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Orbit-attitude control in a circular restricted three-body
problem using distributed reflectivity devices

James D. Biggs ∗ and Alessio Negri †

Politecnico di Milano, Milan, Italy

I. Introduction

S
olar sail spacecraft utilize their large surface areas to reflect photons emitted from the Sun to generate a resultant

force and torque. One of the advantages of solar sail propulsion is that they can generate unique orbits, known as

highly non-Keplerian orbits, for long durations [1]. Solar sail non-Keplerian orbits can enable a wide range of new

space applications, including pole-sitters [2] and early warning solar storm missions such as the Sunjammer [3]. These

non-Keplerian orbits are initially designed using the assumption of a fixed angle between the solar sail normal and

the Sun direction. However, these orbits are highly unstable and require station-keeping using closed-loop control.

Control actuation of solar sail spacecraft can be achieved by varying its surface area, reflectivity properties [4–7] and

force-vectoring through attitude control [8–11].

Station-keeping in the vicinity of libration point orbits has used linear feedback-control that requires continuous

time-varying attitude re-orientations to ensure asymptotic stability of the closed-loop linearized system [8–11]. Station-

keeping in solar sail restricted three body problems tend to assume that the solar sail can match the required attitude

exactly. However, solar sail attitude control is non-trival since conventional actuation is not suitable; thrusters use

fuel and so are not useful for long duration missions, while reaction wheels would require thrusters for de-saturation.

Furthermore, reaction wheels may experience significant wear and tear over long duration missions, with increased jitter

and friction. Therefore, solar sails need to employ unconventional methods for attitude control. Wie [12, pp. 767-774]

analyzed the use of a two-axis gimbaled control boom in order to shift the center-of-pressure with respect to the

center-of-mass to induce a required torque. In addition, four control vanes are proposed for 3-axis attitude control

placed at the corners of a square sail. Takao et al. [13] proposed actuation by actively deforming the sail membrane to

generate both torques and forces. As demonstrated on the solar sail IKAROS, reflectivity control devices (RCDs) can

also provide a novel actuation method for attitude control [14].

An RCD is a thin film device capable of controlling the orientation of liquid crystal components, placed in between

two electrodes at which a certain voltage is applied. As a result, the reflectivity characteristic of the device can switch

between two different states, such as diffusive to specular reflection or absorption to specular reflection. The concept of

using RCDs has been demonstrated for deep-space orbit control in [4–7] and for orbit-attitude control in the vicinity
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of libration points in [6, 7]. In these cases the sail surface is assumed to be a continuum of RCDs with the ability to

provide a continuous control between a maximum and minimum value. A more practically viable case is considered in

[15], where the sail surface consists of a finite number of RCDs each having the capability to switch between reflection

and absorption for attitude control. The attitude control algorithm in [15] is based on mapping a proportional feedback

law, to either an ON or OFF state of each RCD, such that the vector norm between the ideal and generated torque is

minimized. However, for N -RCDs, the algorithm becomes computationally expensive, with 2N possible combinations

to consider. Moreover, as the number of RCDs increases the ratio of the number of possible torques to the number of

possible combinations decreases exponentially. For example, with 16 RCDs there are 65,536 possible combinations with

the number of possible torques only 0.6% of the number of possible ON-OFF combinations. Thus, using this approach

it is computationally expensive to increase the precision of the control by introducing a greater range of torques through

an increased number of RCDs.

This paper uses the distributed RCDs attitude control concept posed in [15] and extends it to coupled orbit-attitude

control in the circular restricted three body problem (CR3BP). The proposed RCD allocation procedure also massively

decreases the amount of computations required for high-precision tracking. In addition, the solar radiation pressure

is modelled in its full vectorial form, without the assumption that it only acts in the sail plane. The RCDs are

assumed to switch between a specular and an absorptive state offering a wider range of torque magnitudes compared to

diffusive-to-specular switching [4, 6]. Our approach is to project ideal continuous forces and torques (ideal as they

are computed using feedback controls that do not consider the mechanism of actuation), onto the ON or OFF state

of each RCD. The ideal force and torques are generated by coupling an LQR orbit control with an attitude bore-sight

control [16]. The procedure for projecting the ideal control onto each RCD exploits the symmetry of the sail and uses a

convenient analytical formula for the torque in terms of the centre-of-pressure and ON-OFF combinations of the RCDs.

