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1. Introduction

Sidewall roughness is an unavoidable surface imperfection 
generated by the fabrication processes of optical waveguides 
which causes a local variation of the waveguide width and con- 
sequently a random spatial fluctuation of the refractive index 
profile. T he i nteraction b etween t he l ight i n t he waveguide 
and the sidewall roughness induces a coupling mechanism 
which transfers part of the optical power from the actual 
propagating mode(s) to all the other guided modes (propa- 
gating and counter-propagating) and radiative modes [1]. This 
phenomenon has been widely investigated in the literature and 
models have been proposed to estimate the extrinsic losses 
generated by the radiated power and by the backscattering 
along the waveguide [1–6]. Even if these models can produce 
very accurate results, they are generally not easy to apply to 
waveguides with an arbitrary cross-section and rarely reveal 
the profound nature of the interaction between the electro- 
magnetic field and the roughness on the waveguide surface.
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This paper is organized as follows. The geometry of the
problem is described in section 2 along with a commonly
accepted description of the statistical properties of the sidewall
roughness. In section 3 the formulation of the nw model for
radiative losses is presented and compared to the Lacey–Payne
model (whose complete formulation is reported in appendix A)
for 2D waveguides. A comparison with experimental results
on channel SOI waveguides is presented, showing the validity
of the nw model for 3D structures. In section 4 the nw model
is applied to the investigation of backscattering, proving the
equivalence with the Ladouceur–Poladian model (for 2D struc-
tures) and the agreement with experimental results on different
waveguide technologies and geometries. In section 5 a discus-
sion on the sensitivity of neff with respect to the waveguide
width and the waveguide parameters is presented. Appendix B
reports the analytical derivation of the scaling factors required
by the nw model for both radiative losses and backscattering.

2. Extrinsic loss in optical waveguides

The attenuation experienced by the mode propagating in
an optical waveguide is related to different contributions.
Assuming a weak attenuation, the power insertion loss of a
waveguide of length Lw can be written as

IL= eαLw = e(αa+αr+αb)Lw (1)

where αa takes into account the pure material absorption
while αr and αb describe the fraction of the light coupled
to radiative modes and counter-propagating modes (backsca-
ttering), respectively. As αr and αb are associated with sidewall
roughness, they represent the extrinsic loss contribution. Since
αb is generally small compared to αa and αr, the previous
equation can be approximated as

IL' (1−αbLw)e(αa+αr)Lw (2)

where αb corresponds to the parameter rb commonly used to
describe the backscattered power per unit length.

For the 2D case, the geometry of the problem exploited
for the analysis of the extrinsic losses is represented in
figure 1 as a symmetric slab waveguide of width w and
core and cladding refractive indices n1 and n2, respectively.
The random waveguide sidewall perturbation is described by
the standard deviation of the roughness σ and a correlation
length Lc. The statistical behaviour of the roughness is defined
through a zero-mean random function f (z) which measures
the deviation of the waveguide width from the designed value
w at a position z along the propagation direction.

A commonly accepted model to describe the statistical
properties of f (z) for lithographically defined waveguides
relies on an exponential autocorrelation function [5, 7–10]

R(uz)= 〈 f (z) f (z− uz)〉 = σ
2 exp

(
−uz

Lc

)
(3)

where uz is the displacement along the direction z. 〈· · · 〉
represents the ensemble average. This model is implicitly
assumed for all the results presented in this paper.

Figure 1. Schematic of a 2D symmetrical slab waveguide with
sidewall roughness. The light propagates in the z direction.

3. Radiation loss model

The Lacey–Payne model is one of the most generally accepted
methods in the literature for the estimation of the radiative
losses αr. The computation of the radiated field is based on
the method of equivalent currents and assumes the waveguide
to behave as a radiating antenna, with the sidewall roughness
acting as an equivalent current source [2]. The exponential
radiation loss coefficient αr is then derived for a symmetric
single-mode slab waveguide

αr =
σ 2

√
2k0(w/2)4n1

g f (4)

where k0 = 2π/λ is the wavenumber. The g and f functions
(whose complete definitions are reported in appendix A)
describe how different waveguide parameters contribute to
radiative losses. For a given frequency and refractive index
profile, the function g is determined only by the waveguide
geometry; f is related to the correlation length of the roughness
and takes into account the interaction between the propagating
mode and the sidewall perturbation. Both functions also
depend on the mode’s effective refractive index (neff) through
the propagation constant β = k0neff .

