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The necessary and sufficient condition of convex function is significant in nonlinear convex programming. This paper presents
the identification of convex function on Riemannian manifold by use of Penot generalized directional derivative and the Clarke
generalized gradient. This paper also presents a method for judging whether a point is the global minimum point in the inequality
constraints. Our objective here is to extend the content and proof the necessary and sufficient condition of convex function to
Riemannian manifolds.

1. Introduction

Manifold is the space with the local property of Euclidean
space. We often judge the warp of the space by measuring
its space. The standard of the measurement is called metric.
Metric is an intrinsic property and the space with metric is
called Riemannian space. Riemann manifold is a differential
manifold which has Riemannian metric. Manifold learning
attempts to obtain the intrinsic structure of non-linearly
distributed data, which can be used in non-linear dimen-
sionality reduction (NLDR). We can find the meaningful
low dimensional structure hidden in the high-dimensional
observation data by the non-linear dimension reduction of
high data space [1]. Expanding the optimization based on
linear space to the nonlinear space (such as Riemannian
manifold) is a hot topic in this research field [2]. Convex
function is a kind of special function that has a broad
application, especially has a wide range of applications in
the areas of optimization and mathematical programming,
cybernetics, and other fields. Since the useful data is usually
not a linear combination of the features in the real world
that the nonlinear convex programming problemhas become
a new research subject [3–5]. In order to have a more in-
depth study of nonsmooth and its related problems, several
important tools for analyzing nonsmooth problem have been
extended from European space to Riemannian Manifold.

In 2004, Ledyacv and Zhu established the concept and
algorithm of subdifferential of nonsmooth function in Rie-
mannianmanifold and proved that the solution of Hamilton-
Jacobi equation defined on Riemannian manifold is unique.
They also discussed the concept and variational principle of
approximate subdifferential in Riemannian manifold [6, 7].
In 2005, Azagra and others discussed the J. Ferrera subdiffer-
ential which was defined on finite dimensional Riemannian
manifold and relevant limit subdifferential and analyzed
the issues of differential inclusion which were defined on
differential manifold by using the concept of generalized
derivative [8, 9]. Liu and others expanded (MP) problem
from linear space to differential manifold and Fritz John nec-
essary optimality conditions on Riemannmanifold was given
[10]. In 2008, Gang and Sanyang solved the nondifferentiable
multiobjective optimization problems with equality and
inequality constraints from Euclidean space to Riemannian
manifolds and derived the Fritz-John necessary conditions
with generalized gradient formula for weak Pareto optimal
solutions from Ekeland variational principle [11]. Wang et
al. established the semilocal convergence of sequences which
was generated by the Gauss-Newton method (with quasireg-
ular initial points) for the convex composite function ℎ ∘

𝐹 on Riemannian manifold [12] by using the majorizing
function technique. Bento et al. presented a steepest descent
method with Armijo’s rule for multicriteria optimization in
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the Riemannian context. With assuming quasiconvexity of
the multicriteria function and nonnegative curvature of the
Riemannian manifold, they proved full convergence of the
sequence to a critical Pareto point [13].

Convex programming is of great significance in the
study of nonlinear programming theory. Based on the above
research results, we will parallel extend the identification of
convex function and the optimality conditions of constraint
problems from linear space to Riemannian manifold in order
to solve the convex programming problem in Riemannian
manifold. This paper is set out as follows. In Section 2,
we briefly review some preliminary concepts. In Section 3,
we introduce the identification of convex function on Rie-
mannian manifold. We make some concluding remarks and
suggest future research in this area in Section 4.

2. Preliminaries

Let 𝑅𝑛 be an 𝑛-dimensional Euclidean space; the 𝑖th coordi-
nate of point 𝑝 ∈ 𝑅

𝑛 is denoted by (𝑝)𝑖; that is ( )𝑖 is the 𝑖th
coordinate function of 𝑅𝑛.

