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This paper studies the problem of guaranteed cost control for spacecraft evacuation. The relative dynamic model is established based
on Clohessy-Wiltshire (C-W) equations. The paper has taken parameter uncertainty, output tracking, disturbance attenuation, and
fuel cost into consideration. The paper introduces a new Lyapunov approach, so the controller design problem can be transferred
into a convex optimization problem subject to linear matrix inequality (LMI) constraints. By using the controller, the spacecraft
evacuation can be completed in a safe extent. Meanwhile, the fuel cost also has an upper bound. Then the paper analyzes the
approach of evacuation and discusses possible initial states of the spacecraft for the controller design. An illustrative example is
applied to show the effectiveness of the proposed control design method, and different performances caused by different initial

states of spacecraft (-V-bar, -R-bar, and +H-bar) are simulated.

1. Introduction

With the development of aerospace science, the research
of space exploration is deepening gradually. Among them,
manned space technology has been in the limelight of the
aerospace around the world. In addition, most tracking
spacecrafts need to be evacuated safely after completing
autonomous spacecrafts rendezvouz. Furthermore, evacua-
tion segment can be divided into three stages: unlocking,
separation, and orbital transformation. In the study of evacu-
ation, Fehse has introduced the process and the bounds of the
evacuation [1]. Besides, he has also compared the evacuation
from V-bar and R-bar and has discussed the security of the
two means. Yin et al. also review most popular data-driven
PM-FD methods with recent developments [2, 3]. Hablani
et al. has studied the target spacecraft by using a kind of
multiplepulse linear guidance control method applicable to
arbitrary direction approach and evacuation [4]. Bergez et al.
has reached the conclusion which is based on an assumption,
where the safe evacuation theory is happening in the failure

of capture lock while the ATV is docking with the Russian
Mir space station [5]. However, some correlative issues have
not yet been fully explained because of their complexity and
uncertainty, and many existing studies have left considerable
room for improvement. This leads us to look for a new
method to control the evacuation phase of spacecraft.
Moreover, spacecraft relative motion problems are often
took over based on Clohssey and Wiltshire (C-W) equa-
tions in 1960 [6, 7]. Generally speaking, the equations are
transformed into a state function based on x(t) = Ax(t) +
Bu(t), where x(t) is the relative position and velocity states
vector and u(t) is the control input vector. This description
has been used widely to study the spacecraft rendezvous
problems [8-11]. But due to many uncertain factors, the state
matrix A and the control input matrix B are not easy to
be determined accurately. Besides, the elements of matrix
A are related to the angle velocity of the target spacecraft
which is susceptible to many inevitable factors such as
errors of detection. Besides, the conceivable mass variation
of fuel causes the input of thrusters inaccuracy, which can be



regarded as the uncertainty of the input matrix B [12]. These
uncertainties may lessen stability of spacecraft evacuation
phase. In the past decades, many researches about uncertain
system papers [13-18]. Petersen presents an algorithm for
the stabilization of a class of uncertain linear systems. The
uncertain systems under consideration are described by state
equations which depend on time-varying unknown-but-
bounded uncertain parameters [19]. Singla et al. has devel-
oped an output feedback structured model reference adaptive
control law for spacecraft rendezvous and docking problems
[20]. However, the parameter uncertainties have not attracted
enough attention to the research of spacecraft evacuation
phase control problems. This leads to our desire to think over
uncertainties and find a proper method to handle them.

The evacuation phase and short-range phase all belong
to the relative navigation phase, both of them based on the
relative phase. Evacuation phase is an opposite movement
process to short-range phase with the final approach phase.
Spacecraft rendezvous and docking are unusual complex
fields of aerospace work, which must be measured accurately
to the relative position and relative attitude of the two
spacecrafts. Rendezvous and docking phases ask for a very
high requirement of accuracy, reliability, and control system
robustness of the independent measurement system. The
slightest mistake could result in docking failure. However,
the researches of the spacecraft evacuation seem too few
compared with the researches of spacecraft rendezvous and
docking. That is because spacecraft evacuation needs less
automaticity than rendezvous, which is primarily based on
orbit control to ensure the security of the process. In that
case, the chaser will not collide with the target spacecraft even
when the thrust equipment is out of control. So the study of
spacecraft rendezvous and docking has a significant reference
for the control of evacuation phase.

Besides, rendezvous and docking not only need the
orbital maneuvering control, but also are based on the
advanced attitude control. Nevertheless, the evacuation phase
is mainly based on the orbital maneuvering control. To sum
up, research of orbital maneuvering control for the ren-
dezvous has a very important significance of the evacuation
phase. In recent 50 years, related researchers have done in-
depth research for spacecraft rendezvous and docking and
made a lot of research achievements in the orbital maneu-
vering control problem. In addition, spacecraft autonomous
rendezvous (RVD) has been recognized as a crucial issue for
many progressive astronautic missions. Besides, spacecraft
autonomous rendezvous is also very important in the field of
the manned space flight project. Manned space flight project
generally requires the technique of spacecraft autonomous
rendezvous, such as the spacecraft orbit service, space rescue,
repair, and the space station supplies. Nowadays, United
States, Russia, Europe, Japan, and other countries are involv-
ing to the area of spacecraft autonomous rendezvous and
have experiment successfully for hundreds of times. As
manned space technology develops, the theory of spacecraft
autonomous rendezvous will be more mature than the past
[8-11, 20, 21].

