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Abstract. A soft solid is said to be initially stressed if it is subjected to a
state of internal stress in its unloaded reference configuration.
Developing a sound mathematical framework to model initially stressed solids
in nonlinear elasticity is key for many applications in engineering and biology.
This work investigates the links between the existence of elastic minimizers and
the constitutive restrictions for initially stressed materials subjected to finite
deformations. In particular, we consider a subclass of constitutive responses in
which the strain energy density is taken as a scalar valued function of both the
deformation gradient and the initial stress tensor. The main advantage of this
approach is that the initial stress tensor belongs to the group of the divergence-
free symmetric tensors satisfying the boundary condition in any given reference
configuration. However, it is still unclear which physical restrictions must
be imposed for the well-posedness of this elastic problem. Assuming that
the constitutive response depends on the choice of the reference configuration
only through the initial stress tensor, under given conditions we prove the
local existence of a relaxed state given by an implicit tensor function of the
initial stress distribution. This tensor function is generally not unique, and
can be transformed accordingly to the symmetry group of the material at
fixed initial stresses. These results allow to extend Ball’s existence theorem
of elastic minimizers for the proposed constitutive choice of initially stressed
materials.

1. Rivlin’s legacy on constitutive equations in nonlinear physics

Ronald Rivlin made seminal contribution for the development of constitutive
theories in continuum physics.

As collected by Barenblatt and Joseph [53], Rivlin wrote 31 papers on isotropic
finite elasticity, 8 on the anisotropic theory of elasticity and more than 50 papers
on the theory of constitutive equations.

Pioneering contributions include the rigorous mathematical theory of isotropic
[50] and anisotropic [21, 62] nonlinear elasticity, that shaped our modern approach
to the formulation of constitutive laws in continuum mechanics [54, 52].

Moreover, Pipkin and Rivlin [42] studied the constitutive restrictions for enforc-
ing the invariance of the physical law by rotating simultaneously both the actual and
the reference system, with particular interest in nonlinear elasticity [51]. Rivlin’s
work also focused on the physical implication of the material symmetries [48] and
the well-posedness of the non-linear elastic problems [47, 49].

Inspired by his works, in this paper we aim at studying the role of physical
restrictions for the development of a constitutive theory of initially stressed bodies,
namely elastic media that are described exploiting a reference configuration that
does not coincide with the relaxed one.
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pasquale.ciarletta@polimi.it.
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2. Introduction to initially stressed materials

Existence theorems for nonlinear elastic materials have been developed over the
last decades on a different mathematical ground than the ones for linear elastic-
ity, that are classically based on the Korn’s inequality [22, 28, 11]. The required
objectivity of the strain energy function of a soft materials indeed conflicts with
its convexity [15]. Thus, less restrictive conditions for the existence of the finite
elastic solution are imposed using a direct approach in the calculus of variations,
such as quasi-convexity [37], quasi-convexity at the border [5] and polyconvexity [4].
Without attempting an exhaustive mathematical characterization of such seminal
results, we emphasize that proving the existence of elastic minimizers is interwoven
with the search for physical restrictions on the elastic strain energy function, that
classically contains a nonlinear dependence only on the deformation gradient F.
This work investigates the link between the existence of elastic minimizers and the
constitutive assumptions for initially stressed materials subjected to finite defor-
mations. If the unloaded reference configuration is not unstressed, we say that the
elastic body is subjected to an initial stress Σ, that must satisfy the equilibrium
equations. Initial stresses are commonly observed in soft materials. In inert matter
they can be actively controlled by an external stimulus, e.g. in hydrogels [39] and in
dielectric elastomers [8]. Such stimuli, e.g. an electric field in dielectric elastomers,
generate a distortion of the microstructure of the material that is made physically
compatible by the emergence of an internal state of stress. In living matter, initial
stresses are also known as residual stresses [26, 29, 30, 31], and they result from
incompatible growth processes both in healthy and pathological conditions [63, 14].
Such residual stresses not only may enhance the functionality and the efficiency
of biological structures, e.g. in arteries [10], but they may also be used to trigger
a programmed shape transition through a mechanical instability, forming complex
patterns such as the intestinal villi [12] or the brain sulci [6].

From a constitutive viewpoint, a well established approach to account for initial
stresses is based on the multiplicative decomposition of the deformation gradient
into an elastic deformation tensor and an incompatible tensor [7, 33, 34]. This
method was initially applied to provide a kinematic description of crystal plasticity
[45], and later adapted to describe the volumetric growth in nonlinear elastic media
[55]. Assuming a material isomorphism for the strain energy function, the initial
stress is constitutively related to the elastic deformation tensor from the virtual
incompatible state. Thus, it has been shown that the resulting elasticity tensor
constitutively depends on the initial stress [29, 30, 31], that in turn may affect
the symmetry group of the material [30]. Since the incompatible tensor is not
necessarily the gradient of a deformation, it maps the unloaded configuration into
a virtual state that may not possess a Euclidean metric [31]. Accordingly, the
main drawback of this approach is that such a virtual state may not be achieved
in physical practice, not even by cutting procedures, and the incompatible tensor
must be assumed a priori in order to generate a self-equilibrated state of initial
stresses.