The expression for αr in equation (4) does not explicitly
highlight the fundamental role played by neff and w in the
radiative losses experienced by the propagating mode as
a consequence of sidewall roughness. As demonstrated in
appendix B, a reformulation of this expression reveals that the
losses predicted by equation (4) as function of the waveguide
width match the derivative of the effective refractive index
with respect to w

αr = A
∂neff

∂w
. (5)

The proportionality factor A depends on w only through neff
and, sufficiently far from the mode’s cut-off, can be assumed as
independent of the slab width. The rigorous explicit expression
for the coefficient A is reported in appendix B. A takes into
account the standard deviation of the roughness σ and the
correlation length Lc and depends directly on the wavelength
λ. Since the effective refractive index is the main parameter
describing the confinement of the mode inside the waveguide
core, the derivative in equation (5) gives information on the
‘sensitivity’ of the mode to the width variations produced by
the sidewall roughness and consequently on the amount of
power coupled out to the radiative modes. For this reason this
model is referred to as the nw model.



Figure 2. Comparison between the losses predicted by the
Payne–Lacey model (symbols) and the nw model (dashed lines) for
(a) slabs with different index contrast and fixed roughness
parameters (σ = 2 nm, Lc = 50 nm) and (b) different modes of the
slab with 1n = 30% (σ = 2 nm, Lc = 50 nm).

Figure 2 shows a comparison between the Payne–Lacey
and nw models for a variety of slab geometries and propagating
modes with roughness parameters σ = 2 nm and Lc = 50 nm.
For the nw model, A is assumed as constant (independent of
w). In figure 2(a) the loss coefficient αr as a function of the
waveguide width w predicted by both equation (4) (symbols)
and equation (5) (dashed lines) is shown for the TE fundamen-
tal mode of three different slabs. The waveguides differ in the
index contrast between core and cladding,1n = (n1− n2)/n2,
which changes from 1n = 3% (e.g. glass waveguides, black
circles) to1n = 30% (e.g. SiN waveguides, red diamonds) and
1n = 90% (high-index-contrast technology, green squares). In
all three cases the results are well superposed.

In figure 2(b) the loss coefficient αr has been calculated
only for the waveguide with 1n = 30% with the same rough-
ness parameters as the previous example. In this case a partic-
ularly wide slab has been considered in order to evaluate the
models’ predictions for different propagating modes. For the
fundamental (black circles), first (red diamonds) and second
(green squares) higher order modes the agreement is excellent,
apart from a slight difference near the modes’ cut-off. In this
point the assumption of a constant value for A is less accurate

Figure 3. The measured propagation loss (symbols) and the nw
model (solid lines) for channel SOI waveguides (inset) with
different widths for TE (black circles) and TM (red triangles)
polarized light. The values of the fitting parameters are ATE = 223.0
and ATM = 284.4.

since neff may depend significantly on w. For this reason the
match between the Lacey–Payne model and the nw model with
constant A results to be less rigorous. The agreement between
the two models holds also for TM polarization (not shown for
brevity).

Even though the Payne–Lacey model was originally
developed only for 2D slab waveguides, it has been applied
also to 3D structures through the effective index method
[8, 9, 11]. Good agreement between the numerical model
and the experimental results was observed also in these cases.
The proposed nw model holds for 3D waveguides as well.
By using the Marcatili separation of variables approximation
for a rectangular waveguide of width w and thickness h [12],
equation (5) can be generalized to 3D structures as

αr = A
∂neff

∂n
' A′

∂neff

∂w
+ A′′

∂neff

∂h
(6)

where n is the normal versor to the waveguide boundaries and
A′ and A′′ take into account the different roughnesses of the
vertical and horizontal surfaces of the waveguide. However, the
contribution to the radiative loss generated by the roughness
of the top/bottom surfaces is typically negligible compared to
the sidewall roughness, and the 3D model (6) simply reduces
to equation (5) (A′′ = 0). This result is well in accordance with
those reported by Yap et al in [11]. As for the slab waveguide,
for 3D laterally confined waveguides the parameters A′ and A′′

can also be considered independent of w and h. Equation (5)
hence provides a simple and accurate fitting rule for both fun-
damental and higher order modes of 2D and 3D waveguides.