Definition 1 (see [14]). Let 𝑀 be a Hausdorff topological
space. If every point 𝑝 of 𝑀 has an open neighborhood
𝑈 ⊂ 𝑀, such that an open subset of 𝑈 and 𝑛-dimensional
Euclidean space is homeomorphous, then 𝑀 is called an 𝑛-
dimensional topological manifold.

Definition 2 (see [10]). Let 𝑓(𝑥) be a real-valued function
defined on Riemannian manifold, 𝑥

0
∈ 𝑈 ⊂ 𝑀, and let (𝑈, 𝜑)

be a coordinate plot which contains 𝑥
0
. If for all 𝑥, 𝑦 ∈ 𝑈,

there exists a constant 𝐿 such that
󵄨󵄨󵄨󵄨𝑓 (𝑦) − 𝑓 (𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝐿
󵄨󵄨󵄨󵄨𝜑 (𝑦) − 𝜑 (𝑥)

󵄨󵄨󵄨󵄨 . (1)

Then, 𝑓(𝑥) is a function which meets the local Lipschitz
condition in the neighborhood of 𝑥

0
.

Definition 3 (see [10]). Let function 𝑓 : 𝑀 → 𝑅 be a meet
local Lipschitz condition in the neighborhood of the point
𝑥 ∈ 𝑀 and (𝑈, 𝜑) be a coordinate plot which contains 𝑥. The
Clarke generalized directional derivative of 𝑓 at 𝑥 along the
direction of V ∈ 𝑇

𝑥
𝑀 is denoted by

𝑓
∘

(𝑥; V)

= lim
𝑦→𝜑(𝑥)

sup
𝑡↓0

𝑓 ∘ 𝜑
−1

(𝑦 + 𝑡𝜑
∗
𝑥

(V)) − 𝑓 ∘ 𝜑
−1

(𝑦)

𝑡

= (𝑓 ∘ 𝜑
−1

)
∘

(𝜑 (𝑥) ; 𝜑
∗
𝑥

(V)) ,

(2)

where 𝑡 → 0.

Definition 4 (see [10]). Let 𝑓(𝑥) be a function denoted
in Riemannian manifold (𝑀, 𝑔) and meet local Lipschitz
condition in the neighborhood of 𝑥. Then, the element of the
subset of cotangent space 𝑇

𝑥

∗

𝑀 of 𝑥

𝜕𝑓 (𝑥) = {𝜉 ∈ 𝑇
𝑥

∗

𝑀 | 𝑓
∘

(𝑥; V) ≥ (𝜉, V) , ∀V ∈ 𝑇
𝑥
𝑀} (3)

is said to be Clarke generalized gradient in which 𝑓 is at 𝑥.

The norm of generalized gradient is denoted by
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩𝜑 := sup {(𝜉, V) , V ∈ 𝑇

𝑥
𝑀, ‖V‖ ≤ 1} . (4)

Definition 5 (see [15]). Let 𝑓 : 𝑀 → 𝑅 meet local Lipschitz
condition in the neighborhood of 𝑥 ∈ 𝑀 and let (𝑈, 𝜑)
be a coordinate plot which contains 𝑥. We define Penot
generalized directional derivative of𝑓 at𝑥 along the direction
of V ∈ 𝑇

𝑥
𝑀 as follows:

𝑑𝑓 (𝑥; V)

= lim
𝑢→ V

inf
𝑡↓0

𝑓 ∘ 𝜑
−1

(𝑦 + 𝑡𝜑
∗
𝑥

(𝑢)) − 𝑓 ∘ 𝜑
−1

(𝑦)

𝑡

= 𝑑 (𝑓 ∘ 𝜑
−1

) (𝜑 (𝑥) ; 𝜑
∗
𝑥

(V)) ,

𝑑𝑓 (𝑥; V)