A less restrictive mathematical framework accounts for initial stresses by formu-
lating implicit constitutive equations linking the Helmoltz free energy, the initial
stress and the kinematic quantities possibly mapping the evolving natural states of
the materials [44]. For soft solids, this constitutive approach has shown that there
exists a far richer class of non-dissipative materials than the class of bodies that is
usually understood as being elastic [43].
In this work, we consider a subclass of constitutive responses in which the strain en-
ergy function is taken as a scalar valued function of both the deformation gradient
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and of the initial stress. As first discussed in [57], objectivity is enforced for an ini-
tially stressed material made by an isotropic material by considering a dependence
on the ten invariants of the two above mentioned tensors. Under the incompress-
ibility constraint, it has been shown that only eight invariants are independent [59].
This method has been widely used to model initially stressed materials; applica-
tions of this theory include wave propagation in soft media [58, 41], the modeling of
residual stress in living tissues [66] and the stability of residually stressed materials
[13, 56, 46].
The main advantage of this approach is that the initial stress tensor Σ belongs to the
group of the divergence-free symmetric tensors satisfying the boundary condition in
the given reference configuration, whilst it is still unclear which physical restrictions
must be imposed for the well-posedness of the elastic problem. A basic constitutive
restriction known as the initial stress compatibility condition (ISCC) imposes that
the Cauchy stress reduces to the initial stress when the deformation tensor is equal
to the matrix identity [57, 23]. By imposing ISCC and the polyconvexity of the
resulting strain energy function in the absence of initial stresses few constitutive
relations have been proposed. A simple functional expression has been proposed
in [36], containing material parameters that also depend on the particular choice
of the reference configuration, as generally prescribed by [65]. A more restrictive
constitutive class has been proposed in [23], assuming that the material parameters
do not change under a change of reference configuration. This assumption has lead
to define a new condition. i.e. the initial stress reference independence (ISRI) [24],
that is inspired by the multiplicative decomposition approach.
This work aims at clarifying some constitutive aspects of the mathematical theory
of initially stressed materials, unraveling the main implications of imposing the
ISRI condition on the existence of elastic minimizers.
The article is organized as follows. In Section 3, we provide some basic kinematic
and constitutive notions for nonlinear elastic materials. In Section 4, we introduce
the main differences of the proposed mathematical framework for initially stressed
materials with respect to the theory of elastic distortions, discussing the mechanical
signification of the ISCC and the ISRI conditions. In Section 5, we prove the local
existence of a relaxed state for each material point. In Section 6, we prove that
the residual stresses provoke an elastic distortion on the transformation of the
symmetry group. We also give en existence theorem for the elastic minimizers for
the proposed constitutive choice of the initially stressed material. In Section 7,
we use the proposed framework to solve the physical problem of an elastic disc
subjected to an anisotropic initial stress. Finally, the results are summarized and
critically discussed in the last section.

3. Background and notation

We denote by L(Rn) the set of all the automorphisms of Rn, and with L+(Rn)
the group (with respect to the operation of function composition) of all the linear
applications belonging to L(Rn) with positive determinant.

Let O(Rn) be the group such that

QTQ = I

where Q ∈ L(Rn) and I is the identity.
We indicate with O+(Rn) ⊂ O(Rn) the group of all the elements of O(Rn)

with positive determinant; if n = 3, this group coincides with the set of the rigid
rotations. We also introduce the set S(Rn) of all the symmetric linear applications
that belong to L(Rn).
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Table 1. List of functional spaces

Symbol Definition

L(Rn) Set of all the linear applications from Rn to Rn.
L+(Rn) Set of all the L ∈ L(Rn) such that det L > 0.
O(Rn) Set of all the orthogonal tensors Q ∈ L(Rn), namely all the Q such

that QTQ = I.
O+(Rn) Set of all Q ∈ O(Rn) such that det Q > 0.
S(Rn) Set of all the symmetric linear applications from Rn to Rn, namely

all the L ∈ L(Rn) such that LT = L
L+

1 (Rn) Special unitary group, namely the subset of L+(Rn) with determi-
nant 1.

D Denotes L+(Rn) for a compressible material, or L+
1 (Rn) for an

incompressible material.
C0(U, V ) Set of all the continuous function from the set U ⊆ Rn to the set

V ⊆ RN .
Ck(U, V ) Set of all the function from the set U ⊆ Rn to the set V ⊆ RN

admitting continuous derivatives of order k.
Lp(U, V ) Set of all the function from the set U ⊆ Rn to the set V ⊆ RN with

finite Lp norm.
W 1,p(U, V ) Sobolev space of all the functions from the set U ⊆ Rn to the set

V ⊆ RN , where both the functions and their weak partial deriva-
tives belong to Lp(U, V ).

Let the open set Ω0 ⊂ R3 be the reference configuration of a body and X ∈ Ω0

the material point. We denote the deformation field by ϕ ∈ C2(Ω0, R3)that maps
the reference domain Ω0 to the actual configuration Ω.

Accordingly, the deformation gradient reads F = Gradϕ. If the body is made of
a homogeneous elastic material, we assume a purely elastic constitutive behavior
such that the Cauchy stress tensor T0 depends on the deformation gradient F.

We say that the body has a relaxed reference configuration if

(1) T0(I) = 0,

where T0 is the Cauchy stress and I is the identity tensor.
If the body is composed of a hyperelastic material, we denote its strain energy

density in a point X with ψ0(F(X)) : L+(R3) → R. Whenever appropriate, we
omit the explicit dependence of the physical quantities on the material position X.
The first Piola–Kirchhoff and the Cauchy stress tensor are given by

P0(F) =
∂ψ0

∂F
T0(F) =

1

det F
P0(F)FT ,

respectively.
In order to account for an incompressibility constraint, we introduce the following

group:
L+
δ (R3) =

{
F ∈ L+(Rn) | det F = δ

}
.

Accordingly, the domain of the strain energy density ψ0 is given by L+
1 (R3),

where the argument is the special unitary group. However, it is convenient to
introduce an extension of ψ0 to all L+(R3) and then to use the method of Lagrangian
multiplier to enforce the incompressibility constraint. Let ψ̃0 : L+(R3) → R such
that

(2) ψ̃0(F) = ψ0(F) ∀F ∈ L+
1 (R3),
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a possible extension is given by

ψ̃0(F) = ψ0((det F)−1/3F).