Figure 3 shows the measurements of the propagation
losses for SOI channel waveguides with h = 220 nm and
increasing w [13] for both the TE (black circles) and TM
(red triangles) fundamental modes. The effective index of
the modes as a function of the waveguide width has been
calculated with a commercial mode solver (FMM method).
Neglecting the roughness on the top/bottom surfaces (A′′ = 0),



Figure 4. Comparison between the backscattered power predicted
by the Ladouceur–Poladian model [6] (symbols) and the nw model
(dashed lines). The backscattering is shown as a function of the
waveguide width normalized to the width of the single-mode
operation limit (w0). The same three slab waveguides as in figure 2
(increasing index contrast 1n) with the same roughness parameters
(σ = 2 nm, Lc = 50 nm) have been used as examples. The values of
w0 in the three cases are 1.2 µm (1n = 3%), 0.8 µm (1n = 30%)
and 0.4 µm (1n = 90%).

the experimental results have been fitted with equation (5),
where the only free fitting parameter is represented by the
factor A, assumed as width-independent. A good match can
be observed between the experimental data and the nw model
for both modes. This is true also in the region around w =
0.3 µm where the model predicts a strong enhancement of the
propagation losses for the TE polarized mode.

4. Backscattering model

The second loss effect originated by the interaction of the
guided field with the sidewall imperfections is backscatter-
ing. Similarly to radiative losses, a model to evaluate the
backscattered signal generated by the sidewall roughness was
proposed by Ladouceur and Poladian [6] for a 2D waveguide.
The geometry of the problem is the same as figure 1. As in
the radiation loss case, a roughness profile with an exponential
correlation function given by equation (3) is considered. The
backscattering problem is defined in terms of a system of two
coupled equations describing the power exchange between the
propagating and counter-propagating modes. Assuming a slab
of length L � Lc and a small perturbation of the sidewalls
(with uncorrelated perturbations on the two sidewalls), the
distributed power backscatter coefficient can be expressed
as [6]

rb =

[
U 2W

2(w/2)3β(1+W )

]2
σ 2Lc

π

1
1+ 4β2L2

c
. (7)

The coefficients U and W are defined in appendix A. Assuming
weak backscattering, the total power reflected by the waveg-
uide is rbL .

Interestingly, the nw model proposed for the estimation
of the radiation losses can be applied also to the investigation
of the backscattering phenomenon [13, 14]. As described in
appendix B, the model in this case relies on ∂neff/∂w squared
instead of the linear dependence of equation (5) for radiative

Figure 5. The measured (symbols) backscattering as a function of
the normalized waveguide width for several technologies. The
experimental data refer to the TE mode and are numerically fitted
(dashed lines) with the nw model. The considered technologies are
SOI (black circles, B = 1.73× 103 (nm)) [13], SiON (blue
triangles, B = 8.0× 104 (nm)) [15], rib InGaAsP waveguide (red
diamonds, B = 1.49× 104 (nm)) [16], ridge InP waveguide (red
squares, B = 1.24× 104 (nm)) [17].

losses,

rb = B
(
∂neff

∂w

)2

. (8)

The expression for the proportionality factor B is given in
appendix B. As for the factor A, B also depends on the
waveguide width only through neff and can be considered
independent of w sufficiently far from the modes’ cut-off.

Figure 4 shows a comparison between the power backscat-
ter coefficient rb predicted by the Ladouceur–Poladian model
(equation (7), symbols) and the nw model of equation (8)
(dashed lines). The three cases refer to the same slabs as
in figure 2(a) for the TE fundamental mode. The waveg-
uide width is normalized to the width limit for single-mode
waveguides (w0) for convenience of presentation. The results
are well superposed, suggesting that the two models are
essentially equivalent. As expected, higher index contrast
increases the sensitivity of the mode to the sidewall imperfec-
tion (as in the case of the radiative losses) and consequently
the backscattering coefficient. On increasing 1n from 3%
to 90% the backscattered light increases by about 30 dB
almost independently of w, becoming a serious problem for
high-index-contrast waveguides.