II. Orbit-attitude solar sail dynamics
In this section we introduce the solar radiation pressure model and the RCD control mechanism. These force and

torque models are incorporated into the six-degree of freedom orbit-attitude dynamics.

A. Solar Radiation Pressure

The expression of the solar radiation pressure (SRP) can be derived either from quantummechanics or electromagnetic

theory [17, pp. 34-38]. The SRP force vector F is given by Ref. [12, pp. 749-752]

F = P S < s, n > [(ρa + ρd) s + (2 ρs < s, n > + 2/3 ρd) n] (1)
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where F is the SRP force vector, P = P0/r2 is the SRP (P0 = 4.56 × 10−6 N m−2), S is the sail surface area, s is

the Sun direction (pointing away from the Sun), n is the sail normal and < ·, · > is the scalar product. This model

considers the specular reflectivity coefficient (ρs), the diffuse reflectivity coefficient (ρd) and the absorptivity coefficient

(ρa) where ρs + ρd + ρa = 1. Due to the nature of the RCD (similarly to that used on IKAROS) it can switch between a

specular state (i.e., ON coefficients ρON
s = 1,ρON

a = 0) and an absorptive state (ρOF F
s = 0, ρOF F

a = 1). It is assumed

that the device has no diffuse reflectivity such that ρd = 0. With the selected logic, Equation 1 can be simplified to

F = P S < s, n > [(1 − ρs) s + 2 ρs < s, n > n] (2)

Note that this model induces a force along the sail normal (n) and the Sun direction (s) as shown in Fig. 1. For an

ideal sail (ρs = 1) the angle between the Sun direction and the sail normal is called the cone angle α and the force acts

along the sail normal. Instead, the resultant force in this model acts along m which forms an angle θ ≤ α with the Sun

direction, called the effective cone angle. If the force is expressed as the sum of the perpendicular (n) and tangent (t)

force, the relation between the two angles becomes

α − θ = arctan
(

1 − ρs

1 + ρs
tan α

)
(3)

n

t

Incoming Photons

s

Specularly Reflected Photons

θ

α − θ

α

α

m

Fig. 1 Solar radiation pressure geometry.

B. Attitude Dynamics and Kinematics

To introduce the attitude dynamics and kinematics we define an inertial reference frame N = [XN : YN : ZN ]

fixed in the Sun-Earth barycentre, with ZN normal to the ecliptic plane containing the two main bodies, XN pointing

toward the Ares point, while YN completes the right-handed orthonormal frame. The solar sail body-fixed frame

B = [XB : YB : ZB ] is defined such that XB is aligned with the sail normal nB in body fixed coordinates, and YB and

ZB lie in the sail plane fixed at its geometric centre.
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Assuming a symmetric solar sail (Jy = Jz = J) and no significant disturbance apart from SRP (as is the case at the

libration point orbit) the attitude dynamics can be written as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Jx ω̇x = ux

J ω̇y = (J − Jx) ωz ωx + uy

J ω̇z = (Jx − J) ωx ωy + uz

(4)

where Jj represent the principal moments of inertia, ωj are the components of the angular velocity of the body frame B

with respect to an inertial frame N and uj are the torque components (j = x, y, z) where from Eq. 2 we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ux = P S cos2 α tan α (Z cos γ + Y sin γ) (1 − ρs)

uy = P S cos2 α Z (1 + ρs)

uz = −P S cos2 α Y (1 + ρs)

(5)

where (Y , Z) are the coordinates of the center of pressure with respect to the center of the sail (i.e., center of mass) and

where γ is the roll angle as shown in Figure 2 and will be defined precisely in the next section. The SRP torque is

generated by an offset between the center-of-pressure and the center-of-mass.

The kinematics are expressed in quaternions q of the body-fixed frame with respect to the inertial frame

q̇ = 1
2q ⊗ ω (6)

where ⊗ represents the quaternion product and ω = [ωx ωy ωz]T is the angular velocity vector of the frame B with

respect N .