So, the first Piola–Kirchhoff and the Cauchy stress tensors are given by

P0(F, p) =
∂ψ̃0

∂F
− pF−T T0(F, p) = P0(F, p)FT ,

where p is the Lagrangian multiplier. For the sake of simplicity, in the following we
will omit the distinction between ψ̃0 and ψ0 wherever appropriate and we denote by
D either the group L+(R3), if the material is unconstrained, or the group L+

1 (R3),
if the material is incompressible.

We denote by

(3) I1(C) = tr(C), I2(C) =
(tr C)2 − tr(C2)

2
, I3(C) = det(C),

the principal invariants of C, where C = FTF is the right Cauchy–Green strain
tensor.

We finally introduce a fundamental notion for the existence of minimizers in
nonlinear elastic materials, known as the non-degeneracy axiom [4]:

Axiom 3.1 (Non-degeneracy for a hyperelastic body). Let ψ0 be a strain energy
density, we say that ψ0 is non-degenerate if

(4)

{
ψ0(F)→ +∞ when det F→ 0+

ψ0(F)→ +∞ when |F|+
∣∣F−1

∣∣→ +∞

where |F| =
√

tr(FTF).

The last condition of (4) indeed ensures that the hyperelastic energy goes to
infinity as soon as one of the principal invariants (3) goes to +∞. If the material is
incompressible, only the second equation of (4) applies. For the ease of the readers,
we collect all the symbols used to denote the functional spaces in Table 1.

4. Mathematical frameworks for initially stressed materials

In this section, we summarize the basic features of two mathematical frameworks
used to model nonlinear elastic materials whose unloaded reference configuration is
not stress-free, namely the theory of elastic distortions and the theory of initially
stressed bodies.

4.1. The theory of elastic distortions. If the relation (1) does not hold, the
material is subjected to a state of stress in the reference configuration. A classical
constitutive approach consists in assuming a multiplicative decomposition of the
deformation gradient [55], such that:

(5) F = FeG.

where G is the tensor field that describes the elastic distortion from the reference
configuration to the relaxed one, whilst Fe represents the elastic distortion that
restores the geometrical compatibility under the action of external tractions (as
depicted in Fig. 1). Since the underlying metric is not Euclidean whence G is
not a gradient of a deformation field, it may be impossible to attain a stress-free
configuration in the physical world. In the last decades, the distortion tensor G has
been advocated to model different biological processes, such as volumetric growth
[16], remodelling [20] and active strains [32, 64].

In physical practice, it is assumed the initial stress in the body is generated by a
distortion of the reference configuration. Consequently, the strain energy function
depends on the distorted metric, given by FG−1.
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Figure 1. Clockwise representation of the reference, the actual
and the relaxed configuration described by the multiplicative de-
composition of the deformation gradient given by (5).

If the material is incompressible, this constraint is imposed on the elastic tensor,
whilst the distortion tensor also describes the local change of volume, such that:

det Fe = 1 ⇒ det F = det G = δ.

Accordingly, the strain energy density of the material is given by :

(6) ψG(F) = (det G)ψ0(FG−1).

From standard application of the second law of the thermodynamics in the Clausius-
Duhem form, the first Piola–Kirchhoff and Cauchy stress read

(7) PG(F) = (det G)
∂ψ0(FG−1)

∂F
, TG(F) =

1

det F
PG(F)FT .

The theory of distortions provides a transparent explanation for the transforma-
tion law of the material properties. Let G be the material symmetry group of a
hyperelastic material, it is defined as the set of all the tensors Q ∈ L+

1 (R3) such
that

(8) T(F) = T(FQ), ∀F ∈ D;

where the response function T may eventually depend on the local distortion G.
An equivalent definition for a hyperelastic material can be given as the set of all

Q ∈ L+
1 (R3) such that

ψ(F) = ψ(FQ), ∀F ∈ D.
If we exploit the theory of elastic distortions, let G be the material symmetry

group of the corresponding strain energy density ψ0. It has been shown that [19]:

(9)

ψG(F) = (det G)ψ0(FG−1) =

= (det G)ψ0(FG−1Q) =

= (det G)ψ0(FG−1QGG−1) =

= ψG(FG−1QG)

∀Q ∈ G0

Thus, the material symmetry group of the initially stressed material is given by

GG = G−1G0G.

Notably, GG is the conjugate group of G0 through G.
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The main drawback of the theory of elastic distortions is that G has to be pro-
vided by means of a constitutive assumption. Nonetheless, since the underlying
metric may not be Euclidean, the values of its components cannot be directly in-
ferred in many physical problems. An experimental attempt to search for a stress–
free configuration consists in performing several (ideally infinite) cuts in the body
to release the local stresses stored inside the material [2, 63, 14, 10, 3]. Although
successful in simple system models [1, 38, 12], this approach is unsuitable when
interested in investigating the effect of a generic state of initial stress on the mate-
rial response. In the following, we describe how this difficulty can be circumvented
by building a constitutive theory that explicitly depends on the underlying spatial
distribution of internal stresses.

4.2. The theory of initially stressed bodies. Alternatively, it can be assumed
that the material response depends on both the deformation applied on the body
and on the initial stress, intended as the existing stress field Σ in the undeformed
reference configuration, i.e. the Cauchy stress when the body is undeformed. This
assumption has been discussed in [29, 30, 31], such that the material response in a
point X of the body reads

(10) T = T(F; Σ(X)),

where T is the Cauchy stress. We remark that the initial stress tensor field

Σ : Ω0 → S(R3)

generally depends on the material position vector X; we omit such an explicit
notation in the following for the sake of brevity wherever appropriate. We denote
by S ∈ S(R3) the specific expression of the initial stress in a point X, namely
S = Σ(X) for a given X ∈ Ω0.