As for the radiation losses, the nw model can also be
applied to 3D laterally confined waveguides through the
derivative ∂neff/∂n. Neglecting the contribution of the rough-
ness on the top/bottom surfaces of the waveguide, equation (8)
is valid in the 3D case as well, as suggested also in [13],
using B as the fitting parameter for the backscattering data.
Figure 5 shows the measured backscattered power (symbols)
as a function of the waveguide width (TE input mode) for four
very different types of waveguides: the silicon wire in SOI
technology used in figure 3 [13], a 2 µm-thick channel SiON
waveguide [15], a rib waveguide with an InGaAsP-based core
(thickness 1µm) on an InP substrate and no cladding [16] and a



deeply etched InP-based ridge waveguide with a 360 nm-thick
multi-quantum well core [17]. The experimental data are fitted
with the nw model (dashed lines), which holds correctly for
all the different technologies.

5. Discussion

Some considerations are worthwhile with regard to the relation
between the nw model and the waveguide parameters. Both
the Payne–Lacey model and the Ladouceur–Poladian model,
applied to either 2D slab or 3D waveguides through the
effective index method, can be used to predict the loss
coefficient αr and the backscattering rb as function of the
waveguide width once the information about the waveguide
geometry and sidewall roughness has been provided. The
examples of the previous sections show how, in both 2D and
3D cases, these results are correctly matched by those obtained
by applying the nw model, which basically represents the
derivative of the mode’s effective index with respect to the
waveguide width, apart from a constant scaling factor.

Considering a symmetric slab with core index n1, cladding
index n2 and widthw (figure 1), the normalized frequency can
be defined as

V =
ω

c
w

√
n2

1− n2
2 (9)

where ω is the angular frequency and c is the speed of light.
Taking the derivative of neff with respect to ω and w and
considering equation (9) leads to

w
∂neff

∂w
=ω

∂neff

∂ω
=−λ

∂neff

∂λ
. (10)

Combining equation (10) with the definition of the group
effective index ng = neff + ω(∂neff/∂ω) and assuming non-
dispersive materials (∂n1/2/∂ω = 0) the following result is
found:

∂neff

∂w
=

ng− neff

w
. (11)

Equation (11) relates the nw model to the difference (ng− neff).
The dependence of the waveguide losses and backscattering
on the difference (ng − neff) is rigorous and is related to the
fact that a change in the waveguide width modifies both the
group index and the mode’s field distribution and hence the
interaction with the sidewall roughness.

In the case of 3D waveguides, equation (11) still holds
provided that the derivative ∂neff/∂n is considered. In more
detail, the difference between ng and neff is related to the
relative strength of the longitudinal component of the field
with respect to the transverse component [18]. This can be
shown by introducing the time-averaged power P transported
by the waveguide

P =
∫
+∞

−∞

dx dy Sz =

∫
+∞

−∞

dx dy [E×H∗+E∗×H]z . (12)

Here, Sz is the component of the Poynting vector in the
propagation direction which depends only on the transverse
component of the field. The integration is made on the
whole cross-section of the waveguide. With a variational
approach (and assuming the absence of material dispersion)

the following relation is demonstrated [18]:

(ng− neff)=
2c
P

∫
+∞

−∞

dx dy [Ez · E∗z +Hz · H∗z ] (13)

where the subscript z refers to the field component in the
propagation direction and c is the speed of light. Equation (13)
states that the difference between ng and neff goes to zero when
the longitudinal component of the propagating mode vanishes,
for example with small refractive index contrast 1n or when
the waveguide is strongly multimode [18]. In this regime the
sensitivity of the field to the sidewall roughness vanishes as
well (since ∂neff/∂w→ 0) and backscattering and radiative
losses become negligible.

6. Conclusions

In conclusion, we have demonstrated that in optical waveg-
uides affected by sidewall roughness both the radiative losses
and the backscattering depend on the sensitivity of the
waveguide mode’s effective index to the width of the waveg-
uide, that is on the derivative ∂neff/∂w (nw model). The nw
model applies to a very good approximation to 3D structures
with arbitrary waveguide geometries, irrespective of the
considered photonic technology, as proven by the agreement
with experimental results.

Compared to existing and established approaches [2, 6],
the nw model enables an easier understanding of the interaction
between the sidewall roughness and the optical field, thereby
providing straightforward design rules, directly related to
the geometric and optical parameters of the waveguide, for
minimization of the extrinsic loss. In particular, both αr and
rb reduce when ∂neff/∂w→ 0, that is when the group index
ng approaches neff . This condition is typically difficult to
reach in high-index-contrast technologies, thus explaining the
loss [3–5] and backscattering [13] issues of silicon photonic
waveguides compared to low-index-contrast waveguides.