C. Solar Sail Circular Restricted Three-Body Problem

The orbital dynamics of the solar sail is modelled in the CR3BP where the two primarues are the Sun and Earth

perturbed by solar radiation pressure. The dynamics of the solar sail is expressed in the synodic frame Sy = [̂i : ĵ : k̂]

in which the origin is at the barycentre of of the Sun-Earth system. The unit vector î is directed along the Sun to Earth

line and the unit vector k̂ is parallel to the angular momentum vector of the Earth and the unit vector ĵ completes the
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right handed orthonormal frame. The solar sail dynamics are then expressed as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẍ − 2ẏ = ∂U
∂x + ax

ÿ + 2ẋ = ∂U
∂y + ay

z̈ = ∂U
∂z + az

(7)

where r = xî + yĵ + zk̂ is the non-dimensional position vector of the sail, ax, ay , az are the components of the SRP

acceleration and U is the pseudo-potential function:

U = (1 − μ)
||r1|| + μ

||r2|| + 1
2 (x2 + y2), (8)

with μ defined as the mass ratio. Where r1 = [(x + μ) y z]T is the position of the sail with respect to the Sun and

r2 = [(x − (1 − μ)) y z]T is the position of the sail with respect to the Earth. To define the attitude dependent solar

sail acceleration we define a reference frame L = [XL : YL : ZL] fixed at geometric centre of the sail. Here XL is

directed along the Sun direction r̂1, ZL is defined to be perpendicular to XL and k̂ and YL completes the right-handed

orthonormal frame as shown in Fig. 2. The cone angle α is the angle between the sail normal nB and the Sun direction

XL ≡ r̂1, while δ is the angle between YL and the projection of the normal of the sail on to the plane (YL, ZL). γ is the

angle of the roll axis of the sail, but this does not effect the orbit acceleration.

At this point the expression for the SRP acceleration has to be introduced. The model selected considers the sail

with both specular reflective and absorptive characteristics (derived from Eq. 2). First consider the expression of the

sail normal in S ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

nx = cos α (x+μ)
‖r1‖ − sin α cos δ (x+μ) z

‖(r1×k̂)×r1‖ + sin α sin δ y

‖r1×k̂‖

ny = cos α y
‖r1‖ − sin α cos δ y z

‖(r1×k̂)×r1‖ − sin α sin δ (x+μ)
‖r1×k̂‖

nz = cos α z
‖r1‖ + sin α cos δ (y2+(x+μ)2)

‖(r1×k̂)×r1‖

(9)

where r1 is the Sun-sail position vector, ‖ · ‖ is the norm of a vector and · × · is the vector product. As a result, the
components of the acceleration can be derived

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ax = ρs β 1−μ
r2

1
cos2 α nx + (1−ρs)

2 β 1−μ
r3

1
cos α (x + μ)

ay = ρs β 1−μ
r2

1
cos2 α ny + (1−ρs)

2 β 1−μ
r3

1
cos α y

az = ρs β 1−μ
r2

1
cos2 α nz + (1−ρs)

2 β 1−μ
r3

1
cos α z

(10)

where r1 is the norm of r1 and β is the sail lightness parameter defined as the ratio of the critical sail loading parameter
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σ∗ = 1.53 g m−2 and the sail loading parameter σ = m/S (with m the mass of the sail).

ZL ≡ r̂1×k̂
‖r̂1×k̂‖

XL ≡ r̂1

YL ≡ (r̂1×k̂)×r̂1
‖(r̂1×k̂)×r̂1‖

Sun

δ

α

XB ≡ nB

YB

ZB

γ

Fig. 2 Rotating L and body-fixed B frames.

III. Ideal Controls
In this section the ideal controls used to generate the continuous force and torque signals that will be distributed to

the RCDs are described. These controls are developed independently for the orbit and attitude dynamics, but provide

forces and torques that depend on the current state. The goal is then to match these ideal forces and torques as closely as

possible using combinations of the on-off switching of each RCD.

