for a represen-
tative unfiltered (σ¼0 pixel) and filtered (σ¼1 pixel) set of images 
in Fig. 16. The outermost 34 pixel portions of the x domain having a 
length L¼400 pixel are neglected to eliminate boundary effects. 
The uncertainty of DIC measurements using unfiltered images 
varies with the strain imposed and exhibits an increasing trend as x 
increases toward more deformed areas, as shown for 
250rεmaxr4000 με and εmax¼20,000 με in Fig. 16(a) and (c), 
respectively. For linear strain fields with εmax �102–103 mε (up to 
4000 mε for the data presented), Fig. 16(b) shows that image 
filtering enables to significantly reduce the uncertainty. For exam-
ple, for εmax¼4000 με, the maximum uncertainty is reduced from 
228 με at x¼319 pixel to 51 με at x¼364 pixel. For linear strain 
fields with εmax �104 με (20,000 mε for the data presented), Fig. 
16(c) shows that Gaussian filtering becomes less effective in more 
deformed areas (x4150 pixel). However, filtering enables to 
essentially eliminate the negative influence of the sub-pixel 
interpolation bias by reducing the RMSEε(x) function from a 
sinusoidal shape (σ¼0 pixel) to a more regular and desirable

shape (σ¼1 pixel). These findings are consistent with those for the 
case of cubic displacement and quadratic strain fields, as illustrated 
for 250rεmaxr4000 με using an unfiltered (σ¼0 pixel) and a 
filtered (σ¼1 pixel) set of images in Fig. 17(a) and (b), respectively, 
and for εmax¼20,000 με in Fig. 17(c).

4. Interpretation of results

The parametric study presented in Section 3 shows that pre-
processing image blurring by means of Gaussian filters with a well-
defined range of standard deviations (approximately 0.75–1.25 
pixel) results in the overall reduction in DIC measurement errors, 
irrespective of the degree of the polynomial displacement and 
strain functions, when using “designer patterns” having well-
defined speckles similar to those in Fig. 1(b) and Fig. 3(b) and (c). 
For strain fields with εmax �103 mε, a significant decrease in 
uncertainty is attained as deformations increase. This finding is of 
practical significance since such levels for εmax are associated with 
critical deformations under service or ultimate stresses for 
numerous structural materials. For larger maximum strains (εmax 

�104 με), the reduction in uncertainty is essentially limited to that
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attributed to the sub-pixel interpolation bias, which notably affects 
DIC measurements. This finding again is of practical significance 
since at such level of εmax accurate local measure-ments can hardly 
be obtained with more conventional means. such as strain gauges 
and extensometers.

The fact that the range of standard deviations where Gaussian 
filtering is most effective is largely independent of the displace-
ment and strain functions suggests that this range is primarily 
dependent on the DIC algorithms. In particular, for a given range of 
subset sizes, the bias component of the displacement estimation 
error is strongly related to the intensity interpolation method as 
long as the subset size is chosen sufficiently large to provide a 
nominally isotropic and homogeneous random pattern [25]. In 
fact, unfiltered images are characterized by steep transients 
between dark speckles and light background with associated high-
frequency content in the image spectra (Fig. 4), which cannot be 
closely represented by the polynomial interpolation of the intensity 
pattern that follows the subset deformation according to a given 
shape function. When these contributions are not filtered, they 
produce an aliasing effect on the subset interpolation. Filtering 
becomes effective when the spectral portion having a higher 
frequency content than that of the interpolation function is 
minimized, whereas more blurring may result in the loss of 
frequency content that can be effectively described by the 
interpolation function, thereby increasing the measurement 
uncertainty.