= lim
𝑢→ V

sup
𝑡↓0

𝑓 ∘ 𝜑
−1

(𝑦 + 𝑡𝜑
∗
𝑥

(𝑢)) − 𝑓 ∘ 𝜑
−1

(𝑦)

𝑡

= 𝑑 (𝑓 ∘ 𝜑
−1

) (𝜑 (𝑥) ; 𝜑
∗
𝑥

(V)) ,

𝑑
2

𝑓 (𝑥; V; 𝑤)

= lim
𝑢→𝜔

inf
𝑡↓0

(𝑓 ∘ 𝜑
−1

(𝑦 + 𝑡𝜑
∗
𝑥

(V) + 𝑡2𝜑
∗
𝑥

(𝑢))

−𝑓 ∘ 𝜑
−1

(𝑦) − 𝑡𝑑𝑓 (𝑥; V)) (𝑡−2) ,

𝑑
2

𝑓 (𝑥; V; 𝑤)

= lim
𝑢→𝜔

sup
𝑡↓0

(𝑓 ∘ 𝜑
−1

(𝑦 + 𝑡𝜑
∗
𝑥

(V) + 𝑡2𝜑
∗
𝑥

(𝑢))

−𝑓 ∘ 𝜑
−1

(𝑦) − 𝑡𝑑𝑓 (𝑥; V)) (𝑡−2) .

(5)

If 𝑑𝑓(𝑥; V) = 𝑑𝑓(𝑥; V), we define 𝑑𝑓(𝑥; V) as Penot gener-
alized directional derivative of 𝑓 at 𝑥 along the direction of
V ∈ 𝑇
𝑥
𝑀.

If 𝑑2𝑓(𝑥; V; 𝜔) = 𝑑
2

𝑓(𝑥; V; 𝜔), we define 𝑑2𝑓(𝑥; V; 𝜔) to
represent second-order Penot generalized directional deriva-
tive of 𝑓 at 𝑥 along the direction of V ∈ 𝑇

𝑥
𝑀.

If both 𝑑𝑓(𝑥; V) and 𝑑2𝑓(𝑥; V; 𝜔) exist, then

𝑑
2

𝑓 (𝑥; V; 𝜔)

= lim
𝑦→𝜑(𝑥),𝑡↓0

(𝑓 ∘ 𝜑
−1

(𝑦 + 𝑡𝜑
∗
𝑥

(V) + 𝑡2𝜑
∗
𝑥

(𝜔))

−𝑓 ∘ 𝜑
−1

(𝑦) − 𝑡𝑑𝑓 (𝑥; V)) (𝑡−2) .

(6)

3. The Identification of Convex Function on
Riemannian Manifold

Theorem 6 (first-order necessary and sufficient condition of
convex function). Let 𝑀 be an 𝑚-dimensional Riemannian
manifold and let𝑈 be a geodesic convex set, where𝑈 ⊂ 𝑀. If𝑓 :
𝑈 → 𝑅meets local Lipschitz condition in𝑈, then the necessary
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and sufficient condition that 𝑓 is geodesic convex function in𝑈
is as follows. For ∀𝑥, 𝑦 ∈ 𝑈, there exists

𝑓 ∘ 𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V))

≥ 𝑓 ∘ 𝜑
−1

(𝑦) + ∇ (𝑓 ∘ 𝜑
−1

) (𝑦)
𝑇

(𝑦 − 𝑥) .

(7)

Proof (necessary condition). For ∀𝑡 ∈ [0, 1], there exists

𝜑
−1

(𝑦) + 𝑡 [𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V)) − 𝜑−1 (𝑦)]

= 𝑡𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V)) + (1 − 𝑡) 𝜑−1 (𝑦) ∈ 𝑈.
(8)

Then, according to the first-order Taylor expansion,

𝑓 ∘ (𝜑
−1

(𝑦) + 𝑡 [𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V)) − 𝜑−1 (𝑦)])

= 𝑓 ∘ 𝜑
−1

(𝑦) + 𝑡∇ (𝑓 ∘ 𝜑
−1

) (𝑦)
𝑇

(𝑦 − 𝑥) + 𝑜 (𝑡) .