A. Non-ideal solar sail control in the vicinity of artificial equilibrium points (AEP)

The objective of this paper is to develop the coupled orbit-attitude control using RCDs that can stabilize a solar sail

in the vicinity of an AEP. The design of AEPs that can enable new mission possibilities, using low-thrust propulsion,

is documented in a large number of publications[1–3, 8, 17, 18]. However, the design of AEPs with solar sails

usually assume that the solar sail is perfectly reflective. In Farrés [19] the dynamics of a solar sail in the Sun-Earth

restricted three-body problem including specular reflection and absorption in the sail model is studied and periodic and

quasi-periodic motions close to AEPs are computed. In this paper we consider a specular reflective and absorptive sail

model since the RCD technology that we consider switch between these two states and assume that there is no diffuse

reflection. Differently from an ideal sail, the SRP acceleration has a component along n and another along s, which can

be expressed as a single component vector along m (see Fig. 1). As a result, the vector product between the gradient of

U (∇U ) and m is zero (for an ideal sail ∇U is parallel to n). Therefore, an AEP is defined as the location where m is
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directed along the gradient of the pseudo-potential with m defined by

m = −∇U

‖ − ∇U‖ (11a)

tan θL = ‖r̂1 × −∇U‖
< r̂1, −∇U >

(11b)

tan δL = ‖(r̂1 × k̂) × (r̂1 × −∇U)‖
< (r̂1 × k̂), (r̂1 × −∇U) >

(11c)

β = r2
1

(1 − μ)
‖ − ∇U‖

cos αL

√
ρs cos2 αL + (1 − ρs)2/4

(11d)

where θL, αL, δL are respectively the effective cone angle, cone angle and clock angle of the AEP. αL is obtained from

θL by solving Eq. 3. The AEP is defined uniquely both in terms of position (xL, yL, zL) and orientation (δL, αL).

To design the orbit control, Eq. 7 are linearized in a neighborhood of a selected AEP (LA) and written in the

state-space domain: the state vector x = [ξ, η, ζ]T relative toLA, while the control input vector θ = [αc −αL, δc −δL]T

with the linearized dynamics expressed as

ẋ = A x + B θ (12)

where A ∈ R
6×6 and B ∈ R

6×2 are the matrices A∗ and B∗ evaluated at the equilibrium point (xL, yL, zL,δL, αL)

where:

A∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Uxx + axx Uxy + axy Uxz + axz 0 2 0

Uyx + ayx Uyy + ayy Uyz + ayz −2 0 0

Uzx + azx Uzy + azy Uzz + azz 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

axα axδ

ayα ayδ

azα azδ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

where Uij and aij denote the partial derivatives with respect to i and j. A feedback control is then defined as

θ = −G x with G ∈ R
2×6 defined as the control gain matrix which is computed using optimal control theory for

linear time-invariant systems. This requires solving an algebraic Riccati equation and the approach is known as the
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Linear Quadratic Regulator (LQR) control that minimizes the following cost function (J )

J = 1
2

∫ +∞

0
(xT Q x + θT R θ) dt. (14)

Here Q ∈ R
6×6 is a non-negative, symmetric weighting matrix, and R ∈ R

2×2 is a positive definite, symmetric

weighting matrix. We note here that using this well-known LQR control is not essential for the pixelated RCD control.

Indeed the ideal control can be changed to a more appropriate one defined by the control engineer. The useful output of

the LQR control for the RCD control logic are the ideal acceleration a = [ax ay az] and the ideal cone and clock

angles (αc, δc). Moreover, a control design for the RCDs will be proposed that matches as close as possible the ideal

acceleration while the cone and clock angles will be tracked using an attitude control.

B. Solar sail reduced attitude controller

The output cone and clock angles from the orbit control (δc, αc) are used as inputs to define the reference angular ve-

locityωr and the reference pointing direction vector of the sail accelerationb = [cos αc sin αc cos δc sin αc sin δc]T .