The function T : D × S(R3)→ S(R3) must satisfy certain restrictions. First, in
the absence of initial stresses, the strain energy function must obey the standard
requirements ensuring the existence of elastic minimizers in nonlinear elasticity.
Second, the constitutive response should be such that the Cauchy stress is equal to
the initial stress in the absence of any elastic deformations. This is referred to as
ISCC, i.e. initial stress compatibility condition, [57] and reads:

(11) T(I; S) = S ∀S ∈ S(R3).

A subclass of material responses in which the strain energy function depends
only on the elastic deformation and the initial stress, but not explicitly on the
choice of the reference configuration, has been proposed in [23, 24]. Under this
constitutive assumption, it is possible to introduce another restriction called Initial
Stress Reference Independence (ISRI), stating that

(12) T(F2F1; S) = T (F2; T(F1; S)) , ∀S ∈ S(R3).

In this work we give a new mechanical interpretation of such a restrictive con-
dition and we discuss its mathematical implications for the existence of elastic
minimizers. The condition (12) imposes that there is no energy dissipation result-
ing from the elastic deformation and represents a frame invariance requirement: the
deformation field solution of the elastic problem must not depend on the choice of
the reference configuration [23, 24].

If the material is hyperelastic, we can assume that the strain energy function
reads [57]:

(13) ψ : L+(R3)× S(R3)→ R.

Recalling the values of the material parameters are assumed to be independent
on the choice of the initially stressed configuration, the first Piola–Kirchhoff tensor



8 EXISTENCE OF ELASTIC MINIMIZERS FOR INITIALLY STRESSED MATERIALS

P and the Cauchy stress tensor T read:
(14)

P(F; S) =
∂ψ

∂F
(F; S), T(F; S) =

1

det F
P(F; S)FT , F ∈ L+(R3), S ∈ S(R3).

Under the incompressibility constraint, the strain energy density is a function
such that

ψ : L+
1 (R3)× S(R3)→ R,

as done in (2), we introduce an extension ψ̃ of ψ to all L+(R3) to define the stress
tensors, namely

(15) ψ̃(F; S) = ψ(F; S) ∀F ∈ L+
1 (R3), ∀S ∈ S(R3);

a possible extension is given by:

ψ̃(F; S) = ψ((det F)−1/3F; S).

The Piola–Kirchhoff and the Cauchy stress tensors are given byP(F, p; S) =
∂ψ̃

∂F
(F; S)− pF−T ,

T(F, p; S) = P(F, p; S)FT ,

F ∈ L+
1 (R3), S ∈ S(R3).

For the sake of simplicity, we omit the difference between ψ̃ and ψ wherever
appropriate. For hyperelastic materials, we remind that (12) can be reformulated
as an equivalent condition to be imposed on the functional dependence of the strain
energy function [24]. We give further mathematical details of this important result
in the following, proving that the restriction imposed on the strain energy density
is a consequence of (12).

Proposition 4.1. Let ψ : D × S(R3)→ R be a strain energy density, and assume
that the ISCC (11) and the ISRI conditions (12) hold. Then, for all F1, F2 ∈ D
and for all S ∈ S(R3), the following relation must hold:

(16) ψ(F2F1; S) = (det F1)ψ(F2; T(F1; S)).

Proof. For the sake of brevity, let ψ be the strain energy of a compressible material
(the incompressible case is analogous). The ISRI condition (12) reads

(17)
1

det F1 det F2

∂ψ

∂F
(F2F1; S)FT1 FT2 =

1

det F2

∂ψ

∂F2
(F2; T(F1; S))FT2 .

Since F = F2F1, then, by using the chain rule, we obtain

∂ψ

∂F2
=
∂ψ

∂F
FT1

and the equation (17) becomes

∂ψ

∂F
(F2F1; S) = det F1

∂ψ(FF−1
1 , T(F1; S))

∂F
.

We find that ψ(F2F1; S) = (det F1)ψ(F2; T(F1; S)) +C. Setting F1 = I and making
use of (11) we find that C = 0 and we get the claim. �

In the next sections, we prove the local existence of a relaxed state around each
material point and a theorem on the existence of elastic minimizers for a strain
energy of the form given by (13).



EXISTENCE OF ELASTIC MINIMIZERS FOR INITIALLY STRESSED MATERIALS 9

5. Existence of a relaxed state

In the theory of elastic distortions, we must provide a constitutive form for the
tensor field that we should apply locally to each point in the reference configuration
to obtain the (virtual) relaxed one [55]. This theoretical framework has strong
mathematical properties. Indeed, if ψ0 is polyconvex, then also ψG (defined in (6))
inherits such a property [40]. As discussed earlier, this approach is straightforward
but only suitable in simple system models, since it requires the a priori knowledge
of the virtual relaxed state.

In this section we prove a theorem on the existence of relaxed configuration using
the constitutive framework of initially stressed bodies. Moreover, we prove that,
if a strain energy satisfy the ISRI (16) and ψ(·, 0) is polyconvex, then ψ(·, S) is
polyconvex for all S ∈ S(R3).

First, we give the following statement of the non-degeneracy axiom for this class
of materials.

Axiom 5.1 (Non-degeneracy for an initially stressed body). Let ψ : L+(R3) ×
S(R3) → R be the strain energy density of an initially stressed body. We say that
ψ is non-degenerate if

(18)

{
ψ(F; S)→ +∞ when det F→ 0+,

ψ(F; S)→ +∞ when |F|+
∣∣F−1

∣∣→ +∞.
∀S ∈ S(R3).