(9)

Since 𝑓 is geodesic convex function in 𝑈, then

𝑓 ∘ (𝜑
−1

(𝑦) + 𝑡 [𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V)) − 𝜑−1 (𝑦)])

= 𝑓 ∘ (𝑡𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V)) + (1 − 𝑡) 𝜑−1 (𝑦))

≤ 𝑡𝑓 ∘ 𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V)) + (1 − 𝑡) 𝑓 ∘ 𝜑
−1

(𝑦) .

(10)

Then, from two simultaneous equations of (9) and (10),
we get

𝑓 ∘ 𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V)) + (1 − 𝑡) 𝑓 ∘ 𝜑
−1

(𝑦)

≥ 𝑓 ∘ 𝜑
−1

(𝑦) + 𝑡∇ (𝑓 ∘ 𝜑
−1

) (𝑦)
𝑇

(𝑦 − 𝑥) + 𝑜 (𝑡) ;

(11)

that is
𝑓 ∘ 𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V))

≥ 𝑓 ∘ 𝜑
−1

(𝑦) + ∇ (𝑓 ∘ 𝜑
−1

) (𝑦)
𝑇

(𝑦 − 𝑥) +
𝑜 (𝑡)

𝑡
.

(12)

It follows from 𝑡 → 0
+ that (𝑜(𝑡)/𝑡) → 0; hence,

𝑓 ∘ 𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V))

≥ 𝑓 ∘ 𝜑
−1

(𝑦) + ∇ (𝑓 ∘ 𝜑
−1

) (𝑦)
𝑇

(𝑦 − 𝑥) .

(13)

Sufficient Condition. For ∀𝑡 ∈ [0, 1], let 𝑧 = 𝑡𝑥 + (1 − 𝑡)𝑦.
From the known conditions it follows that
𝑓 ∘ 𝜑
−1

(𝑦)

≥ 𝑓 ∘ 𝜑
−1

(𝑦 + (1 − 𝑡) 𝜑
∗
𝑥

(V))

+ ∇ (𝑓 ∘ 𝜑
−1

) (𝑦 + (1 − 𝑡) 𝜑
∗
𝑥

(V))
𝑇

(𝑥 − 𝑧) ,

𝑓 ∘ 𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V))

≥ 𝑓 ∘ 𝜑
−1

(𝑦 + (1 − 𝑡) 𝜑
∗
𝑥

(V))

+ ∇ (𝑓 ∘ 𝜑
−1

) (𝑦 + (1 − 𝑡) 𝜑
∗
𝑥

(V))
𝑇

(𝑦 − 𝑧) .

(14)

Hence,

𝑡𝑓 ∘ 𝜑
−1

(𝑦)

≥ 𝑡𝑓 ∘ 𝜑
−1

(𝑦 + (1 − 𝑡) 𝜑
∗
𝑥

(V))

+ 𝑡∇ (𝑓 ∘ 𝜑
−1

) (𝑦 + (1 − 𝑡) 𝜑
∗
𝑥

(V))
𝑇

(𝑥 − 𝑧) ,

(1 − 𝑡) 𝑓 ∘ 𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V))

≥ (1 − 𝑡) 𝑓 ∘ 𝜑
−1

(𝑦 + (1 − 𝑡) 𝜑
∗
𝑥

(V))

+ (1 − 𝑡) ∇ (𝑓 ∘ 𝜑
−1

) (𝑦 + (1 − 𝑡) 𝜑
∗
𝑥

(V))
𝑇

(𝑦 − 𝑧) .