Note that the desired attitude reference can be constructed from this vector and tracked. However, it is possible to use a

reduced attitude control that only requires the desired pointing information. Our related conference paper [20] compared

three ideal attitude controls: (i) A Proportional-Derivative control based on quaternions, (ii) an under-actuated control

based on a complex attitude representation known as the w − z parameters and (iii) the reduced-attitude or bore-sight

control proposed by Pong and Miller [16]. The first two controls require a reference attitude while the bore-sight control

only requires the desired pointing direction b. The performance of the bore-sight control was shown to be superior to

both the other controls in terms of tracking performance with one order of magnitude of control torque less than the

proportional controller. We define the angle θ ∈ [0, π] between the normal to the sail nB and the desired pointing

direction b, then the reduced control or bore-sight control is:

u = ω × J ω + J ω̇r − P l sin θ + D ωe (15)

where u is the control torque vector, J is the moment of inertia tensor and l is a unit vector perpendicular to both nB

and b. P = kP J ∈ R
3×3 and D = kD J ∈ R

3×3 are the proportional and the derivative gain matrices, respectively.

kP and kD are scalar constant gains that are required to be tuned. ωr is the reference angular rate defined by [16]

ωr = ωx(0) nB + b × ḃ + b × (ω × b) (16)

Finally, ωe = ωr − ω represents the angular rate error. This control law has been proven to asymptotically track a

desired pointing direction in [16]. Since the reduced attitude control can track the ideal attitude with a faster response
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than the ideal orbit control, the coupled control will asymptotically stabilize the coupled orbit attitude dynamics. An

additional benefit of this control for solar sail pointing is that it only requires the Sun direction (given by a Sun sensor)

and the angular velocity (given by a gyro). The solar sail membrane itself could be used as a Sun sensor significantly

reducing the sensor requirement and thus minimizing mass requirement. Note that the bore-sight control torque (Eq.

15) can be multiplied by a smoothing function f =
(
1 − e−ε t2)

such that

u =
(
1 − e−ε t2)

(ω × J ω + J ω̇r − P l sin θ + D ωe). (17)

where ε is a tuning parameter (selected as 5 × 10−8 s−2 in our simulations).Introducing f has the effect of reducing the

large initial torques at the beginning of the simulation which cannot be matched sufficiently using RCDs.

IV. Reflectivity Control Devices
In this section we present an approach to map the ideal forces and torques from the ideal orbit and attitude controls

to command each RCD to switch either on or off. The proposed approach significantly reduces the computational

expense associated with computing and storing all the possible torques in a lookup table.

A. RCD-Based Attitude Control

In this section the attitude control based on distributed reflectivity control devices is described. Recall Eq. 5 which

represents the torque acting on the sail due to SRP. Initially assume that the entire sail is one RCD then the SRP torque

can be expressed as Eq. 5 becomes

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ux = P S cos2 α tan α (Z cos γ + Y sin γ) κx

uy = P S cos2 α Z κyz

uz = −P S cos2 α Y κyz

(18)

where the switching mode parameters are defined by

ON −→ κx = 0 κyz = 2 , OFF −→ κx = 1 κyz = 1 (19)

Exploiting the symmetry of the sail we divide it into 4 quadrants as depicted in the left image of Fig. 3.
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l
CP2

CP3CP4

CP1

Ȳ −Ȳ

Z̄

−Z̄

YB

ZB

Ã

Irregular coordinates

Regular coordinates

Fig. 3 Reflectivity control device-based attitude control logic scheme.

Initially consider each quadrant as a single RCD each with an assigned center of pressure CPj (j = 1, 2, 3, 4). In the

first stage of the control allocation assume each one has the same coordinate magnitudes (Ȳ , Z̄) but with the respective

signs as in Fig. 3. In this case Ȳ = Z̄, since they are initialized in the centre. The torque generated by each quadrant

has the same expression of Eq. 19 but with the appropriate value for the center-of-pressure and surface area. The overall

torque generated by the four quadrants can then be expressed as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ux = P S̄ cos2 α tan α [Z̄ cos γ (κ1
x + κ2

x − κ3
x − κ4

x) + Ȳ sin γ (κ1
x − κ2

x − κ3
x + κ4

x)]

uy = P S̄ cos2 α Z̄ (κ1
yz + κ2

yz − κ3
yz − κ4

yz)

uz = −P S̄ cos2 α Ȳ (κ1
yz − κ2

yz − κ3
yz + κ4

yz)

(20)

where the superscript of the κ indicates the corresponding quadrant. The first stage of the proposed control allocation is

to propose a simple method for choosing the 8 values of κj
x, κj

yz where j = 1, 2, 3, 4. From Eq. 20 and for a fixed

orientation of the sail κj
x and κj

yz can be selected to change the sign of the torque components uy and uz . While the sign

of ux depends also on the coordinates of the centre-of-pressure and on γ. Therefore, ux is considered as a disturbing or

parasitic torque that is not directly controlled. With four quadrants and two possible states (on/off) there are 16 possible

combinations. This is used to select the parameters κj
x, κj

yz based on the signs of the in-plane torque uy , uz . Among the

16 possibilities, only 8 different torques can be generated, as shown in Tab. 1. The combinations that include more "on"

states have been chosen as this improves the ability to control the AEPs.