Finally, the key role pointed out here for the group
index and the mode shape (through the neff parameter) in
the scattering processes of classical waveguides finds a strong
analogy in the extrinsic loss problem of disordered photonic
crystal waveguides [19]. In both kinds of structures the
radiation loss and backscattering scale (approximately) with
ng and n2

g [19, 20], respectively, these relations setting tight
constraints on the optimization of the waveguide design.
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Appendix A. The Lacey–Payne model

We recall in this appendix the complete expressions for the g
and f functions of the Lacey–Payne model as reported in [2]
for a symmetric slab waveguide. The function g is defined as

g(V )=
U 2V 2

1+W
(A.1)



with the parameters defined as

U =
w

2

√
n2

1k2
0 −β

2, W =
w

2

√
β2− n2

2k2
0 (A.2)

and V defined by equation (9). n1 and n2 are the core and
cladding refractive indices, respectively, of a slab waveguide
of width w. k0 is the wavenumber and β is the propagation
constant. The definition of the function f is

f (x, γ )= x f̃ (x, γ )

=
x
√
[(1+ x2)2+ 2x2γ 2]1/2+ 1− x2√

(1+ x2)2+ 2x2γ 2
(A.3)

where

x =W
Lc

w/2
, γ =

n2V

n1W
√
1
, 1=

n2
1− n2

2

2n2
1

(A.4)

with Lc the correlation length of the sidewall roughness.

Appendix B. Demonstration of equations (5) and (8)

From the definitions in appendix A it is clear that both of the
parameters x and γ of the Lacey–Payne model do not depend
directly on the slab width w but only through the effective
refractive index neff = β/k0. The same is true also for the
function f (x, γ ). In particular, a numerical analysis shows that
for most practical cases f (x, γ ) (and hence f̃ (x, γ )) is a linear
function of the effective refractive index. Since far from the
cut-off of the mode neff is almost constant with the waveguide
width (in particular for low-index-contrast waveguides), both
f̃ (x, γ ) and f (x, γ ) exhibit a very slight dependence on w.

Rearranging the terms of equation (4) and exploiting
appendix A, a direct dependence on the slab width in the
Lacey–Payne model can be highlighted,

αr =C
1

1+ (w/2)k0

√
n2

eff − n2
2

. (B.1)

The factor C is defined as

C =
σ 2k3

0(n
2
1− n2

2)
√

2n1
f (n2

1− n2
eff) (B.2)

and does not depend explicitly on w.
The derivative of the effective index with respect to the

waveguide width exploited in the nw model can be calculated
for a symmetric slab through equation (16) of [21]. With simple
manipulation

∂neff

∂w
=

n2
1− n2

eff
w̃neff

. (B.3)

The effective width of the waveguide w̃ is defined for a
symmetric slab as

w̃=w+
2

k0

√
n2

eff − n2
2

. (B.4)

Substituting equation (B.4) into equation (B.3) the derivative
results to be

∂neff

∂w
= D

1

1+ (w/2)k0

√
n2

eff − n2
2

(B.5)

with

D =
(n2

1− n2
eff)k0

√
n2

eff − n2
2

2neff
. (B.6)

As for the factor C , D also depends on w only through the
effective refractive index neff .

The propagation losses predicted by the Lacey–Payne
model are then equivalent to the derivative of the effective
refractive index with respect to the slab width (nw model)

αr = A
∂neff

∂w
(B.7)

through the proportionality factor A which can finally be
calculated as

A=
C
D
=
σ 2Lck3

0(n
2
1− n2

2)
√

2
n1

neff f̃ . (B.8)

As already stated, far from the mode’s cut-off the term neff f̃
can be considered almost independent of the waveguide width,
as demonstrated by the results in figure 2 where A has been
assumed as constant. A deviation of the nw model from the
Lacey–Payne results can be observed near the cut-offs of the
modes (e.g. the first and second higher order modes in fig-
ure 2(b)), where even a small increase of the waveguide width
provokes a non-negligible variation of neff (and hence A).

The nw model for backscattering can be demonstrated
with similar arguments exploiting equations (B.5) and (B.6) to
compute the expression of (∂neff/∂w)

2. Comparing this result
with equation (7), the coefficient B of equation (8) is defined
as

B =
σ 2Lck2

0

π(1+ 4k2
0 L2

cneff)
. (B.9)

As for the proportionality factor A, B also depends on
the waveguide width only through the effective refractive
index neff .
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