(15)

Then, from (15) it follows that

𝑡𝑓 ∘ 𝜑
−1

(𝑦) + (1 − 𝑡) 𝑓 ∘ 𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V))

≥ 𝑓 ∘ 𝜑
−1

(𝑦 + (1 − 𝑡) 𝜑
∗
𝑥

(V))

+ ∇ (𝑓 ∘ 𝜑
−1

) (𝑦+(1 − 𝑡) 𝜑
∗
𝑥

(V))
𝑇

(𝑡𝑥+(1 − 𝑡) 𝑦 − 𝑧) .

(16)

Since 𝑧 = 𝑡𝑥 + (1 − 𝑡)𝑦, then

𝑡𝑓 ∘ 𝜑
−1

(𝑦) + (1 − 𝑡) 𝑓 ∘ 𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V))

≥ 𝑓 ∘ 𝜑
−1

(𝑦 + (1 − 𝑡) 𝜑
∗
𝑥

(V))

= 𝑓 ∘ (𝑡𝜑
−1

(𝑦) + (1 − 𝑡) 𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V))) .

(17)

Thus, 𝑓 is geodesic convex function in 𝑈.

Theorem 7 (first-order necessary and sufficient condition
of strictly convex function). Let 𝑀 be an 𝑚-dimensional
Riemannian manifold and 𝑈 be a geodesic convex set. Let 𝑈 ⊂

𝑀, 𝑓 : 𝑈 → 𝑅 meet local Lipschitz condition in 𝑈, and then
the necessary and sufficient condition that 𝑓 is geodesic strictly
convex function in 𝑈 is as follows. For ∀𝑥, 𝑦 ∈ 𝑈, there exists

𝑓 ∘ 𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V))

> 𝑓 ∘ 𝜑
−1

(𝑦) + ∇ (𝑓 ∘ 𝜑
−1

) (𝑦)
𝑇

(𝑦 − 𝑥) .

(18)

Proof (necessary condition). In a similar way with proof of
Theorem 6, we get

𝑓 ∘ 𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V))

> 𝑓 ∘ 𝜑
−1

(𝑦) + ∇ (𝑓 ∘ 𝜑
−1

) (𝑦)
𝑇

(𝑦 − 𝑥) .

(19)

Sufficient Condition. Since𝑓 is a strictly convex function, then
𝑓 is a convex function. For any two different points 𝑥, 𝑦 in
which 𝑥, 𝑦 ∈ 𝑈, there exists 𝑧 = (1/2)𝑥 + (1/2)𝑦, and then
𝑧 ∈ 𝑈.
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FromTheorem 6 it follows that

𝑓 ∘ 𝜑
−1

(𝑦 +
1

2
𝜑
∗
𝑥

(V))

≥ 𝑓 ∘ 𝜑
−1

(𝑦) + ∇ (𝑓 ∘ 𝜑
−1

) (𝑦)
𝑇

(𝑧 − 𝑥)

= 𝑓 ∘ 𝜑
−1

(𝑦) + ∇ (𝑓 ∘ 𝜑
−1

) (𝑦)
𝑇

(
1

2
𝑥 +

1

2
𝑦 − 𝑥)

= 𝑓 ∘ 𝜑
−1

(𝑦) +
1

2
∇ (𝑓 ∘ 𝜑

−1

) (𝑦)
𝑇

(𝑦 − 𝑥) .

(20)

Since 𝑓 is a strictly convex function, then

𝑓 ∘ 𝜑
−1

(𝑦 +
1

2
𝜑
∗
𝑥

(V))

= 𝑓 ∘ (
1

2
𝜑
−1

(𝑦) +
1

2
𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V)))

<
1

2
𝑓 ∘ 𝜑
−1

(𝑦) +
1

2
𝑓 ∘ 𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V)) .

(21)

Then, it follows from (20) and (21) that
1

2
𝑓 ∘ 𝜑
−1

(𝑦) +
1

2
𝑓 ∘ 𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V))

> 𝑓 ∘ 𝜑
−1

(𝑦) +
1

2
∇ (𝑓 ∘ 𝜑

−1

) (𝑦)
𝑇

(𝑦 − 𝑥) ;

(22)

that is,

𝑓 ∘ 𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V))

> 𝑓 ∘ 𝜑
−1

(𝑦) + ∇ (𝑓 ∘ 𝜑
−1

) (𝑦)
𝑇

(𝑦 − 𝑥) .