The paper provides a systematic research of the control
problem aiming at the orbit of the spacecraft autonomous
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FIGURE 1: Spacecraft rendezvous and the utilized coordinate.

evacuation and gives a new method to control the evacuation
phase of spacecraft. Based on the two-body problem, the
paper has constructed the relative motion equation for the
process of evacuation, which is the C-W equation, and makes
a brief introduction about the bound that the spacecraft has
to comply with. Then it gives the new controller calculated
by the bound of guaranteed cost output [22-27]. Firstly,
the paper analyzes the characteristic of the holding point.
Then it uses the state error variables to replace the state
vector. Transform the tracking problem of constant reference
signal into the problem of asymptotically stability under the
feedback control [28]. However, the spacecraft has to receive
many disturbances during the flight, such as solar radiation
pressure perturbation and electromagnetic radiation. Thus
the paper takes the uncertainty into consideration when
it designs the controller. Besides, the paper considers the
limited constraint condition and the quadratic performance
index, transforms the problem into convex optimization of
the LMI by the method of Lyapunov, and then receives
the guaranteed cost output with the minimal upper bound.
Verify the solution by simulation with MATLAB. In the end
of the paper, we compare the fuel consumers under the
different levels of the disturbance and simulate the output
tracking of the chaser spacecraft by three cases (-V-bar, -R-
bar, and +H-bar). The result proves that the model has good
dynamic response, reliability, and self-adaptability. Therefore,
the model can be applied to control system of spacecraft.

2. Problem Formulation

A right-handed Cartesian coordinate can be established
based on the structure of the target. As shown in Figure 1,
the origin attaches to the mass center of the target, the x-axis
is along the vector from earth center to the origin, the y-axis
is along the target orbit circumference, and the z-axis sets up
the right-handed frame [29].

In this coordinate system, the evacuation phase described
in this paper can be depicted in Figure 2.

Define R, as the radius of the target circular orbit and »n
as the angular velocity of the target equals (y,/ Rg)l/ ?, where
M, is the gravitational parameter of the earth. Considering the
C-W equations and proposing the mathematical description
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FIGURE 2: Evacuation phases of rendezvous in the target frame
coordinate.

of the relative motion for two adjacent spacecrafts, the relative
dynamic model can be described by C-W’s equations as

X

1
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where x, y, and z are the components of the relative position
in corresponding axes, m is the mass of the chaser, and T; (i =
X, ¥,z) is the ith component of the control thrust applied on
the spacecraft [30].

2.1. Transfer of Evacuation Phase. By defining the state vector
x(t) = [xyz%p, )", control input vector u(t) =
(T, Ty, TZ]T, and output vector y(t) = [x, y, z]%, we have
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Thus, the specific relative motion of chaser and target can
be realized by designing proper control input thrust u(z).

2.2. Uncertainty. Due to the measure the complex external
perturbations among the objects in space, the target angle
velocity n can be described accurately. Besides, inevitable
input uncertainties still exist because of the error of the
thrust and fuel. Having taken these modeling uncertainties
into consideration, the system functions can be expressed as
follows:

x(t)=(A+AA)x(t)+(B+AB)u(t),
y(t)=Cx(t).

(4)

The two norm-bounded uncertain matrices AA and AB
have proper dimensions and are in the form of [AA AB] =
Ap(t)[o, 0,], where A, 0,, and o, are the constant matrices
with proper dimensions, which can reflect the uncertainty
structure; ¢(t) is an unknown real-time varying matrix with
Lebesgue measurable elements bounded by (pT(t)go(t) < L
The introduced matrices can be regarded as the following
patterns because of the structures of A and B:

000100
A=Yx|[0000
000001

—

- B

000110
1001
000000O0

o
o

(5)
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Define ¢(t) = diag[e, (£), ,(t), @;(t)], where ¢, (t), ¢, (1),
and ¢;(t) are three varying scalars within the boundary of
[0,1]. And Y, E, and ( signify magnitudes of the uncertain-
ties.

Then, the system state functions with modeling uncer-
tainty can be rewritten as

x(t) = Ax(t) + Bu (1),

y () =Cx(t),

(6)

where A = A + Ag(t)o, and B = B + Ag(t)o,. It can be seen
that matrices A, g, and o, reflect the structural information
of uncertainties.

