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Abstract. In vibration control of adjacent buildings under seismic excitations, a twofold
objective has to be considered: (i) to mitigate the vibrational response of the individual
structures and (ii) to provide a suitable protection against interbuilding impacts (pounding).
An interesting strategy to deal with this complex control problem consists in considering an
integrated control system, which combines interbuilding actuation devices with local control
systems implemented in the individual buildings. In this paper, an effective computational
strategy to design this kind of integrated control systems is presented. The proposed design
methodology is based on a linear matrix inequality formulation, allows including active and
passive actuation devices, and makes it possible to deal with important information constraints
associated to the problem. The main ideas are illustrated by means of a two-building system
equipped with three actuation devices: two interstory actuation devices implemented at the
ground level of the buildings, plus an interbuilding actuation device installed at the top level
of the lowest building. For this control setup, two different integrated controllers are designed.
A proper set of numerical simulations is conducted to assess the performance of the proposed
controllers with positive results.

1. Introduction

In control systems for seismic protection of closely adjacent buildings two different elements
need to be considered. Firstly, the structural vibrational response of the individual buildings
that should be mitigated to avoid structural damage. Secondly, the interbuilding collisions
(pounding), which should also be prevented to avoid the damaging effects associated to massive
pounding impacts [1–3]. Likewise, two different kinds of actuation devices can be considered in
this context. On one hand, inbuilding actuators, which are implemented in a particular building
and exert structural forces restricted to this building. On the other hand, interbuilding actuators

that are implemented between adjacent buildings and produce structural forces affecting both
buildings. The idea of using interbuilding actuation devices for vibration control of adjacent
buildings has been used in several papers with positive results (see for example [4–10]). However,
all these works are only focused on mitigating the vibrational response of the individual
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Figure 1. Two-building system
equipped with two interstory actu-
ation devices (d1 and d2) and an in-
terbuilding actuator (d3).

buildings. A broader formulation is presented in [11–13], where interstory drifts and interbuilding

approaches are considered to describe the overall vibrational response of adjacent buildings.
The objective of this paper is the presentation of an advanced controller design strategy for

seismic protection of adjacent buildings. This strategy is based on a linear matrix inequality
(LMI) formulation and facilitates the integrated design of control systems with inbuilding and
interbuilding actuation devices. Additionally, it also allows dealing with the natural information
constraints associated to the problem. The main ideas are introduced by means of a particular
two-building system formed by a four-story building adjacent to a five-story building and
equipped with three actuation devices (see Figure 1). For this control setup, two static output-
feedback H∞ controllers are designed: (i) a centralized velocity-feedback active controller and
(ii) a fully decentralized velocity-feedback controller, which can be implemented using passive
linear dampers. To assess the effectiveness of the proposed controllers, numerical simulations are
conducted using the full scale North–South El Centro 1940 seismic record as ground acceleration
disturbance.

The rest of the paper is organized as follows: In Section 2, a state-space model for the two-
building system is provided. In Section 3, the static output-feedbackH∞ controllers are designed.
In Section 4, a proper set of numerical simulations are conducted to assess the controllers’
performance. Finally, some conclusions and future research directions are presented in Section 5.

2. Two-building system model

Let us consider a two-building system formed by a four-story building adjacent to a five-story
building as schematically depicted in Figure 1. The buildings’ lateral motion can be described
by the following second-order differential equation:

Mq̈(t) +Cd q̇(t) +Ks q(t) = Tu u(t) +Tw w(t), (1)
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where M is the mass matrix, Cd is the damping matrix and Ks is the stiffness matrix. The
story displacements with respect to the ground are collected in the vector

q(t) =

[
q(1)(t)

q(2)(t)

]
, (2)

where

q(1)(t) =
[
q11(t), q

1
2(t), q

1
3(t), q

1
4(t)

]T
, q(2)(t) =

[
q21(t), q

2
2(t), q

2
3(t), q

2
4(t), q

2
5(t)