The comparison of the auto-correlation functions of the bright-
ness profile for a representative unfiltered (σ¼0 pixel) and filtered 
(σ¼1 pixel) high-resolution image, which are plotted in Fig. 18, 
provides a mathematical explanation of why the high-frequency 
information contained in the brightness profile of the speckle 
pattern in Fig. 3(b) and (c) cannot be accurately approximated by the 
polynomial interpolation function used in the DIC analysis, unless 
Gaussian blobs are used in lieu of speckles with well-defined edges. 
In fact, in the case of the unfiltered image, the discontinuity of the 
auto-correlation function at the origin (shift¼0 pixel) indicates that 
the image is characterized by a non-differentiable brightness profile, 
thus preventing an efficient approximation via polynomial 
interpolation. Conversely, the
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high-resolution image with speckle pattern in Fig. 3(b). Note that σ¼10 pixel is 
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brightness profile of the filtered image is differentiable as indi-
cated by the parabolic maximum at the origin, thus facilitating an 
efficient polynomial approximation. It is concluded that an appro-
priate interpolation procedure for subset matching can be devised, 
provided that the images are moderately blurred when using a 
high-contrast speckle pattern with well-defined speckles and size 
(resulting in relatively high-frequency components as shown in Fig. 
4). Commonly used spray-painted speckle patterns are more 
suitable for polynomial interpolation [9]. Here, moderate image 
blurring does not alter the near-zero frequency peak nor narrow 
the non-zero frequency range (Fig. 13), while tending to minimize 
sinusoidal bias error trends [9,14] and modestly reduce DIC 
measurement uncertainty (Fig. 14).

In regard to the influence of Gaussian filtering on the random 
component of the estimated displacement error, two opposite 
effects are concurrently present, namely: (1) a decrease in inten-
sity pattern noise, which results in a reduction of the numerator of 
Eq. (2), with a beneficial effect in reducing uncertainty; and (2) a 
decrease in the brightness matrix gradients, which results in a 
reduction of the denominator of Eq. (2), thus contributing to 
increasing the uncertainty. The combined effect is a reduction of 
the random component of the error for “designer patterns”,



whereas for typical spray-painted speckle patterns Gaussian
blurring is only beneficial in reducing bias errors.

5. Stability of effect of image filter pre-processing

Following the methodology in Fig. 2(a) used for the numerical 
study presented, numerical simulations are performed for the 
representative case of linear displacement and constant strain 
(1000, 4000 and 20,000 mε) fields. Here, the effects of image 
intensity pattern noise (which is always present in actual mea-
surements), subset size, and frequency content are evaluated. The 
strain measurement uncertainty is quantified by means of RMSEε in 
Eq. (7) accounting for all 15 � 15 pixel subsets for each constant 
strain profile measured for a given σ, similar to Fig. 15.

5.1. Influence of image noise

In all imaging systems, a random amount of uncorrelated noise 
is present in the camera output analog signal for a given pixel. The 
influence of noise can be minimized by averaging multiple images, 
which must be taken while no additional deformations are 
imposed. Random noise is simulated by means of the percent

ΔI

additive noise [7], Γ, defined in Eq. (12):
s

Γ ¼ 100% ð12Þ

For a predefined value of Γ, s is the standard deviation of a normal 
distribution from which a random amount is extracted and added to 
each pixel, and ΔI is the image intensity pixel range (equal to 225-30 
for this study). The simulated Γ ranges from 0% (no noise) to 5%, where 
0.5% is a reasonable value for a typical camera. Representative RMSEε
values are plotted for different noise levels as a function of the 
Gaussian standard deviation for a constant strain ε of 1000, 4000 and 
20,000 mε in Fig. 19(a)–(c), respectively. At relatively low noise levels 
(Γ¼0.5–1%) the range of σ at which uncertainty is minimized is not 
affected. At relatively high noise levels (Γ¼5%) the influence of noise is 
predominant and Gaussian blurring becomes ineffective.

5.2. Influence of subset size

The low-resolution images from the constant strain simulation 
are analyzed with different subset sizes: 9 � 9, 15 � 15, 33 � 33 and 
63 � 63 pixel, which is reasonably considered a large subset [26]. 
The overlap is set to one third of the subset size. It is noted that by 
changing the subset size, its influence on the effect of image
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Fig. 20. Influence of subset size for constant strain fields: RMSEε as function of σ for
(a) ε¼1000, (b) 4000, and (c) 20,000 με for 9�9, 15�15, 33�33 and 63�63 pixel
subset size.



blurring is inevitably assessed at varying spatial resolutions of the 
DIC measurements.

Representative RMSEε values are plotted for different subset 
sizes as a function of σ, for a constant strain ε of 1000, 4000 and 
20,000 mε, in Fig. 20(a)–(c), respectively. Results show that subset 
size does not affect the range of standard deviations at which 
uncertainty is minimized. The sensitivity to relatively large levels of 
blurring decreases with increasing subset size. However, an 
increase in subset size negatively affects spatial resolution, 
prompting the need to compromise between uncertainty and 
resolution when designing a DIC setup. It is also noted that as the 
strain increases the images are more affected by digital (resampling 
and quantization) noise introduced through the strain computation 
procedure. As a result, the effect of image blurring is muted under 
larger strains, as confirmed in Fig. 20(c) for εmax¼20,000 mε.