2.3. Output Tracking. Considering the evacuation phase of
spacecraft rendezvous, the terminal position of the chaser is
a certain point that can be defined as a fixed reference output
signal x, = (x,,¥,,%,,0,0, 0)". Therefore, the evacuation
phase orbital control problem can be solved by designing an
output tracking controller. The output x(t) of the closed-loop
system tracks the reference signal x,, which means that

lim [x(5) - x,] = 0. %)



We introduce the error integral action in the controller for
eliminating the steady-state tracking error. Then we define

t
e(t) = J [x(7) - x,] dT (8)
0
and then we have é(t) = x(t) — x,.

Therefore, we obtain the augmented system

E(t) = AE(t) +Tu(t) + P&,

f @) =D& (1) + DE,, v
where
g ) e[l
(10)

®=[C 0],

Considering the uncertainties described in (4), the aug-

@ented matrices A and T can be further transformed into
A=A+ AA, T =T+ AT, where

o[22 e f)

AT =TIg (t) 05, Hz[o], 0.4 = [E; 0].

AA =Tlg (t) 014,
(11)

Use the state feedback control law, and define K =
[Kq K], then we obtain u(t) = K&(t) = qu(t) + K,d(t).

Then the augmented closed-loop system can be described
as

E(t) = [A+TK|E(t) + P, (12)

The output tracking requirement in (7) can be satisfied
it the closed-loop system in (12) is stable. Thus, the output
tracking control problem studied in this paper can be trans-
formed into the stabilization problem of the system in (9). If
there has a controller K guarantee the system stable in (9),
then the output ¢(t) of (6) can track the reference signal f,.

2.4. Control Performance. Primarily, we take the rendezvous
control performances into consideration. Because of the
weight boundary of spacecraft, the minimal fuel cost has to
be chosen as one control performance index for evacuation.
Then, by defining a control weighting matrix R;.;, the
fuel cost performance index can be expressed as J; =
j0°° uT (H)Ru(t)dt.

Secondly, there should not be violent shake during the
orbital transfer for the security. Define a control weighting
matrix Q, and then the smooth transfer trajectory control
performance index can be written as J, = f;o ET(HQE(t)dt.

Then, consider the two performance indexes together.
The comprehensive control performance cost can be
described as

=1+ b= W OReO+E OQEO]dr 1)
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For u(t) = K{(t), the equality (13) can be redescribed as

J= Loo [¢" () K"RKC (1) + {7 () Q¢ (1) dt. (14)

Then, the guaranteed cost control design problem can be
depicted as follows: to find an admissible controller K, which
makes the system performance cost ] meets a minimal upper
bound y.

Besides, the dynamic performance of a system is cor-
related to the location of its poles, and the satisfactory
transient responses can be ensured by constraining the poles
to position in a prescribed region. In this paper, we consider
the disk regional poles constraint, which has been proved
efficient in both theory and practice. Consider the uncertain
rendezvous dynamic model (9); design a guaranteed cost
output tracking controller K, such that the closed-loop
system in (12) is asymptotically stable (meaning that the
output tracking requirement in (7) is satisfied); meanwhile,
the performance cost in (14) is below a prescribed upper
bound for all admissible uncertainties.

2.5. Description of the Control Law

Lemma 1. To the given symmetric matrix A = [22 ﬁ; ], the
following conditions are equivalent:
(i) A<O0;
(il) Ay <0, Ay — AT ATIA, < O;
(iii) Ay <0, Ay — ApAATL, <O.

Lemma 2. u(t) = Kx(t) is a guaranteed cost controller if there
exist symmetric positive-definite matrices P, S € R* such that
for all uncertain matrices ¢ satisfying ¢" (t)o(t) < I,

z P[Z+ Ao (0, +02)]

[K+ A (o) + 02)]TP -S <0 (1)

where X = Q+ K'RK + S + sym{P[A + BK + Agp(0, + 0,)]}
[31].

Based on Lyapunov stable theory, the controller design
requirements such as input constraint and the guaranteed
cost are formulated as some LMI conditions, and the con-
troller design problem is cast into a convex optimization
problem subject to the LMI constraints.

Presume x, = 0. Define the Lyapunov function V((t)) =

£)TPE(t), where Pis a positive symmetry matrix. Then,
VE®) =E0) sym {P(A+TK)} ). (6)
If a controller K can satisty the following equation,
sym {P (K + fK)} <0, (17)

then the system begins to stabilize.
Besides, the target function should satisfy some con-
straints like Lemma 2 as follows:

VE®) <-E (6 (Q+KRK)E(®) <o. (18)
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Then the system not only begins to stabilize, but also has
a certain upper constraint.
Consider the following:

J= joo [E" ) QE® +u" (1) Ru(t)] dt
' (19)

<v((0) = £ (0) PE(0),

where £(0) means the error in the system.

The quadratic performance index is restrained by
V(E(e)) = E(t)T PE(r). This upper bound form of the perform-
ance index can qualitatively describe the consumption of fuel
and concussion of trace.