We now derive the existence of a point-like relaxed state associated to each point
of the initially stressed configuration. In [30], a stress-free virtual state is defined
for each material point in the initially stressed configuration by considering the
limiting behavior as the radius of the spherical neighborhood tends to zero. Its
existence required the following hypotheses: Σ ∈ C1(Ω0,S(R3)), ψ = ψ(F; Σ(X))
being twice differentiable with respect to both arguments, and the distortion from
the neighborhood of each point to the free state to be once differentiable in space.
Here we are going to obtain a proof of existence of a virtual state using weaker
hypotheses.

Theorem 5.1 (Existence of a relaxed state). Let ψ be a non-degenerate strain
energy density in the sense of (18). We also assume that ψ(·,S) is at least C1 and
proper, i.e. it is not identically equal to +∞, for all S ∈ S(R3).

Then, for each X ∈ Ω0, given Σ(X) ∈ S(R3), there exists a local distortion
GΣ(X) such that

T(GΣ(X); Σ(X)) = 0.

Proof. Let ψ be the strain energy of a compressible material.
We denote by fΣ(X) = ψ(·; Σ(X)). The domain of the function fΣ(X) is given

by D = L+(R3). Thus, from the non-degenericity axiom (5.1), we get

(19) fΣ(X)(F)→ +∞ when det F→ 0+ or |F| → +∞.

Since the function fΣ(X) is continuous and proper, it must be bounded from
below, hence there exists a valuem ∈ R such that fΣ(X)(F) > m for all F. Moreover,
there exists a value M > m such that

(20) f−1
Σ(X)

(
[m, M ] ∩ Im(fΣ(X))

)
= U 6= ∅, U ⊂ L+(R3).

where with f−1
Σ(X)(A) we denote the pre–image of the subset A ⊆ Im(fΣ(X)) through

the function fΣ(X).
The non-empty set U is bounded as a direct consequence of the coercivity prop-

erty expressed in (18). Thus, there exists a minimum of fΣ(X) in Ū , where Ū is the
closure of U .
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The tensor that realizes such a minimum may be not unique as exposed in the
following Remark 5.1. Let us denote with GΣ(X) one of them. Since (19) holds, the
tensors GΣ(X) cannot belong to the boundary of the set L+(R3) and it is a critical
point for ψ(·; Σ(X)).

From (14), we get

(21) T(GΣ(X); Σ(X)) = 0.

If the material is incompressible, following the same argument, there exists a
tensor GΣ(X) such that

GΣ(X) ∈ arg min
F∈D

fΣ(X)(F)

where in this case D = L+
1 (R3). We define a new function ψ̂ such that{
ψ̂ : L+(R3)× R× S(R3)→ R

ψ̂(F, p; S) = ψ̃(F; S)− p(det F− 1)

where ψ̃ is an extension of ψ as defined in (15).
Since GΣ(X) is a minimum for ψ in L+

1 (R3), there exists a pΣ(X) ∈ R such that
(GΣ(X), pΣ(X)) is a critical point for ψ̂ [18], so that

∂ψ̂

∂F
(GΣ(X), pΣ(X); Σ(X)) =

∂ψ̃

∂F
(GΣ(X); Σ(X))− pΣ(X)G−TΣ(X) = 0,

and thus T(GΣ(X), pΣ(X); Σ(X)) = 0. This concludes the proof. �

Remark 5.1. Given an initial stress tensor, this Theorem implies that there exists
a tensor GΣ(X) that locally maps the body to an unstressed state. Such a distortion
is not unique in general: if Q belongs to the material symmetry group of ψ, then
also T(GΣ(X)Q; Σ(X)) = 0.

Remark 5.2. The collection of local maps

Ĝ[Σ](X) := GΣ(X),

which transform each point of the reference configuration into a point in the local
unstressed virtual state, satisfies Ĝ[Σ] ∈ B(Ω0, D), where B(Ω0, D) denotes the set
of all the bounded function f : Ω0 → D. Moreover, the tensor map Ĝ[Σ] may not
be geometrically compatible, i.e. there could not exist any differentiable vector field
ϕĜ such that GradϕĜ = Ĝ[Σ]. In this case, there does not exist a deformation that
maps the reference configuration of the residually stressed material into a relaxed
one. In fact, assuming that the reference configuration is simply connected, such a
deformation exists if and only if

rot Ĝ[Σ] = 0.

In the following, we call Ĝ[Σ] the relaxing map.

Remark 5.3. By simple application of the mean stress theorem [25], in the absence
of surface tractions and body forces we obtain

1

|Ω0|

∫
Ω0

Σ dX =
1

|Ω0|

(∫
∂Ω0

X ⊗ (ΣN) dS −
∫

Ω0

X ⊗Div Σ dX

)
= 0

so that the mean value of the initial stress tensor is zero. Thus, the Cartesian
components of the residual stress tensor are necessarily spatially inhomogeneous
whenever Σ 6= 0 [27]. Accordingly, the functional form of the map Ĝ[Σ] is also
inhomogeneous. A homogeneous initial stress Σ can only exist if surface tractions
or body forces are applied.
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Remark 5.4. Note that in the case in which Σ has singular values over a set
S∞ ⊂ Ω0 we are requiring the hypothesis that ψ(·; Σ(X)) remains a proper function,
i.e. it is not identically equal to +∞, when X ∈ S∞. Due to the continuity of
ψ(·,S), this ensures that Ĝ[Σ](X) is bounded when X ∈ S∞, as it will be shown in
Section 7.