(23)

Theorem 8 (second-order necessary and sufficient condition
of convex function). Let𝑀 be an𝑚-dimensional Riemannian
manifold and 𝑈 be a geodesic convex set. Let 𝑈 ⊂ 𝑀, 𝑓 :

𝑈 → 𝑅 meet local Lipschitz condition in 𝑈 and let (𝑈, 𝜑)
be a coordinate plot which contains 𝑥, and second-order Penot
generalized directional derivative of 𝑓 at 𝑥 along the direction
of V ∈ 𝑇

𝑥
𝑀 exists. Then, the necessary and sufficient condition

that 𝑓 is geodesic convex function in 𝑈 is as follows. For any
𝑥 ∈ 𝑈, there exists 𝑑2𝑓(𝑥; V, 𝑤) ≥ 0.

Proof (necessary condition). Assume that for any 𝑥 ∈ 𝑈, there
exists 𝑑2𝑓(𝑥; V, 𝑤) ≥ 0. For any two different points𝑥, 𝑦, from
Taylor expansion, it follows that

𝑓 ∘ 𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V))

= 𝑓 ∘ 𝜑
−1

(𝑦) + ∇ (𝑓 ∘ 𝜑
−1

) (𝑦)
𝑇

(𝑦 − 𝑥)

+
1

2
(𝑦 − 𝑥)

𝑇

∇
2

(𝑓 ∘ 𝜑
−1

) (𝑧) (𝑦 − 𝑥) .

(24)

Note that 𝑧 = 𝑡𝑥 + (1 − 𝑡)𝑦, 0 ≤ 𝑡 ≤ 1.
Since 𝑈 is a geodesic convex set, then 𝑧 ∈ 𝑈. From the

known conditions it follows that

𝑑
2

𝑓 (𝑥; V, 𝑤) ≥ 0. (25)

Hence,

(𝑦 − 𝑥)
𝑇

∇
2

(𝑓 ∘ 𝜑
−1

) (𝑧) (𝑦 − 𝑥) ≥ 0, (26)

so that

𝑓 ∘ 𝜑
−1

(𝑦 + 𝜑
∗
𝑥

(V))

≥ 𝑓 ∘ 𝜑
−1

(𝑦) + ∇ (𝑓 ∘ 𝜑
−1

) (𝑦)
𝑇

(𝑦 − 𝑥) .

(27)

Therefore, 𝑓 is geodesic convex function in 𝑈 according
toTheorem 7.

Sufficient Condition. Since 𝑈 is a geodesic convex set, thus
for any 𝑥 ∈ 𝑈 and any given nonzero vector 𝑙, there exists
a sufficiently small positive number 𝑡 and thus 𝑥 + 𝑡𝑙 ∈ 𝑈; it
follows from Taylor expansion that

𝑓 ∘ 𝜑
−1

(𝑥 + 𝑡𝑙) = 𝑓 ∘ 𝜑
−1

(𝑥) + 𝑡∇ (𝑓 ∘ 𝜑
−1

) (𝑥)
𝑇

𝑙

+
𝑡
2

2
𝑙
𝑇

∇
2

(𝑓 ∘ 𝜑
−1

) (𝑥) 𝑙 + 𝑜 (𝑡
2

) .