The function can be transferred as based on Lemma 2.

Consider the following:

sym {P(A+TK)} +Q+K'RK < 0. (20)

However P and K are not independent. Therefore the
function above is not a LMI. But based on Lemma 1and define
X = sym{P(K +TK)}, 0= diag(Ril,Qfl), and @ = [KT, 1], it
equals

[i‘ ‘Z] <0. (21)

Define X = P, Y = KP™', 3 = sym{AX + I'Y}, and
H = [YT, I]. We obtain the function

[f Iz] <0. (22)

The function isa LMI about X and Y to the certain system
matrix A and the input matrix T. Using the LMI box in the
Matlab can readily solve the function.

First, introduce the matrix U, = [1,0, 0]711,0,0]; U, =

[0,1,0]7[0,1,0]; U, = [0,0,1]7[0,0, 1].
Then, we obtain

w2 (1) = [Uu®)] [Uw (1)) <

X,max’

20 = [Uu®)] [Uu®)] < (23)

u y,max’

ul (t) = [Uu (t)]T [Uut)] <u’

z,max’

and u

.max are the maximum inputs of

where w00 Uy mao
the system.
According to u(t) = K&(t), we have the constraint of the

system

u? () = [UKE®)]" [UKE (1))
(24)
=& () K'UTUKE (t) < u?

i,max’

wherei = x, y, z.

Because the LMI has already guaranteed that the closed
system has the upper bound, then

V(&) = EBOTPE() < V(E(0)). (25)

Thus, when the x, has been given, the function V(£(0)) =

£(0)T PE(0) has the constraint V(£(0)) < Y.
Then, we have

u 2 ETOKUTUKE () < 'E () PE®).  (26)

Because we know if the target constraint is less than the
Lyapunov function, the controller can satisty the require-
ment. Then, we obtain

U o K'UTUK < ' P, (27)

However, the function above is not the LMI. According to

Lemma 1, we have

) (28)

i,max

—u'p (UK)T
u P (UK) o

* —u

Take the left and right by matrix diag{P™', I}, then the
LMI can be described as follows:

[—HIX (Uiy)"

i,max

<0. (29)

* -Uu

Besides, we can alter the function above:

[_“ 5(0));] <0. (30)

* —

By solving the LMI above and using the (X,Y), we can
obtain the matrix K, then we can design the controller u(t),
in which K = YX'.

Meanwhile, we can also obtain the upper bound of the
system

Tmax = £(0) XE(0). (31)

Next, we consider the obtained performance cost upper
bound. Apart from the obtainable upper bounds of the
performance consumers, it is also hopeful to make the
bounds as low as possible to the practical engineering. We
introduce another matrix @ satisfying

[_*6 _IX] <0 (32)

which means ® > X! > 0. Then, the lower performance cost
bound can be obtained by solving the following optimization
problem:

min £(0)"@F (0)
(33)
st.  LMIs (22),(29),(30) and (32).



According to the results shown above, we can find that the
solution of the optimization problem does not totally depend
on the exact value of the uncertain matrix ¢(t), and the
magnitudes of the uncertainties can be adjusted by changing
the values of Y, E, and Q. Thus, the effects of the parameter
errors can be analyzed according to these three parameters.
Particularly, when we assume Y = E = Q = 0, which means
that there is no parameter error in the model, the uncertain
matrices A, g, and o, will be transformed into zero matrices.
At the same time, the system takes exactly the form of the
nominal system of no uncertainty. Correspondingly, the LMI
constraints will alter, and the relative optimization problem
can also be solved readily. The conditions are all formulated
in the form of linear matrix inequalities, and the controller
design is transformed into a convex optimization problem
subject to LMI constraints that can be solved by Matlab.
However, the conditions we obtained here are sufficient
conditions for the existence of a proper controller. Thus, even
if there is no parameter error, the result is not the unique
solution of the controller design problem. This is because
the guaranteed cost and the poles constraint of the closed-
loop system are considered simultaneously. It is still hard
to solve this kind of multiobjective optimization problem,
and finding a necessary and sufficient condition for the
existence of the proper controller is difficult. However, the
correlative problems are significant and worth investigating
in our further studies. For the orbital control system, there
are many other performances that can be adopted for the
controller design. The orbital controller design problems
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with these kinds of performance measures for spacecraft
rendezvous are worth studying in the future.

3. Illustrative Example

Because the target spacecraft has 3 methods to evacuation
(-V-bar, -R-bar, and +H-bar), this chapter discussed and
simulated the guaranteed cost control low based on these
methods separately. In this section, we provide an example
to illustrate the usefulness and advantage of the controller
design method proposed in the above sections. We consider
a couple of adjacent spacecrafts, where the chaser is being
transferred towards the target along the homing phase orbit.
Assume the mass of the chaser is 600 kg, and the target is
moving in a geosynchronous orbit of radius r = 42241 km
with an orbital period of 24 hours. Thus, we have the angle
velocity n = 1.117 x 10~ rad/s. Assume that the maximum
input control force is 130 N.