]T
, (3)

and q
j
i (t) represents the displacement of the ith story in the building B(j) (denoted as s

j
i in

Figure 1) with respect to the building’s ground level sj0. The system incorporates three force
actuation devices: two interstory actuators (d1 and d2) located at the buildings’ first-story level
plus an interbuilding actuator implemented at the fourth-story level (d3). The vector of control
forces is

u(t) = [u1(t), u2(t), u3(t)]
T
, (4)

where ui is the control force delivered by the actuation device di, which produces a pair of
opposite structural forces as indicated in Figure 1. This actuation scheme is modeled by means
of the control location matrix Tu. The ground acceleration disturbance is denoted by w(t), and
Tw is the disturbance input matrix. The mass matrix has the following block diagonal structure:

M =

[
M(1) [0]4×5

[0]5×4 M(2)

]
, (5)

where [0]r×s is a zero matrix of dimensions r × s,

M(1) =




m1
1 0 0 0
0 m1

2 0 0
0 0 m1

3 0
0 0 0 m1

4


 , M(2) =




m2
1 0 0 0 0
0 m2

2 0 0 0
0 0 m2

3 0 0
0 0 0 m2

4 0
0 0 0 0 m2

5




(6)

and m
j
i denotes the mass of the ith story in the building B(j). The stiffness matrix has the form

Ks =

[
K

(1)
s [0]4×5

[0]5×4 K
(2)
s

]
, (7)

where

K(1)
s =




k11 + k12 −k12 0 0
−k12 k12 + k13 −k13 0
0 −k13 k13 + k14 −k14
0 0 −k14 k14


, K(2)

s =




k21 + k22 −k22 0 0 0
−k22 k22 + k23 −k23 0 0
0 −k23 k23 + k24 −k24 0
0 0 −k24 k24 + k25 −k25

0 0 0 −k25 k25




(8)

and k
j
i denotes the stiffness coefficient of the ith story in the building B(j). The damping matrix

also has a block diagonal structure of the form

Cd =

[
C

(1)
d [0]4×5

[0]5×4 C
(2)
d

]
. (9)
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Table 1. Mass and stiffness coefficient values

building B(1) building B(2)

story 1 2 3 4 1 2 3 4 5

mass (×105Kg) 2.152 2.092 2.070 2.661 2.152 2.092 2.070 2.048 2.661

stiffness (×108N/m) 1.470 1.130 0.990 0.840 1.470 1.130 0.990 0.890 0.840

where C
(j)
d denotes the damping matrix corresponding to the building B(j). When the damping

coefficients are known, the buildings’ damping matrices can be obtained by replacing the stiffness
coefficients kji in Eq. (8) by the corresponding damping coefficients cji . However, in most practical
situations, the values of the damping coefficients cannot be properly determined and other

computational methods are used to obtain the matrices C
(j)
d [14]. The control location matrix

and the disturbance input matrix have, respectively, the following form:

Tu =




1 0 0
0 0 0
0 0 0
0 0 −1
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0




, Tw = −M




1
1
1
1
1
1
1
1
1




. (10)

In the controller designs and numerical simulations presented in this paper, the particular values
of mass and stiffness coefficients given in Table 1 have been used. These values are similar to

those corresponding to the five-story building presented in [15]. The damping matrices C
(1)
d and

C
(2)
d have been computed as Rayleigh damping matrices by setting a 2% of relative damping

on the corresponding first and last modes. The obtained particular values (in Ns/m) are the
following:

C
(1)
d =105×




2.6450 −0.9034 0 0
−0.9034 2.2455 −0.7915 0

0 −0.7915 2.0078 −0.6715
0 0 −0.6715 1.3719


 , (11)

C
(2)
d =105×




2.6017 −0.9244 0 0 0
−0.9244 2.1958 −0.8099 0 0

0 −0.8099 1.9946 −0.7281 0
0 0 −0.7281 1.8670 −0.6872
0 0 0 −0.6872 1.2741



. (12)

Next, by introducing the augmented state vector

x(t) =

[
q(t)
q̇(t)

]
, (13)

we obtain a first-order state-space model

ẋ(t) = Ax(t) +Bu(t) +Ew(t), (14)
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with the system matrix