6. Existence of elastic minimizers for initially stressed bodies

In this section, we prove that if the strain energy density ψ satisfies the assump-
tion of Theorem 5.1, then ψ satisfies the ISRI (16) if and only if it is expressible
using the theory of elastic distortion (6).

Theorem 6.1. Let ψ satisfy the hypotheses of Theorem 5.1 and the ISCC condition.
We denote by ψ0 the strain energy of the material in the absence of initial stresses,
being

ψ0(F) = ψ(F; 0).

Then, the function ψ satisfy the ISRI (16) if and only if we can express it as

ψ(F; Σ(X)) = (det Ĝ[Σ](X))ψ0(FĜ[Σ](X)−1) = ψĜ[Σ](X)(F)

where Ĝ[Σ](X) is a function such that

T(Ĝ[Σ](X); Σ(X)) = 0.

Proof. It is proved in [24] that the strain energy ψĜ[Σ](X) satisfies the ISRI.
Let ψ be a strain energy which satisfies the ISRI and such that ψ(F; 0) = ψ0(F).

The existence of the function Ĝ[Σ](X) is guaranteed by the Theorem 5.1.
Omitting the explicit dependence on X for the sake of compactness, we obtain:

ψ(F; Σ) = ψ(FĜ[Σ]−1Ĝ[Σ]; Σ) =

= (det Ĝ[Σ])ψ(FĜ[Σ]−1, T(Ĝ[Σ]; Σ)) =

= (det Ĝ[Σ])ψ(FĜ[Σ]−1, 0) =

= (det Ĝ[Σ])ψ0(FĜ[Σ]−1) = ψĜ[Σ](F)

that concludes the proof. �

Let us now introduce the following Definiton:

Definition 6.1. A strain energy density ψ0(F) is said polyconvex if there exists a
convex function h : R19 → R such that

ψ0(F) = h(F, Cof F, det F),

for all F ∈ L+(R3).

We also introduce the following useful Lemma:

Lemma 6.1. Let ψ(F; Σ(X)) be a strain energy density satisfying the hypotheses
of Theorem 5.1, the ISRI and such that ψ(F; 0) is polyconvex. Then ψ(F; Σ(X))
is polyconvex for all X ∈ Ω0.

Proof. From the Theorem 6.1, we get

ψ(F; Σ(X)) = (det Ĝ[Σ](X))ψ(FĜ[Σ](X)−1; 0).

Following the Remark 5.2, we have that Ĝ[Σ] ∈ B(Ω0,L+(R3)) and the Lemma is
a direct consequence of the Lemma 6.5 in [40]. �
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Indeed, under some regularity assumptions, if the strain energy density ψ is
polyconvex in the relaxed case, then it is polyconvex for all Σ : Ω0 → S(R3). It
is now possible to prove a theorem of existence of elastic minimizers for initially
stressed bodies.

Theorem 6.2 (Existence of elastic minimizers). Let Ω0 ⊂ R3 be a connected,
bounded and open subset with a regular boundary and let ψ(F; Σ(X)) be a strain
energy density for an initially stressed material, with ψ(·; Σ(X)) ∈ C1(L+(R3))
and ψ(F; ·) ∈ C0(S(R3)). Let Σ : Ω0 → S(R3) be a measurable function.

We assume that:
(i) (initial stress independence and non–degeneracy) ψ fulfills the hypotheses

of Theorem 5.1 and the ISRI condition (16);
(ii) (polyconvexity of the relaxed energy) in the absence of initial stresses, the

strain energy density ψ(F; 0) is polyconvex with respect to F, namely there
exists a convex function h : L(R3)× L(R3)× (0, +∞)→ R such that

ψ(F; 0) = h(F, Cof F, det F)

(iii) (coercivity of the relaxed energy) there exist α > 0, β ∈ R, p ≥ 2, q ≥
p/(p− 1), r > 1 such that:

h(F, C, δ) ≥ α(|F|p + |C|q + δr) + β, ∀F, C ∈ L(R3), δ > 0.

We assume that there exist two disjointed subset Γ0, Γ1 such that ∂Ω0 = Γ0 ∪ Γ1

and such that |Γ0| > 0. Let f : Ω0 → R3 and t : Γ1 → R3 measurable such that the
application

L[ϕ] =

∫
Ω0

f ·ϕ dX +

∫
Γ1

t ·ϕ dS

is continuous on W 1,p(Ω0, R3). Finally let ϕ0 : Γ0 → R3 be a measurable function
and such that the set

(22) U =
{
ϕ ∈W 1,p(Ω0, R3) | Cof Gradϕ ∈ Lq, det Gradϕ ∈ Lr,

det Gradϕ > 0 a.e. in Ω0, ϕ = ϕ0 on Γ0

}
.

is non-empty.
Then, defining the functional F : U → R ∪ {+∞} as

F [ϕ] =

∫
Ω0

ψ(Gradϕ; Σ(X))dX − L[ϕ]

and assuming that inf F [ϕ] < +∞, there exists an elastic minimizer

min
ϕ∈U
F [ϕ].

Proof. Using the Theorem 6.1, from (i) we have that

(23) ψ(F; Σ(X)) = (det Ĝ[Σ](X))ψ0(FĜ[Σ](X)−1) =: Ψ(X, F).

We prove the claim as a direct application of the Theorem 7.3 in [4]. Here we only
sketch the proof, pointing to [4] for the details.

Since Σ is measurable and ψ(F, ·) is continuous for all F, then Ψ(X,F) is a
Carathéodory function, i.e. it is continuous with respect to F a.e. in Ω0 and
measurable in Ω0 for all F ∈ L+(R3). Hence, the functional F is well defined.