3.1 -V-bar. According to the coordinate based on target
frame, we presume that the chaser transfers to position
(135,0,0). Therefore, the initial error state can be expressed
as (-135,0,0,0,0,0,0,0,0)".

For simplicity, we presume the thrust can vary continu-
ously. First, we analyze the situation with Y = & = Q =
0.03. In the coordinate based on target frame, assume the
initial state of homing phase is [0, 0,0, 0,0, 0,0,0,0]. And by
considering the construction of uncertainties in the form of
(9), we make the following assumptions:

r 0.0001 0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0020 —-0.0001 -0.0001 17
0.0000  0.0001  0.0000 -0.0000 -0.0000 -0.0000 —-0.0003 -0.0020 -0.0005
0.0000  0.0000 0.0001 -0.0000 -0.0000 -0.0000 -0.0002 -0.0005 —0.0021
—-0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
X =|-0.0000 —0.0000 —0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
—-0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
—-0.0020 —-0.0003 -0.0002 0.0000 0.0000 0.0000 0.0626 0.0029 0.0015 (34)
—-0.0001 -0.0020 -0.0005 0.0000 0.0000 0.0000 0.0029 0.0604 0.0076
| -0.0001 -0.0005 -0.0021 0.0000 0.0000 0.0000 0.0015 0.0076 0.0621 ]
-0.0198 -0.0002 -0.0001 -0.0002 0.0000 0.0000 0.3065 -0.0200 -0.0097
Y =107 x | 0.0053 —0.0063 —0.0058 —0.0002 —0.0005 —0.0003 —0.1446 0.0986 0.0035
0.0075 -0.0050 —-0.0061 -0.0002 -0.0003 -0.0006 -0.1492 -0.0014 0.0904
Therefore, the gain matrix for the augmented feedback
controller is given by
-0.8725 0.0156 -0.0023 -19.6879 -0.0475 -0.0355 -0.0156 —0.0000 -0.0002
K=YxX'=|[-01172 -0.7895 —0.2242 -1.8656 -21.4237 -1.1423 —0.0032 —0.0140 —0.0073 | . (35)
0.0174 —0.1945 —0.7776 —0.5884 —0.2998 -20.7360 —0.0010 —0.0066 —0.0142
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FIGURE 3: Chaser’s positional output of closed-loop control.

The output of the system which means the relative
position of the two spacecrafts is depicted in Figure 3.

It can be seen that the output of the system is asymptot-
ically convergent to the reference signal, which means that
the chaser keeps at the terminal point. We can also obtain
the relevant control thrusts needed for these methods in
Figure 4.

Besides the nonzero initial velocity, the coupling action
brought by parameter uncertainties is another source for the
fluctuation in z-axis. It can be seen that the fluctuation finally
restrained and the positional output in z-axis asymptotically
converged to the reference signal. We can see that the
controller can effectively stabilize the system in spite of the
existence of parameter uncertainties.

[—0.8726 0.0168 —0.0012 —19.6631
Kege 4 = | —0.0510 —0.8183 —0.1570 —0.7472
| —0.0232 —0.1522 -0.8247 -1.0570
[-0.8728 0.0137 —0.0035 —19.6836
Kcae s = | —0.0886 —0.7852 —0.2359 —1.5512
| —0.0103 -0.2165 —0.7832 -1.1239
[-0.8723 0.0153 -0.0014 —19.7047
Keae ¢ = | —0.1809 —0.7652 —0.2506 —2.9144
| 0.0635 -0.2401 -0.7132 —0.0714
[-0.8702 0.0296 0.0013 -19.6788
Keae p = | —0.3263 —0.7475 -0.1084 -2.9313
| 0.2335 0.0512 -0.7417 3.9454

and the positional outputs of the closed-loop systems with
these controllers in three axes are depicted in Figures

80

60
40
20

-20 }
—40 }

—60 |

Positional input along axis (m)

—-80 H

-100

~120 . 1
600 800

400
Force (N)

0 200 1000

— X-axis
— Y-axis
—— Z-axis

F1GURre 4: Chaser’s input thrust of closed-loop control.

Next, we change the magnitudes of uncertainties by
considering the following four conditions:

Case A: Y=E=0Q0=0;
Case B: Y =0.03, =

Case C: Y = 0.06, ==
Case D: Y = E = QO =0.0652.