A =

[
[0]9×9 I 9

−M−1K −M−1C

]
(15)

and the following control and disturbance input matrices

B =

[
[0]9×1

M−1Tu

]
, E =

[
[0]9×1

−[1]9×1

]
, (16)

where In denotes an identity matrix of dimension n and [1]n×1 is a column vector of dimension
n with all its entries equal to 1. In addition to the state variables, two different sets of
output variables are considered in this work: interstory drifts and interbuilding approaches. The
interstory drifts are the relative displacements between consecutive floors of the same building,
and can be defined as 




r
j
1(t) = q

j
1(t),

r
j
i (t) = q

j
i (t)− q

j
i−1(t), 1 < i ≤ nj ,

(17)

where nj represents the number of stories of building B(j). The vectors of interstory drifts

corresponding to the buildings B(1) and B(2) are, respectively,

r(1)(t) =
[
r11(t), r

1
2(t), r

1
3(t), r

1
4(t)

]T
, r(2)(t) =

[
r21(t), r

2
2(t), r

2
3(t), r

2
4(t), r

2
5(t)

]T
. (18)

The overall vector of interstory drifts has the following form:

r(t) =

[
r(1)(t)

r(2)(t)

]
(19)

and can be computed as
r(t) = Cr x(t) (20)

using the output matrix

Cr =
[
C̃r [0]9×9

]
, (21)

with

C̃r =

[
C

(1)
r [0]4×5

[0]5×4 C
(2)
r

]
, C(1)

r =




1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1


, C

(2)
r =




1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1



. (22)

The interbuilding approaches describe the approaching between stories placed at the same level
in adjacent buildings

ai(t) = −
(
q2i (t)− q1i (t)

)
, 1 ≤ i ≤ min(n1, n2). (23)

For our particular two-building system, the vector of interbuilding approaches

a(t) = [a1(t), a2(t), a3(t), a4(t)]
T
, (24)

can be computed as
a(t) = Ca x(t), (25)

using the output matrix

Ca =
[
C̃a [0]4×9

]
, (26)

with
C̃a =

[
I 4 −I 4 [0]4×1

]
. (27)
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3. Static output-feedback H∞ controllers design

In order to prevent buildings’ structural damage and interbuilding collisions, large interstory
drifts and interbuilding approaches must both be avoided. Additionally, moderate control efforts
are also convenient. To this end, we consider the vector of controlled outputs

z(t) = Cz x(t) +Dz u(t), (28)

with

Cz =



αrC̃r [0]9×9

αaC̃a [0]4×9

[0]3×9 [0]3×9


 , Dz =

[
[0]13×3

αu I3

]
, (29)

where αr, αa and αu are scaling coefficients that compensate the different magnitude of
interstory drifts, interbuilding approaches and control forces, respectively. Regarding the
feedback information, we assume that the relative velocities associated to the actuation devices
are measurable and consider the following vector of observed outputs:

y(t) = [y1(t), y2(t), y3(t)]
T, (30)

where y1(t) and y2(t) represent the interstory velocity at the first-story level in buildings B(1)

and B(2), respectively, and y3(t) is the interbuilding velocity at the four-story level. The vector
y(t) can be written as a linear combination of the states

y(t) = Cyx(t) (31)

with the observed output matrix

Cy =



0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0


 . (32)

According to the results presented in [16,17], a suboptimal static output-feedback H∞ controller

u(t) = Ky(t) (33)

for the first-order system in Eq. (14) and the controlled output defined in Eq. (28) can be
computed by solving the following LMI optimization problem:

P :

{
maximize η

subject to XQ > 0, XR > 0, η > 0 and the LMI in (35),
(34)

[
AQXQQ

T+QXQQ
TAT+ARXRR

T+RXRR
TAT+BYRR

T+RYT

R BT+ ηEET ∗
CzQXQQ

T+CzRXRR
T+DzYRR

T −I

]
< 0, (35)

where ∗ denotes the symmetric entry, XQ, XR and YR are the optimization variables, Q is a
matrix whose columns contain a basis of Ker(Cy) and the matrix R has the following form:

R = C†
y +QL̃, L̃ = Q†X̃CT

y

(
CyX̃CT

y

)−1
, (36)

where
C†

y = CT
y

(
Cy C

T
y

)−1
, Q† =

(
QTQ

)−1
QT (37)
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Figure 2. Frequency response
corresponding to the centralized
velocity-feedback H∞ controller
with active implementation defined
by the control gain matrix K.
Maximum singular values of the
closed-loop pulse transfer function
TK(2πfj) (red thick line) and
the open-loop transfer function
T(2πfj) (black thin line).

are the Moore-Penrose pseudoinverses of Cy and Q, respectively, and X̃ is the optimal X-matrix
of the auxiliary LMI optimization problem

Pa :
{

maximize ηa

subject to X > 0, ηa > 0 and the LMI in (39),
(38)

[
AX+XAT +BY +YTBT + ηaEET ∗

CzX+DzY −I

]
< 0. (39)

If an optimal value η̃ is attained in P for the triplet
(
X̃Q, X̃R ,ỸR

)
, then the output gain matrix

K can be written in the form
K = ỸR

(
X̃R

)−1
. (40)

Moreover, the inequality

γ
K
≤

(
η̃
)−1/2

(41)

holds for the H∞ norm

γ
K
= sup

‖w‖
2
6=0

‖z‖
2

‖w‖
2

= sup
f

σmax

[
TK(2πfj)

]
, (42)

where j =
√
−1, f is the frequency in hertz, σmax[ · ] denotes the maximum singular value and

TK(s) = CK(sI−AK)
−1E, (43)

with
AK = A+BKCy, CK = Cz +DzKCy, (44)

is the closed-loop transfer function from the disturbance input to the controlled output.
By applying the described computational procedure with the system matrices A, B and E

in Eqs. (15) and (16), corresponding to the mass and stiffness values given in Table 1 and the
damping matrices in Eqs. (11) and (12); the observed output matrix Cy in Eq. (32); and the
controlled output matrices Cz and Dz in Eq. (29), defined by the scaling coefficients

αr = 5, αa = 1, αu = 10−7.4, (45)
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Figure 3. Frequency response
corresponding to the decentralized
velocity-feedback H∞ with passive
implementation defined by the con-
trol gain matrix K̂. Maximum sin-
gular values of the closed-loop pulse
transfer function T

K̂
(2πfj) (blue

thick line) and the open-loop trans-
fer function T(2πfj) (black thin
line).

we obtain the following output-feedback control gain matrix:

K =106×



−6.7995 −3.7537 −0.3298
−1.2424 −8.6100 0.3551
0.5163 0.9621 −2.9368


 , (46)

and the γ-value upper bound
γ
K
≤ 0.6529. (47)

By computing the peak-value of the maximum singular values corresponding to the pulse transfer
function TK(2πfj), we find that the actual γ-value is

γ
K
= 0.5034. (48)

The particular values of the scaling coefficients αr, αa and αu in Eq. (45) have been selected by
considering the peak-value magnitude of interstory drifts, interbuilding approaches and control
forces, which are in the order of 10−2m, 10−1m and 106N, respectively (see the plots in Figure 5,
Figure 6 , Figure 7 and the values in Table 2).

To illustrate the frequency behavior of the output-feedback controller defined by the gain
matrix K, the maximum singular values of the closed-loop pulse transfer function TK(2πfj)
and the open-loop pulse transfer function

T(2πfj) = Cz(2πfjI−A)−1E (49)

are presented in Figure 2. In this figure, the black thin line displays the open-loop transfer
function and shows the frequency response characteristics of the uncontrolled structure. The
peaks in this plot are associated to the resonant frequencies of the individual buildings, which are
located at 1.24Hz, 3.42Hz, 5.32Hz and 6.72Hz for building B(1) and at 1.01Hz, 2.82Hz, 4.49Hz,
5.80Hz and 6.77Hz for building B(2). The red thick line, corresponding to the closed-loop
transfer function TK(2πfj), presents a single relevant peak of magnitude γ

K
= 0.5034 located

between the two main resonant modes and clearly shows the positive effect of the proposed
output-feedback H∞ controller.