Using Table 1 we can select the values of κj
x, κj

yz in Eq. (20) simply by observing the sign of the torques uy, uz ,

10



Table 1 ON/OFF combinations with four quadrants.

Quadrants

1 2 3 4 uy uz

ON ON ON OFF > 0 > 0
ON OFF ON ON < 0 < 0
ON ON OFF ON > 0 < 0
OFF ON ON ON < 0 > 0
ON ON OFF OFF > 0 0
OFF OFF ON ON < 0 0
ON OFF OFF ON 0 < 0
OFF ON ON OFF 0 > 0

selecting the appropriate ON or OFF state and using Eq. (19).

1. Mesh Generation

Once the parameters κj
x, κj

yz have been selected, the quadrants are pixelated in order to refine the control. Once the

number of pixels has been chosen, the centre-of-pressure of each quadrant Ȳj , Z̄j and the surface area of each quadrant

S̄j can be refined by switching pixels either ON or OFF. In order to simplify the control procedure the symmetry of

each quadrant is preserved such that the total torque is still given by (20). Therefore, it is only necessary to select a

single value of the surface area S̄j = S̄ and symmetric coordinates such Ȳj , Z̄j = ±Ȳ , ±Z̄. The first design step is to

consider the order of the mesh of each quadrant n ∈ N which characterizes its precision. The order of the mesh n is

defined in terms of the total number of RCDs, Ne, by the equation Ne = 4n−1. The order of the mesh gives a, simple,

small integer measure of the RCD sail precision. For example, as shown in Fig. 3 there are 64 RCDs and therefore the

mesh has order 4. The area of each element (Ã) is related to n by Ã = l2

2[2(n−1)] where l is the length of a quadrant. Note

that the coordinates of the centers-of-pressure (Ȳj , Z̄j) can be either in the middle (regular) or the corner of an RCD

(irregular) as shown in the right image of Fig. 3. In Fig. 3 the black dots represent different possibilities for the position

of the centre-of-pressure. There is a need to differentiate between regular and irregular since the area S̄j surrounding

each consist of different multiples of a single element Ã. Moreover, for a regular element S̄j is restricted to an odd

multiple of Ã explicitly given by S̄j = (1 + 2(m − 1))2Ã where m is the number of layers of pixels about the centre of

mass. For an irregular element S̄j is restricted to even multiples of Ã explicitly given by S̄j = 4m2Ã.

The steps of the RCD-based attitude control are then

1) From the signs of the ideal in-plane torque choose the correct combination (Tab. 1) and associate the respective

ON/OFF mode to each quadrant. This yields κj
x and κj

yz in Eq. 22.

2) Compute all the possible torques in Eq. 22 corresponding to all possible centres-of-pressure Ȳ , Z̄ (regular and

irregular) and all possible values of S̄. These can be stored in a look-up table.
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3) Select the Ȳ , Z̄, S̄ that minimizes the cost function

J = (uRCD
y − uid

y )2 + (uRCD
z − uid

z )2 (21)

where (uid
y , uid

z ) are the ideal in-plane torque components while (u
RCD
y , uRCD

z ) the one generated with the

developed control.

4) Turn ON the pixels that correspond to Ȳ , Z̄, S̄ in the quadrants deemed ON from (1) and turn OFF the pixels

that correspond to Ȳ , Z̄, S̄ in the quadrants deemed OFF from (1). All remaining pixels are switched ON as they

will induce no net torque but maximize the sail performance for orbit control.

For example, consider the simple case of a sail oriented parallel to the Sun-sail line (i.e., α = 0 deg). In this situation,

for different orders of the mesh, the possible torques are shown in Fig. 4.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

(a) n = 1, Ne = 1.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

(b) n = 3, Ne = 16.