By simple application of Lemma 6.1 and (ii), Ψ(X, F) is polyconvex a.e. in Ω0.
The coercivity of F is enforced a.e. in Ω0 by the hypothesis (iii), the boundedness of
Ĝ[Σ] in Remark 5.2 and the continuity of L inW 1,p(Ω0, R3). The non-degeneracy of
Ψ(X, F) for det F→ 0+ is given by (i). Hence, by applying the standard methods
of the calculus of variations, we can show the existence of infimizing sequences
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ϕk ∈ U which admit weakly converging subsequences to a limit point ϕ ∈ U . Since
the functional F is lower semicontinuous as a consequence of its policonvexity, the
weak limit ϕ ∈ U minimizes F .

�

Such a Theorem is a standard application of Ball’s theorem on the existence
of solutions in nonlinear elasticity [4]. The main result obtained in this section is
that the ISRI automatically guarantees that the polyconvexity is preserved for all
the initial stress fields if it holds for Σ = 0. Conversely, if we do not assume the
ISRI, the polyconvexity of the strain energy density should be imposed by a suitable
constitutive restriction on the dependence with respect to the initial stress field.

According to the Theorem 6.1, imposing the ISRI condition is equivalent to
require that the initial stress tensor Σ is generated by an elastic distortion given by
Ĝ[Σ].

Conversely, if the ISRI does not hold, the dependence of the stored elastic energy
on the choice of the reference configuration is not solely related to the the corre-
sponding variation of the initial stress. Thus, the material properties may depend
on the specific initial stress field.

For the sake of clarity, let us investigate how the material symmetry group
depends on the presence of an initial stress within the body. We denote by G0 the
material symmetry group of the relaxed state around a material point X. In view
of Theorem 6.1 and following the same computation of (9), if the strain energy
fulfills the ISRI condition for a generic initial stress field S and for all Q ∈ G0, we
get that the material symmetry group GS of the initially stressed body is given by

GS = G−1
S G0GS,

where the tensor GS is defined in Theorem 5.1. Hence, the group GS is conjugated
to the group G0 through the tensor GS, exactly as in the theory of elastic distortions
(9).

Conversely, we now consider a strain energy of the form

(24) ψ(F; S) = f(I1(C)− 3) + g(J1 − tr S)

where J1 = tr(SC), and the function f and g must be such that the energy density
(24) satisfies the ISCC (11) and g is non-constant. If the material is initially
unstressed (i.e. S = 0), the strain energy density (24) defines a general isotropic
nonlinear elastic response and the material symmetry group is given by

G0 = O+(R3).

However, if we consider an initial stress S = αM ⊗M , where M is a unit
vector, we observe a change in the nature of the material symmetry group. In fact,
considering that

tr(SQTCQ) = tr(SC) ∀F ∈ D ⇐⇒ QM = M .

The material symmetry group GS is given by

GS =
{

Q ∈ O+(R3) | QM = M
}
,

so that the material is not anymore isotropic but transversely isotropic.
Thus, if the material does not satisfy the ISRI, the material symmetry group GS is

not conjugated with G0 and it is not possible to obtain the material symmetry group
G0 by an elastic distortion of the material. In other words, if the ISRI condition is
not fulfilled, the body may change its material symmetry group depending on the
imposed initial stress field, leading to a modification of the material response.
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7. An illustrating example: the relaxed state of a soft disc with
anisotropic initial stress

As an example, we consider a disc of radius R0 composed of an incompress-
ible nonlinear elastic material subjected to planar strains and initial stresses. Let
(ER, EΘ) and (er, eθ) be the cylindrical vector basis in Lagrangian and Euler-
ian coordinates respectively. We assume that the initial stress is axis-symmetric,
having the following general form

(25) Σ =

(
α+ β log

(
R

R0

))
ER ⊗ER +

(
γ + β log

(
R

R0

))
EΘ ⊗EΘ.

The body in the reference configuration must obey the linear momentum balance,
that in the absence of bulk forces reads

(26) Div Σ = 0.

Since the residual stress tensor Σ depends only on the radial coordinate R, (26)
reduces to the following scalar equation

dΣRR
dR

+
ΣRR − ΣΘΘ

R
= 0;

that is fulfilled if and only if
β = γ − α.

If the disc is not subjected to any external traction, then ΣRR(R0) = 0, so that
α = 0. We now aim at calculating the elastic minimizer corresponding to this
particular choice of the initial stresses. Let ψ(F; Σ) be the strain energy density of
the initially stressed disc. We assume that in the absence of residual stresses, the
material behaves as a general isotropic material, such that

ψ(F; 0) = f(I1(C)− 2)

where f : [0,+∞[→ R is a convex function of its scalar argument. In view of
Theorem 6.1, ψ(F; Σ) = ψ(FĜ−1[Σ]; 0). Using the polar decomposition Ĝ[Σ] = RUĜ
where the tensor R is a proper orthogonal tensor and UĜ is the corresponding right
stretch tensor, we denote the metric tensor of the initial elastic distortion by

(27) B̃ = Ĝ[Σ]−1Ĝ[Σ]−T = U−2

Ĝ
,

where λĜ is the principal eigenvalue of UĜ. Accordingly, the ISCC condition (11)
imposes:

(28) Σ = 2f ′(I1(B̃)− 2)B̃− pΣI

where pΣ acts as the Lagrange multiplier enforcing the incompressibility of the
metric tensor. From the expression of the initial stress (25) and the equations
(27)-(28), we get that UĜ is diagonal with respect to the cylindrical vector basis,
thus

UĜ = diag(λĜ, λ
−1

Ĝ
).

Considering that
tr(Ĝ[Σ]−TFTFĜ[Σ]−1) = tr(B̃C)

by enforcing the ISRI condition we can write the strain energy density as

ψ(F; Σ) = f(tr(B̃C)− 2).