From a practical point of view, the controller defined by the output-feedback gain matrix
K in Eq. (46) has the important advantage of using a reduced system of sensors which are
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El Centro 1940 seismic record.

naturally associated to the actuation devices. However, it also presents two serious drawbacks.
Firstly, the complete vector of observed outputs is used to compute the control actions and,
consequently, a wide communication system would be necessary in the controller implementation.
Secondly, producing the corresponding actuation forces would require active devices with a
large power consumption and potential reliability issues. These two disadvantages, typically
present in vibration control of large structures, can be properly overcome by considering a
fully decentralized velocity-feedback controller. By solving the LMI optimization problem P
in Eq. (34) with the same matrices used in the previous controller design and constraining the
LMI variable matrices XR and YR to a diagonal form, we obtain the following decentralized
output-feedback control gain matrix:

K̂ =106×



−6.1629 0 0

0 −9.2165 0
0 0 −3.2567


 , (50)

and the γ-value upper bound
γ
K̂
≤ 0.7648. (51)

By computing the peak of the maximum singular values corresponding to the pulse transfer
function T

K̂
(2πfj), we find the γ-value

γ
K̂
= 0.5980. (52)

As indicated in [13,18], the control actions associated to the fully decentralized velocity-feedback
controller

u(t) = K̂y(t) (53)

can be implemented using two passive interstory actuation devices d1 and d2 with respective
damping constants 6.1629MNs/m and 9.2165MNs/m, and a passive interbuilding actuator
with damping constant 3.2567MNs/m. The frequency response characteristics of this second
controller are displayed in Figure 3, where the blue thick line corresponds to the closed-loop
transfer function T

K̂
(2πfj) and the black thin line represents the open-loop transfer function.

4. Numerical simulations

In this section, numerical simulations are conducted to investigate the seismic vibrational
response of the considered two-building system for three different control configurations: (i)
Uncontrolled. No control system is implemented. (ii) Active controller. The control system
includes three ideal active devices, which are driven by the output-feedback controller defined
by the control gain matrix K in Eq. (46). (iii) Passive controller. The control system includes
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Figure 5. Maximum absolute in-
terstory drifts in building B(1) cor-
responding to the uncontrolled con-
figuration (black line with squares),
the active controller defined by the
control gain matrix K (red line with
circles) and the passive controller
defined by the control gain matrix
K̂ (blue line with asterisks).
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Figure 6. Maximum absolute in-
terstory drifts in building B(2) cor-
responding to the uncontrolled con-
figuration (black line with squares),
the active controller defined by the
control gain matrix K (red line with
circles) and the passive controller
defined by the control gain matrix
K̂ (blue line with asterisks).
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Figure 7. Maximum interbuilding
approaches corresponding to the un-
controlled configuration (black line
with squares), the active controller
defined by the control gain matrixK

(red line with circles) and the pas-
sive controller defined by the control
gain matrix K̂ (blue line with aster-
isks).

three linear passive dampers with the damping capacities defined by the diagonal elements of
the decentralized control gain matrix K̂ in Eq. (50). In all the cases, the full scale North–South

El Centro 1940 seismic record is taken as ground acceleration disturbance (see Figure 4), and
the interbuilding approaches a(t) together with the interstory drifts r(t) are computed as output
variables. In the controlled cases, the vector of control efforts u(t) is also computed. In order to
avoid modeling and simulation difficulties associated to interbuilding collisions, the interbuilding
gap is assumed to be large enough to prevent pounding events, and the maximum interbuilding
approaches are understood as lower bounds of safe interbuilding distances.

To gain an overall insight into the behavior of the proposed controllers, the maximum values
of the absolute interstory drifts corresponding to the buildings B(1) and B(2) are presented in
Figure 5 and Figure 6, respectively, and the maximum interbuilding approaches are displayed
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Table 2. Maximum absolute control efforts (×106 N)

Actuation device d1 d2 d3

Active controller 1.4755 1.6157 0.6366
Passive controller 1.0576 1.6425 0.6391

in Figure 7. In these figures, the black line with squares corresponds to the uncontrolled
configuration, the red line with circles shows the response of the active controller defined by
the control gain matrix K, and the blue line with asterisks presents the behavior of the passive
controller defined by the control gain matrix K̂.