(c) n = 5, Ne = 256. (d) n = 7, Ne = 4096.

Fig. 4 Available control torques relative to their maximum value (α = 0 deg).

It can be seen that as n increases the majority of the torques form around the origin. Since the control will perform

12



better if the ideal torque is located within the black region, this implies that the control will work well if the ideal control

is located close to the origin. This can be achieved by carefully tuning the ideal control so that the torques reside as close

as possible to the black regions, while the black region can be increased by using more RCDs. However, increasing

the number of RCDs significantly increases the computational expense, as pointed out in Ref. [15]. In any case, the

optimization algorithm will try to match as best as possible the ideal torque with the possible torques generated by the

RCDs i.e. a perfect matching of torques is not required.

B. RCD-Based Orbit Control

1. Orbit control

From the possible combinations there are those that do not produce any torque in the system: ON-OFF-ON-OFF,

OFF-ON-OFF-ON, OFF-OFF-OFF-OFF. However, when an RCD is switched off it introduces a force that is not aligned

completely with the sail normal. This result can be used to build a simple orbit control with the RCDs. The orbit

control presented here is designed to mimic an ideal acceleration given by the LQR controller. In order to mimic the

acceleration effectively, the sail in its nominal operating phase must include both specular reflective and absorptive

components. Firstly, consider that in the attitude control design the number of RCDs that are switched off can be defined,

and the ratio with respect to the total number of pixels computed (fOF F ). Defining fmax
OF F to be the maximum value of

fOF F , then, the value of ρs used in the orbital model of the sail is chosen such that 1 − ρs > fmax
OF F . This ensures that

the ideal acceleration can always be achieved.

The steps for the orbit control based on RCDs are:

1) From the RCD-based attitude control, the total number of pixels switched on/off is known. So, the orbit control

will have nmax remaining pixels to utilize. In addition, the pixels already used generate an acceleration related

to the attitude control called nA
B .

2) Introduce the ideal acceleration a from the ideal orbit control (the LQR control). The required additional

acceleration to mimic the ideal one is aO = a − aA.

3) That acceleration must be given by the remaining pixels, that can be either switched on or off. The acceleration

aO is expressed in the synodic frame Sy. However, the relation is simpler if expressed in the L frame which can

be achieved by matrix multiplication of AL/Sy:

AL/Sy =

⎡
⎢⎢⎢⎢⎢⎢⎣

r̂T
1(

(r̂1×k̂)×r̂1
‖(r̂1×k̂)×r̂1‖

)T

(
r̂1×k̂

‖r̂1×k̂‖

)T

⎤
⎥⎥⎥⎥⎥⎥⎦

(22)
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Expressing the acceleration in the L frame and dividing by (aON
L and aOF F

L ) gives

aO
L = aON

L + aOF F
L = (nmax − nOF F ) 2 P Ã

m
cos2 α nL + nOF F

P Ã

m
cos α sL (23)

nOF F represents the even number of pixels to switch off computed by taking the square of the norm of Eq. 23.

If the fraction of pixels switched off for orbit control with respect to the total number of pixels is introduced (fO), the

not-used fraction must be re-defined as fNU = 1 − (fON + fOF F + fO). The result will be that fON + fNU −→ ρs

and fOF F + fO −→ 1 − ρs. In this case there is more than one way to decide what RCDs to switch OFF due to the fact

that no torque is introduced. However, to induce no net torque each RCD chosen in the first quadrant, must be reflected

about the axis of symmetry.

An example of orbit-attitude control mapped optimally in the pixels status, for n = 4, is shown in Fig. 5. Regarding

the orbit control, all the three possible combinations have been used obtaining nOF F = 8. In principle, the two

combinations with 2 switched off pixels can be substituted by a single one with 4 switched off pixels.

Fig. 5 Example of control, with pixels: yellow ⇒ ON not used, orange ⇒ ON for attitude control, grey ⇒ OFF
for attitude control, blue ⇒ OFF for orbit control.

V. Simulations
In this section the proposed RCD orbit-attitude control is applied to drive a solar sail and maintain its position in the

vicinity of an artificial L1 point. The simulations are undertaken in the full-nonlinear orbit-attitude coupled equations of

motion. The mass and sail area considered are that described in the Sunjammer mission [6] with the parameters listed in

Tab. 2. The simulation is performed for 600 d with a fixed sample time of 10 min adopting a Bogacki-Shampine solver.