(28)

Since 𝑓 is geodesic convex function in 𝑈, using
Theorem 7, we have

𝑓 ∘ 𝜑
−1

(𝑥 + 𝑡𝑙) ≥ 𝑓 ∘ 𝜑
−1

(𝑥) + 𝑡∇ (𝑓 ∘ 𝜑
−1

) (𝑥)
𝑇

𝑙. (29)

Hence,

𝑡
2

2
𝑙
𝑇

∇
2

(𝑓 ∘ 𝜑
−1

) (𝑥) 𝑙 + 𝑜 (𝑡
2

) ≥ 0. (30)

Let 𝑡 → 0
+; then,

𝑜 (𝑡
2

)

𝑡2
󳨀→ 0. (31)

Thus,

𝑙
𝑇

∇
2

(𝑓 ∘ 𝜑
−1

) (𝑥) 𝑙 ≥ 0. (32)

That is, for any 𝑥 ∈ 𝑈, there exists 𝑑2𝑓(𝑥; V, 𝑤) ≥ 0.

Theorem 9 (second-order necessary and sufficient condition
of strictly convex function). Let 𝑀 be an 𝑚-dimensional
Riemannian manifold and 𝑈 be a geodesic convex set. Let 𝑈 ⊂

𝑀, 𝑓 : 𝑈 → 𝑅 meet local Lipschitz condition in 𝑈 and let
(𝑈, 𝜑) be a coordinate plot which contains 𝑥 and second-order
Penot generalized directional derivative of 𝑓 at 𝑥 along the
direction of V ∈ 𝑇

𝑥
𝑀 exists. Then, the necessary and sufficient

condition that 𝑓 is geodesic strictly convex function in 𝑈 is as
follows. For any 𝑥 ∈ 𝑈, there exists 𝑑2𝑓(𝑥; V, 𝑤) > 0.

Proof. It is similar to the proof of Theorem 8.

Definition 10. For the mathematical programming problem

min 𝑓 (𝑥)

st. 𝑔
𝑖
(𝑥) ≤ 0, 𝑖 ∈ 𝐼

𝑥 ∈ 𝑀,

(33)
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where 𝑓 : 𝑀 → 𝑅, 𝑔 : 𝑀 → 𝑅
𝑙 are geodesic convex

functions in𝑈,𝑈 is an open subset of𝑀, (𝑈, 𝜑) is a coordinate
plot which contains 𝑥, and the feasible region of the problem
is denoted by

𝐷 := {𝑥 ∈ 𝑀 | 𝑔
𝑖
(𝑥) ≤ 0, 𝑖 ∈ 𝐼} . (34)

Theorem 11. Let 𝑀 be an 𝑚-dimensional Riemannian man-
ifold and let 𝑥∗ be the optimal solution of the problem. If 𝑓 :

𝑀 → 𝑅, 𝑔
𝑖
: 𝑀 → 𝑅, 𝑖 ∈ 𝐼 meet local Lipschitz condition

in the neighborhood of 𝑥∗ ∈ 𝑀 and 𝑔
𝑖
is continuous in 𝑥

∗,
where 𝑖 ∉ 𝐼, or the vector group ∇(𝑔

𝑖
∘ 𝜑
−1

)(𝜑(𝑥
∗

)) is linearly
independent, where 𝑖 ∈ 𝐼, then there exists constant 𝑢

𝑖
(𝑖 ∈ 𝐼),

such that

∇ (𝑓 ∘ 𝜑
−1

) (𝜑 (𝑥
∗

)) +∑

𝑖∈𝐼

𝑢
𝑖
∇ (𝑔
𝑖
∘ 𝜑
−1

) (𝜑 (𝑥
∗

)) = 0,

𝑢
𝑖
≥ 0, 𝑖 ∈ 𝐼.

(35)

In particular, if 𝑔
𝑖
meets local Lipschitz condition in the

neighborhood of 𝑥∗ ∈ 𝑀, where 𝑖 ∉ 𝐼, then

∇ (𝑓 ∘ 𝜑
−1

) (𝜑 (𝑥
∗

)) +

𝑚

∑

𝑖=1

𝑢
𝑖
∇ (𝑔
𝑖
∘ 𝜑
−1

) (𝜑 (𝑥
∗

)) = 0,

𝑢
𝑖
(𝑔
𝑖
∘ 𝜑
−1

) (𝜑 (𝑥
∗

)) = 0, 𝑖 = 1, 2, . . . , 𝑚,

𝑢
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑚.