The proper controllers for these conditions can be
obtained by solving the convex optimization problems as
follows:

-0.0165 -0.0238 -0.0156 0.0001 -0.0001]
-22.4896 -0.5307 -0.0021 -0.0140 -0.0052 |,
—0.5274 -22.3842 -0.0012 —0.0052 -0.0144 |
-0.0418 -0.0430 -0.0157 -0.0001 -0.0003]
—21.3489 -1.2784 -0.0029 -0.0140 -0.0074 |,
—-0.8532 -20.8999 -0.0015 -0.0071 -0.0143 |
- (37)

-0.0793 -0.0305 -0.0156 -0.0001 -0.0002

-20.5827 -1.3472 -0.0042 -0.0138 -0.0083 |,
—0.5607 -19.1985 -0.0007 —0.0075 —0.0132 |
-0.0089 0.0016 —0.0154 0.0004 0.0000 ]|
—22.6185 -0.2819 -0.0036 —0.0106 —0.0041 |,
4.0154 -19.6471 0.0032 -0.0009 -0.0129 |

5, 7, and 9 separately. We can also obtain the four rel-
evant control thrusts needed for these two methods in
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FIGURE 5: X-axis positional output of closed-loop system for the four
different uncertainty cases.

Figures 6, 8, and 10 separately. We can see that the closed-
loop systems with the controllers K are all stable and
the output tracking requirement can be guaranteed. From
these figures and the data, we can also find that the
larger uncertainties will extend the stabilizing time and
bring larger fluctuations in z-axis input thrust, and the
performance cost bound will also be elevated by larger
uncertainties.

Finally, the terminal segment close to the target is
depicted clearly in Figure 11. It can be seen that the chaser
will asymptotically move to the evacuation point eventually,

—0.0000 -0.0000 —-0.0000 -0.0019 -0.0002 -0.00057

—-0.0000 —-0.0000 -0.0000 -0.0003 -0.0020 -0.0002

—-0.0000 —0.0000 -0.0000 -0.0005 -0.0002 -0.0021
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FIGURE 6: X-axis input of closed-loop system for the four different
uncertainty cases.

which means that the output tracking requirements can be
satisfied by the designed controller K.

3.2. -R-bar. According to the coordinate based on target
frame, we presume that the chaser transfers to position
(0,—-135,0). Therefore, the initial error state can be expressed
as (0,135,0,0,0,0,0,0,0)".

For simplicity, we presume the thrust can vary continu-
ously. First, we analyze the situation with Y = & = Q =
0.03. In the coordinate based on target frame, assume the
initial state of homing phase is [0, 0,0,0,0,0,0,0,0]. And by
considering the construction of uncertainties in the form of
(9), we make the following assumptions:

r 0.0001 0.0000 0.0000
0.0000 0.0001 0.0000
0.0000  0.0000 0.0001
—-0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000
X =|-0.0000 -0.0000 —0.0000 0.0000 0.0000 0.0000
—-0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000
—-0.0019 -0.0003 -0.0005 0.0000 0.0000 0.0000
—0.0002 -0.0020 -0.0002 0.0000 0.0000 0.0000
L —-0.0005 -0.0002 -0.0021 0.0000 0.0000 0.0000
—-0.0068 0.0065 -0.0062 -0.0005 -0.0002 -0.0003 0.0595
Y =107 x | —0.0004 —0.0194 —0.0005
—-0.0051 0.0077 -0.0059 -0.0003 -0.0002 -0.0006 0.0089
-0.8013 -0.0073 -0.2275 -20.7499 -2.1876
K=Y xX"'=|-00521 —-0.8723 —0.0134 -0.1245 —-19.6957
—-0.2448 0.0160 -0.7531 -0.8687 —0.3932

0.0000
0.0000
0.0000
0.0590
0.0035
0.0086

0.0000
0.0000
0.0000
0.0035
0.0630
0.0028

—-0.0000 —0.0002 —0.0000 -0.0014 0.2965
-0.1633 0.1018

0.0000
0.0000
0.0000
0.0086
0.0028
0.0618

—-0.1188 -0.0113
-0.0121

(38)

Therefore, the gain matrix for the augmented feedback
controller is given by

-1.2217
-0.0528

-0.0148 —-0.0009 -0.0077
—-0.0009 -0.0157 -0.0007
—-20.6737 —0.0075 -0.0008 -0.0134

(39)
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FIGURE 7: Y -axis positional output of closed-loop system for the four
different uncertainty cases.
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FIGURE 8: Y-axis input of closed-loop system for the four different
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The output of the system which means the relative
position of the two spacecraft is depicted in Figure 12.

It can be seen that the output of the system is asymptot-
ically convergent to the reference signal, which means that
the chaser keeps at the terminal point. We can also obtain
the relevant control thrusts needed for these methods in
Figure 13.

Besides the nonzero initial velocity, the coupling action
brought by parameter uncertainties is another source for
the fluctuation in z-axis. It can be seen that the fluc-
tuation is finally restrained and the positional output
in z-axis asymptotically converged to the reference sig-
nal. We can see that the controller can effectively sta-
bilize the system in spite of the existence of parameter
uncertainties.
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FIGURE 9: Z-axis positional output of closed-loop system for the four
different uncertainty cases.
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FIGURE 10: Z-axis input of closed-loop system for the four different
uncertainty cases.