By applying the trace and the determinant operator on both sides of (28), we obtain
respectively

(29)

 pΣ = f ′(I1(B̃)− 2)I1(B̃)− I1(Σ)

2

I3(Σ) + I1(Σ)pΣ + p2
Σ = 4(f ′(I1(B̃)− 2))2



EXISTENCE OF ELASTIC MINIMIZERS FOR INITIALLY STRESSED MATERIALS 15

where I1(Σ) = tr Σ and I3(Σ) = det Σ. After substituting in (29) the first equation
into the second one, we get

(30)
I1(Σ)2

4
− I3(Σ) = (f ′(I1(B̃)− 2))2(I1(B̃)2 − 4)

The term I1(Σ)2

4 − I3(Σ) = (ΣRR−ΣΘΘ)2

4 is always positive. Since f(x) is strictly
convex with a minimum in x = 0, the rhs of (30) is a positive–definite, strictly
monotone function of I1(B̃) Thus, (30) is invertible and the principal eigenvalue
λĜ = λĜ(ΣRR,ΣΘΘ) is given by:

(31)
((

λ2
Ĝ

+ λ−2

Ĝ

)2

− 4

)
(f ′(λ2

Ĝ
+ λ−2

Ĝ
− 2))2 =

(ΣRR − ΣΘΘ)
2

4
.

We multiply each side of (28) by C on the right, by applying the trace operator we
get

tr(B̃C) =
J1 + pΣI1

2f ′(λ2
Ĝ

+ λ−2

Ĝ
− 2)

.

Accordingly, the strain energy function ψ(F; Σ) for an initially stressed isotropic
material reads

(32) ψ(F; Σ) = f

(
J1 + pΣI1

2f ′(λ2
Ĝ

+ λ−2

Ĝ
− 2)

− 2

)
.

Note that the relaxing map corresponding to (32) is the map Ĝ[Σ] as defined by
(27) and (28), since we have written ψ(F; Σ) as ψ(FĜ−1[Σ]; 0).

A mapping whose deformation gradient corresponds to UĜ is given by

(33) r = λĜR, θ =
Θ

λ2
Ĝ

, z = Z

This relaxing map corresponds to a controllable deformation for isotropic mate-
rials, meaning that it can be supported by surface tractions alone at equilibrium.
It describes the opening of the initial disc into a circular sector, corresponding to
non-homogeneous displacements and homogeneous strains [61, 60]. In fact, we re-
mark that (33) does not globally map a physically compatible configuration even if
the Riemann curvature of the underlying metric tensor is zero. This can be easily
checked since the curl operator of the deformation tensor corresponding to (33) is
not zero if λĜ 6= 1. From (31), this condition implies ΣRR 6= ΣΘΘ, or equivalently
γ 6= 0. Therefore, the relaxing map given by (33) is a non-uniform controllable
stress state with uniform deviatoric invariants. The latter is the necessary condi-
tion for stress controllability given in [9].

8. Concluding remarks

This work proved novel insights on the link between the existence of elastic min-
imizers and the constitutive assumptions for initially stressed materials subjected
to finite deformations.

Assuming a strain energy density in the form ψ(F; Σ) and a non-degeneracy
axiom, we clarified the mathematical implications of assuming the ISRI condition as
a constitutive restriction. Theorem 5.1 proves the existence of a relaxed state given
by the tensor function Ĝ[Σ] as an implicit function of the initial stress distribution.
The tensor Ĝ[Σ] is generally not unique, and can be transformed accordingly to the
symmetry group of ψ. Moreover, Theorem 6.1 proves that each strain energy density
function ψ(F; Σ) that satisfies the ISRI condition can be written as ψ(F; Σ) =

(det Ĝ[Σ])ψ(FĜ[Σ]−1; 0). Thus, we prove that the material symmetry group of the
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initially stressed material satisfying the ISRI condition locally changes as we vary
Σ according to the theory of elastic distortions.

Furthermore, we have used the previous results of Ball to prove the existence The-
orem 6.2 of the elastic minimizers for a strain energy density in the form ψ(F; Σ),
that satisfies the ISRI condition under suitable constitutive restrictions. Such a re-
sult is based on the proof that the polyconvexity of the strain energy density of an
initially stressed material is automatically inherited for all Σ if it holds in the case
Σ = 0, given some necessary conditions on the non-degeneracy and the regularity
of ψ(·, Σ).

Whilst the theory of elastic distortion requires an a priori choice of the virtual
incompatible state, the constitutive restrictions on ψ(F; Σ) ensure the existence of
the elastic minimizers corresponding to the physically observable distribution of
the initial stresses. In an illustrative example, we have shown how to calculate the
relaxed state of an incompressible isotropic disc as a function of the axis-symmetric
distribution of initial stresses.

We finally remark that the ISRI condition should be assumed for the materials
that do not undergo a change in the underlying material structure, so that the
initial stresses arise only in response to an elastic distortion. This happens, for
example, for the residual stresses generated by a differential growth. By using the
classification proposed by Epstein [19], the ISRI condition is indeed well suited for
modeling the growth or the remodelling of a soft material, namely a change of shape
that does not affect the material properties and the microstructure of the material.
On the contrary, when there is a modification of the microstructure that involves
a change in the material properties, the ISRI condition would be physically flawed
and other constitutive choices should be done.

Our results prove useful guidelines for the constitutive restrictions on the strain
energy densities of initially stresses materials, having important applications for
the study of the morphological stability and wave propagation analysis in soft tis-
sues [14], and the non-destructive evaluation of residual stresses generated by a
differential growth in biological materials [35, 17].
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