A quick inspection of the graphics in Figure 5 and Figure 6 shows that the proposed controllers
provide a good level of reduction in the buildings’ interstory-drift peak-values. In building B(1)

(see Figure 5), the uncontrolled configuration produces a maximum absolute interstory-drift
peak-value of about 4.4 cm, while the maximum peak-values corresponding to the controlled
configurations remain below 3.0 cm. In building B(2) (see Figure 6), the maximum interstory-
drift peak-value produced by the uncontrolled configuration is 5.4 cm and the maximum peak-
values attained by the controlled configurations also remain below 3.0 cm. In relative terms,
the reductions in the maximum interstory-drift peak-value in B(1) and B(2) are superior to
34% and 45%, respectively. Regarding the interbuilding seismic response, the plots in Figure 7
clearly indicate that the proposed controllers provide an outstanding level of protection against
pounding events. In particular, an interbuilding distance of 3.5 cm can be considered safe for
the controlled configurations while, in contrast, an interbuilding separation of 25 cm would
produce an interbuilding collision for the uncontrolled configuration. In this case, the relative
reduction attained in the maximum interbuilding-approach peak-value is of about 90%. Finally,
the data collected in Table 2 indicate that the control-effort peak-values required by the proposed
controllers are very similar in the case of the actuation devices d2 and d3. For the actuator d1,
the active controller demands a slightly larger control-effort peak-value, which is consistent with
the better behavior exhibited by this controller in Figure 5.

5. Conclusions and future directions

In this paper, an advanced control design strategy for the seismic protection of adjacent buildings
has been presented. The proposed design methodology is based on a linear matrix inequality
formulation, allows including active and passive actuation devices, and makes it possible to
deal with important information constraints associated to the problem. The main ideas have
been illustrated by means of a two-building structure equipped with an interbuilding actuation
device installed at the top level of the lowest building and two interstory actuation devices
implemented at the ground level of the buildings. For this control setup, two static output-
feedback H∞ controllers have been designed: (i) a centralized velocity-feedback active controller
and (ii) a fully decentralized velocity-feedback controller, which can be implemented using
passive linear dampers. Numerical simulations indicate that the proposed controllers have the
ability of both mitigating the buildings’ structural response and providing a suitable protection
against interbuilding impacts. The positive results obtained in this preliminary study indicate
that further research effort should be invested in extending the proposed controller design
methodology to control setups with more complex actuation systems.

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012163 doi:10.1088/1742-6596/744/1/012163

11



Acknowledgments

This work was partially supported by the Spanish Ministry of Economy and Competitiveness
under Grant DPI2015-64170-R.

References
[1] Chau KT, Wei XX, Guo X and Shen CY 2003 Experimental and theoretical simulations of seismic poundings

between two adjacent structures Earthq. Eng. Struct. D. 32 537–54
[2] Komodromos P, Polycarpou PC, Papaloizou L and Phocas MC 2007 Response of seismically isolated buildings

considering poundings Earthq. Eng. Struct. D. 36 1605–22
[3] Polycarpou PC and Komodromos P 2010 Earthquake-induced poundings of a seismically isolated building

with adjacent structures Eng. Struct. 32 1937–51
[4] Ying ZG, Ni YQ and Ko JM 2003 Stochastic optimal coupling-control of adjacent building structures Comput.

Struct. 81 2775–87
[5] Bhaskararao AV and Jangid RS 2006 Seismic response of adjacent buildings connected with friction dampers

B. Earthq. Eng. 4 43–64
[6] Kim J, Ryu J and Chung L 2006 Seismic performance of structures connected by viscoelastic dampers Eng.

Struct. 28 183–95
[7] Basili M and Angelis MD 2007 Optimal passive control of adjacent structures interconnected with nonlinear

hysteretic devices J. Sound Vib. 301 106–25
[8] Christenson RE, Spencer BF and Johnson EA 2007 Semiactive connected control method for adjacent

multidegree-of-freedom buildings J. Eng. Mech. 133 290–98
[9] Bharti SD, Dumne SM and Shrimali MK 2010 Seismic response analysis of adjacent buildings connected

with MR dampers Eng. Struct. 32 2122–33
[10] Zhu HP, Ge DD and Huang X 2011 Optimum connecting dampers to reduce the seismic responses of parallel

structures J. Sound Vib. 330 1931–49
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