Next, we change the magnitudes of uncertainties by
considering the following four conditions:

Case A: Y=E=Q0=0;

Case B: Y =0.03, E=0=0.015
Case C: Y = 0.06, =0 =0.03;
CaseD: Y =2 =Q =0.0652.

(40)

[11

The proper controllers for these conditions can be
obtained by solving the convex optimization problems as
follows:



10
[-0.8255 0.0128 —0.1707 —22.1674
Kegee s = | 0.0275 —0.8714 —0.0092 —0.0469
| -0.1763 —0.0132 —0.8192 —0.6430
[~0.7953 —0.0035 —0.2394 —20.8135

Kepep = | —0.0425 —0.8720 —0.0144 —0.1018
| —0.2562 —0.0016 —0.7652 —1.2303
[-0.8103 —0.0211 —0.2089 —20.2798
Kege o = | —0.0766 -0.8730 —0.0122 —0.2170
| 02670 0.0462 —0.6986 -1.1317
[~0.8509 —0.0492 —0.1465 —20.3975
Kepep = | ~0.1433 —0.8744 —0.0109 —0.5140
| —0.1512 0.1218 —0.6620 0.6308

and the positional outputs of the closed-loop systems with
these controllers in three axes are depicted in Figures 14,
16, and 18 separately. We can also obtain the four relevant
control thrusts needed for these two methods in Figures 15,
17, and 19 separately. We can see that the closed-loop systems
with the controllers K are all stable and the output tracking
requirement can be guaranteed. From these figures and the
table, we can also find that larger uncertainties will extend the
stabilizing time and bring larger fluctuations in z-axis input
thrust, and the performance cost bound will also be elevated
by larger uncertainties.

Finally, the terminal segment close to the target is
depicted clearly in Figure 20. It can be seen that the chaser
will asymptotically move to the evacuation point eventually,
which means that the output tracking requirements can be
satisfied by the designed controller K.

r 0.0001 0.0001 0.0000
0.0001  0.0001 0.0000
0.0000  0.0000 0.0001
—-0.0000 -0.0000 -0.0000
—-0.0000 -0.0000 -0.0000
—-0.0000 -0.0000 -0.0000
-0.0017 -0.0010 -0.0003
—-0.0008 -0.0018 -0.0003

L -0.0004 —-0.0004 -0.0021

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

—-0.0070 —-0.0068 0.0019

Y =107 x | =0.0070 —0.0070 0.0017

—0.0000 -0.0000 —0.0000 —0.0017 -0.0008 -0.0004 17
—-0.0000 —-0.0000 —-0.0000 -0.0010 -0.0018 -0.0004
—-0.0000 —0.0000 -0.0000 -0.0003 -0.0003 -0.0021
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-1.1565 -0.6244 -0.0146 —0.0002 —0.0058]
-19.6785 -0.0279 -0.0007 —0.0156 -0.0005 |,
—0.7610 —-22.3625 —-0.0058 —0.0010 —0.0143 |
-1.9250 -1.3488 -0.0147 —0.0009 —0.0078]
-19.6821 -0.0528 -0.0010 -0.0157 —0.0007 |,
-0.7713  -20.9066 -0.0078 -0.0011 -0.0137 |
_ (41)
-2.8811 -1.0569 -0.0151 -0.0013 —-0.0076
-19.7221 -0.0484 -0.0011 -0.0158 -0.0007 |,
0.1392  -19.6532 —-0.0075 —0.0003 -0.0122 |
-4.1579 -0.5316 -0.0154 —0.0016 —0.0062]
-19.7942 -0.0420 -0.0014 -0.0159 -0.0007 |,
2.0097 -18.6886 —0.0048 —0.0013 -0.0108 |

3.3. +H-bar. Due to the poor security and the accident of
collision, the application of the H-bar is less than those of the
methods discussed above. However, H-bar evacuation is easy
to accomplish because the z-axis is uncorrelated with x-axis
and y-axis. Besides, H-bar evacuation consumers less fuel
and can move along the H-bar automatically. So, we consider
H-bar evacuation as a kind of illustrative example.

According to the coordinate based on target frame, we
presume that the chaser transfers to position (0,0, 135).
Therefore, the initial error state can be expressed as
(0,0,-135,0,0,0,0,0,0)".