(36)

Theorem 11 is called Kuhn-Tucker theorem or K-T theo-
rem for short.The necessary condition of theminimumpoint
is called K-T condition and the point which meets the K-T
condition is called K-T point.

Theorem 12 (sufficient condition of the minimum point).
Let the minimization problem (33) be a convex programming
problem and let 𝑥∗ be a K-T point. Then, 𝑥∗ is the global
minimum point.

Proof. For ∀𝑥, there exists

𝑔
𝑖
∘ 𝜑
−1

(𝜑 (𝑥)) ≤ 0. (37)

Since 𝑔
𝑖
∘ 𝜑
−1

(𝜑(𝑥
∗

)) is geodesic convex function, then

𝑔
𝑖
∘ 𝜑
−1

(𝜑 (𝑥)) ≥ 𝑔
𝑖
∘ 𝜑
−1

(𝜑 (𝑥
∗

))

+ ∇ (𝑔
𝑖
∘ 𝜑
−1

) (𝜑 (𝑥
∗

))
𝑇

(𝑥 − 𝑥
∗

) ,

𝑖 = 1, 2, . . . , 𝑚.

(38)

For 𝑖 ∈ 𝐼, there exists

𝑔
𝑖
∘ 𝜑
−1

(𝜑 (𝑥
∗

)) = 0. (39)

Then,

∇ (𝑔
𝑖
∘ 𝜑
−1

) (𝜑 (𝑥
∗

))
𝑇

(𝑥 − 𝑥
∗

) ≤ 0. (40)

Since 𝑥∗ is a K-T point, then

∇ (𝑓 ∘ 𝜑
−1

) (𝜑 (𝑥
∗

)) = −∑

𝑖∈𝐼

𝑢
𝑖
∇ (𝑔
𝑖
∘ 𝜑
−1

) (𝜑 (𝑥
∗

)) ,

𝑢
𝑖
≥ 0, 𝑖 ∈ 𝐼,

∇ (𝑓 ∘ 𝜑
−1

) (𝜑(𝑥
∗

)
𝑇

) (𝑥 − 𝑥
∗

)

= −∑

𝑖∈𝐼

𝑢
𝑖
∇ (𝑔
𝑖
∘ 𝜑
−1

) (𝜑 (𝑥
∗

))
𝑇

(𝑥 − 𝑥
∗

) ≥ 0.

(41)

Since 𝑓 ∘ 𝜑
−1

(𝜑(𝑥)) is geodesic convex function, then

𝑓 ∘ 𝜑
−1

(𝜑 (𝑥)) ≥ 𝑓 ∘ 𝜑
−1

(𝜑 (𝑥
∗

))

+ ∇ (𝑓 ∘ 𝜑
−1

) (𝜑(𝑥
∗

)
𝑇

) (𝑥 − 𝑥
∗

) ,

𝑓 ∘ 𝜑
−1

(𝜑 (𝑥)) ≥ 𝑓 ∘ 𝜑
−1

(𝜑 (𝑥
∗

)) .

(42)

Thus, 𝑥∗ is the global minimum point.

4. Conclusions

In this paper, we introduce the classical Clarke generalized
directional derivative and generalized gradient. Then, we
extend the identification of convex function and prove the
theorem of the first-order necessary and sufficient condition
of convex function and strictly convex function to Rie-
mannian manifolds by use of Penot generalized directional
derivative. We have also given the second-order necessary
and sufficient condition of convex function and strictly
convex function and the Kuhn-Tucker theorem and sufficient
condition of theminimumpoint of the inequality constrained
optimization problems. In this way, we can do more research
about optimization method on differential manifold. In the
future, the theorem and the application of the equality
constrained optimization problems and the inequality con-
strained optimization problems will be explored.
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