The resulting trajectory and torques for the coupled orbit-attitude control are shown in Fig. 6. Fig 6a and 6b display
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Table 2 Simulation parameters.

Parameter Value

m 45 kg
S 1444 m2

β 0.049344
Jx 10 830 kg m2

J 5415 kg m2

ρs 0.9
xL 0.981 406 115 03 AU
yL −0.002 AU
zL 0.001 805 024 04 AU
δL 19.287 deg
αL 3.488 deg
n 8

ξ(0) = ζ(0) 1000 km
η(0) −1000 km

ξ̇(0) = η̇(0) = ζ̇(0) 1 m s−1

δ(0) 21 deg
α(0) 6 deg
γ(0) 0 deg

ωx(0) = ωy(0) = ωz(0) 0 rad s−1

ν 1.5
R diag([1,1])
Q diag([105,105,105,

103,103,103])

kP π2 × 10−8 rad s−2

kD 20
√

2 π × 10−5 rad s−1

the performance with an ideal control while Fig. 6c and Fig. 6d display the performance with the RCD control. Fig.

fig:6e show the surface usage of the RCDs. The sail converges to the artificial equilibrium point with a precision in the

order of 102 m as shown in Fig. 7. In addition it can be seen that the attitude angles converge to the desired ones (δL,

αL) in approximately 400 d, with a precision in the order of 10−6 deg as shown in Fig. fig:8. The attitude tracking of

δc and αc reaches steady-state after only 1 d. Note that the trajectory of the RCD controller approximates the ideal

controller closely in this example and the sail reaches a neighbourhood of the equilibrium point in the order of 101 km.

The tracking error of the desired attitude angles are of the order ∼ 10−3 deg for δ and 10−4 deg for α.

Fig. 9 shows the different trajectories of the RCD sail for an increasing value of n. For n = 5 (Fig. 9a and 9b) the

sail does not reach a neighbourhood of LA. For n = 6 (Fig. 9c, 9d, 9e and 9f) the sail approaches the AEP, although the

tracking of the angles is not precise. Recall from Fig. fig:6c and Fig. fig:6d that for n = 8 the sail tracks the AEP with a

precision in the order of 102 m. Fig. 10a displays the local surface usage in the first 15 h. For n = 5 (Fig. 10a) the
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Fig. 6 Coupled dynamics simulations.
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Fig. 7 Trajectory converging to a region of the equilibrium point
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Fig. 8 Solar sail cone and clock angles over time
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Fig. 9 Coupled dynamics dependence on n.

18



-10 0 10
-5

0

5

10

20

30

40

50

60

70

80

90

(a) n = 5.

-10 0 10
-5

0

5

10

20

30

40

50

60

(b) n = 6.

-10 0 10
-5

0

5

5

10

15

20

25

30

35

(c) n = 7.

Fig. 10 Local surface usage (0 − 15 h) dependence on the mesh precision n.
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central pixels are always used. However, increasing n it can be seen that the ideal torque is mimicked with greater

precision (Fig. 10b and 10c).

VI. Conclusion
This paper proposes an orbit-attitude tracking control based on distributed reflectivity control devices (RCDs). The

orbit and attitude dynamics are coupled through the use of RCDs since they induce both a force and a torque. The

control allocation which maps an ideal control to the ON or OFF mode of each RCD reduces the computational expense

when compared to algorithms which compute all possible torques with every possible combination of RCDs. With

enough RCDs covering the sail surface the tracking of an artificial equilibrium point in the solar sail circular restricted

three body problem can be achieved. Moreover, as the number of RCDs on the sail membrane increases the ability to

mimic an ideal torque increases. It is shown that for a sail of 1444 m2 weighing 45kg that over 16,000 RCDs would

be required to cover the sail surface to achieve convergence to a neighbourhood of an equilibrium point in the order

of 102 m. Using RCDs, therefore, offer a potential means of controlling both the attitude and orbit of a solar sail in

deep-space and have the advantage that they do not require mechanical actuation, are low mass and fuel-free.
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