For simplicity, we presume the thrust can vary continu-
ously. First, we analyze the situation with Y = & = Q =
0.03. In the coordinate based on target frame, assume the
initial state of homing phase is [0, 0,0, 0,0, 0,0,0,0]. And by
considering the construction of uncertainties in the form of
(9), we make the following assumptions:

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0541
0.0169
0.0056

0.0000
0.0000
0.0000
0.0169
0.0559
0.0057

0.0000
0.0000
0.0000
0.0056
0.0057
0.0638

(42)

-0.0005 —-0.0004 -0.0004 0.0599 0.0242
—-0.0004 -0.0004 -0.0004 0.0306 0.0444

-0.0729
-0.0716

—-0.0024 -0.0023 -0.0180 -0.0001 -0.0001 -0.0003 -0.0459 -0.0436 0.2483

-0.6798 —-0.3389 -0.1329 -18.4530
-4.1696
0.3381

-0.4350 -0.6511 -0.1324
—0.0448 -0.0400 -0.8411

K=YxX'=

Therefore, the gain matrix for the augmented feedback
controller is given by

-3.9755
-18.1157
0.3693

-2.1891 -0.0130 -0.0093 -0.0044
-2.1782 -0.0106 -0.0123 -0.0044
—-18.7812 -0.0029 -0.0026 -0.0158

(43)
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The output of the system which means the relative
position of the two spacecrafts is depicted in Figure 21.

It can be seen that the output of the system is asymptot-
ically convergent to the reference signal, which means that
the chaser keeps at the terminal point. We can also obtain
the relevant control thrusts needed for these methods in
Figure 22.

Besides the nonzero initial velocity, the coupling action
brought by parameter uncertainties is another source for the
fluctuation in z-axis. It can be seen that the fluctuation finally
restrained and the positional output in z-axis asymptotically
converged to the reference signal. We can see that the
controller can effectively stabilize the system in spite of the
existence of parameter uncertainties.
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FIGURE 13: Chaser’s input thrust of closed-loop control.
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FIGURE 14: X-axis positional output of closed-loop system for the
four different uncertainty cases.

Next, we change the magnitudes of uncertainties by
considering the following four conditions:

Case A: Y=E=0Q0=0;

Case B: Y =0.03,

M

=Q=0.015
(44)

I

Case C: Y = 0.06, 2=0=0.03
CaseD: Y = E =Q = 0.0652.

The proper controllers for these conditions can be
obtained by solving the convex optimization problems as
follows:
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[-0.8726 0.0168 —0.0012 —19.6631
Kegee s = | =0.0510 —0.8183 —0.1570 —0.7472
| -0.0232 —0.1522 —0.8247 -1.0570
[—0.8728 0.0137 —0.0035 —19.6836
Kepe = | —0.0886 —0.7852 —0.2359 —1.5512
| —0.0103 —0.2165 —0.7832 —1.1239
[-0.8723 0.0153 —0.0014 —19.7047
Kege o = | ~0.1809 —0.7652 —0.2506 —2.9144
| 0.0635 —0.2401 —0.7132 —0.0714
[-0.8702 0.0296 0.0013 —19.6788
Kegep = | —0.3263 —0.7475 —0.1084 —2.9313
| 02335 0.0512 —0.7417 3.9454

and the positional outputs of the closed-loop systems with
these controllers in three axes are depicted in Figures 23,
25, and 27 separately. We can also obtain the four relevant
control thrusts needed for these two methods in Figures 24,
26, and 28 separately. We can see that the closed-loop systems
with the controllers K are all stable and the output tracking
requirement can be guaranteed. From these figures and the
table, we can also find that larger uncertainties will extend
the stabilizing time and bring smaller fluctuations in z-axis
input thrust, and the performance cost bound will also be
diminished by larger uncertainties.

Finally, the terminal segment close to the target is
depicted clearly in Figure 20. It can be seen that the chaser
will asymptotically move to the evacuation point eventually,
which means that the output tracking requirements can be
satisfied by the designed controller K (Figure 29).
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-0.0165 -0.0238 -0.0156 0.0001 —0.0001 ]
-22.4896 -0.5307 -0.0021 -0.0140 -0.0052 |,
—0.5274 -22.3842 -0.0012 -0.0052 -0.0144 |
-0.0418 -0.0430 -0.0157 —0.0001 —0.0003]
—21.3489 -1.2784 -0.0029 -0.0140 -0.0074 |,
—0.8532 -20.8999 -0.0015 -0.0071 -0.0143 | (45)
-0.0793 -0.0305 —0.0156 —0.0001 —0.0002 ]
-20.5827 -1.3472 -0.0042 -0.0138 -0.0083 |,
—-0.5607 -19.1985 -0.0007 -0.0075 —0.0132 |
-0.0089 0.0016 —0.0154 0.0004 0.0000 ]|
—22.6185 -0.2819 -0.0036 —-0.0106 —0.0041 |,
4.0154 -19.6471 0.0032 -0.0009 —0.0129 |

4. Conclusions

The paper has demonstrated a robust guaranteed cost output
tracking control design method for the evacuation phase of
spacecraft rendezvous with parameter uncertainties. Track-
ing control problem has been altered into a stabilization
problem of an augmented system by taking the reference
signal of the output into consideration. By using Lyapunov
method, the controller K design problem has progressively
been transformed into a convex optimization problem with
linear matrix inequality constraints. The output tracking
requirement can be satisfied with performance cost upper
bound, and the poles of the augmented closed-loop sys-
tem lie in the desired region. An illustrative example has
shown the effectiveness of the proposed controller design
method.
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