5.3. Influence of frequency content of speckle pattern

Constant strain fields and DIC measurements are simulated on low-
resolution images for each of the four speckle patterns in

Fig. 21. Different frequency contents are rendered by varying the 
speckle diameter, D (between 2 and 8 pixel), and the average on-
center spacing between adjacent speckles, d (between 3 and 12 
pixel). It is noted that the case D¼2 pixel corresponds to a 
minimally sampled speckle where errors are generally expected to 
be higher. All remaining cases have D44 pixel, which is an 
appropriately oversampled condition [6,9]. Representative RMSEε 

values are plotted for different values of speckle size, D, and 
spacing, d, as a function of σ, for a constant strain ε of 1000, 4000 
and 20,000 mε in Fig. 22(a)–(c), respectively. When using unfiltered 
images (σ¼0 pixel), smaller speckles and distances (D¼2 pixel, 
d¼3 pixel) allow to better reduce the uncertainty. However, 
Gaussian filtering results in better uncertainty reduction for larger 
speckle sizes and distances, with no significant increase for 
stronger Gaussian blurs. The range of standard deviations at which 
uncertainty is minimized does not change irrespective of the 
frequency content. In fact, effective blurring affects the areas of 
steep transition between speckles (of any size and spacing) and 
background, which are associated with high-frequency compo-
nents and provide a negligible contribution to the low-frequency 
content.

D = 2 pixel 
d  = 3 pixel 

D = 4.5 pixel 
d  = 6 pixel 

D = 6 pixel 
d  = 9 pixel 

D = 8 pixel 
d  = 12 pixel 

Fig. 21. Numerically simulated speckle patterns: 50�50 pixel samples with D¼speckle diameter, and d¼average speckle on-center spacing.
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patterns



6. Conclusions

The first part of this paper presents a numerical and experi-
mental study of the effect of Gaussian pre-filtering on the
uncertainty of DIC measurements for the specific case of high-
contrast “designer patterns” having speckles with well-defined
and consistent shape, size and spacing. These patterns can be
numerically designed and applied on the measurement surface
using printed coatings or pre-cut stencils, and are ideal when
using standard-resolution cameras to acquire images of large
regions of interest on full-scale specimens (e.g., concrete and
masonry walls). The following conclusions are drawn.

1. Pre-processing image blurring using Gaussian filters with a
well-defined range of standard deviations (0.75–1.25 pixel)
results in the minimization of bias error as well as uncertainty
in DIC measurements irrespective of the degree of the poly-
nomial functions describing displacement and strain fields.

2. The effectiveness of a given Gaussian standard deviation
depends primarily on the DIC algorithm. Uncertainty is mini-
mized by using blurred images resulting from the filtering of
high-frequency components, increasing the accuracy of the
interpolation process.

3. For constant displacement (zero strain) fields, a decrease in
uncertainty is attained in the sub-pixel range where it is more
of concern.

4. For strain fields with maximum tensile or compressive strain of
�102–103 mε, a significant decrease in uncertainty is attained as
deformations increase. This finding is of practical significance
as such maximum strain levels are associated with critical
deformations under service and ultimate stress levels for most
structural materials (ranging from brittle ceramics to ductile
metals).

5. For strain fields with maximum tensile or compressive strain of
�104 mε, the decrease in uncertainty is essentially limited to
that attributed to the sub-pixel interpolation bias. This finding
is of practical significance as at such maximum strain levels
accurate local measurements can hardly be obtained with
conventional point-wise sensors (e.g., strain gauges and
extensometers).

Conversely, for typical spray-painted speckle patterns without
well-defined particle shape, size and spacing, image blurring is only 
beneficial in reducing bias errors [9,14]. In the second part of the 
paper, the stability of the effect of Gaussian pre-filtering on a 
“designer pattern” is tested through simulations for the case of 
linear displacements at varying maximum strains, using different 
levels of image noise (which is always present in real-case 
applications), subset size, and speckle pattern frequency content. 
It is concluded that the range of Gaussian standard deviations for 
which uncertainty is minimized does not change except for 
extreme (and most likely unrealistic) noise levels. In particular, 
if a Gaussian blur with a standard deviation of 0.75 pixel is used, 
then all over-sampled speckle patterns yield essentially the same 
result.
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