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1 Introduction

This paper aims at providing new results on Markov Jump Linear Systems

(MJLS) control design

The paper is organized as follows.

The notation used throughout is standard. For square matrices, Tr(·)

denotes the trace function. For real vectors or matrices, (′) refers to their

transpose. For symmetric matrices, (•) denotes each of their symmetric

blocks. The symbols R and N denote the sets of real and natural numbers,

respectively. For any symmetric matrix, X > 0 (X ≥ 0) denotes a positive

(semi)definite matrix. The expected value operator is E(·) and P(·) is the

probability of the event (·). The unitary simplex composed by all nonneg-

ative vectors µ ∈ R
N such that

∑

j∈K µj = 1 is denoted by Ω. The i-th

column of any identity matrix is denoted by ei. The Euclidean norm of

x ∈ R
n is denoted as ‖x‖22 = x′x.

2 Problem Statement and Preliminaries

Consider the following Markov jump linear system, denominated σ-MJLS,

with state space realization

ẋ(t) = Aθσx(t) + Eθw(t) (1)

z(t) = Cθσx(t) (2)

where x ∈ R
n, w ∈ R

r and z ∈ R
s are the state, the exogenous input

and the controlled output, respectively. Denote the set of Markov modes as

K = {1, · · · , N} and {θ(t) = θ ∈ K}, a time-varying function governed by

a continuous-time Markov process with transition rate matrix {λij} = Λ ∈

R
N×N given by

P(θ(t+ h) = j|θ(t) = i) = δi−j + λijh+ o(h) (3)

where δi−j is the Kronecker delta function, that means δi−j = 1 if i = j ∈ K
and δi−j = 0, otherwise, and limh→0+ o(h)/h = 0. The elements of matrix



Λ are such that λij ≥ 0, ∀i 6= j, and
∑

j∈K λij = 0, ∀i ∈ K, which implies

that λii ≤ 0, ∀i ∈ K. It is assumed that the system evolves from initial

conditions x(0) = 0 and θ(0) = θ0, with P(θ0 = i) = πi0 > 0, ∀i ∈ K.

The minimax control action is exerted by the deterministic function σ(·)

whose domain can be either K or Ω. Clearly, the effectiveness obtained

from the adoption of the second strategy is higher than the one produced

by the first because, naturally, the set K can be interpreted as the vertices

of Ω. Two classes well known in the literature are of interest. The first one,

denominated mode dependent, is characterized by σ = σ(x, θ) which makes

clear that the control function depends on both the state and the Markov

mode. The second class is characterized by σ = σ(x) and, for this reason, it is

denominated mode independent. Of course, the design conditions under the

assumption of mode independent are much more involved than the ones of

mode dependent. For simplicity, it is assumed that the input matrices Ei for

all i ∈ K do not depend on σ(·) ∈ K. As it can be verified, this assumption

can be removed with no difficulty at expense of more complicated formulas.

Our objective is twofold. The first goal is to determine an upper bound

J(σ) such that

E

{

r
∑

ℓ=1

∫ ∞

0
zℓ(t)

′zℓ(t)dt

}

≤ J(σ) (4)

where zℓ is the controlled output associated to the input w(t) = eℓδ(t).

This means that, preserving stochastic stability, a guaranteed H2 cost is

established. The second is to provide a solution to the optimal control

problem

inf
σ

J(σ) (5)

One of the main contribution of this paper is to propose a guaranteed
cost J(σ) such that the optimal control problem (5) is expressed by means

of LMIs, exclusively. Moreover, the quality in terms of performance loss
appears to be reduced as the numerical example presented in a forthcoming

section indicates.
The literature of MJLS, see [4] and the references therein, is impressive.

A large number of state feedback control design problems involving, for



instance, H2 and H∞ norms, have been proposed and solved mainly under

the assumption that the Markov modes are available for feedback. Mainly in

continuous time, the case of mode independent control has received much less

attention due to the nonconvex nature of the design problem to deal with.

In a forthcoming section, the possibility to imbed the classical H2 control

problem for MJLS, in the present context will be discussed. Likewise, from

now on, consider the stochastic Lyapunov function

V (x, θ) = x′Pθx (6)

defined at any time t ≥ 0 for x(t) = x and θ(t) = θ with {Pi}i∈K positive

definite matrices properly determined. The infinitesimal generator LV (x, θ)

is defined as

LV (x, θ) = lim
h→0

1

h
(E(V (x(t+ h), θ(t+ h))|(x, θ)) − V (x, θ)) (7)

and can be calculated for each θ = i ∈ K. As a consequence, the inequality

LV (x, i) < −z′z (8)

whenever valid for all 0 6= x ∈ R
n and all i ∈ K implies that for a given

deterministic control σ(·) the σ-MJLS (1)-(3) with zero input w = 0 and

initial conditions x(0) = x0 and θ(0) = θ0, with P(θ0 = i) = πi0 > 0, ∀i ∈ K

is stochastically stable and Dynkin’s formula yields the upper bound

E

{
∫ ∞

0
z(t)′z(t)dt

}

< E

{
∫ ∞

0
−LV (x(t), θ(t))dt

}

< E{V (x0, θ0)|(x0, θ0)}

<
∑

πi0x
′
0Pix0 (9)

i∈K

A key property of MJLS still valid for σ-MJLS is due, exclusively, to the
stochastic behavior of the Markov chain. It follows from the fact that the
differential equation π̇ (t) = Γ′π(t) with initial condition π(0) = π0 produces 
the probability πi(t) = P(θ(t) = i) for each i ∈ K at any instant of time



t ≥ 0. Consequently, E(V (x, θ)|(x0, θ0)) =
∑

i∈K π(t)x′Pix. At this point it

is important to mention that these algebraic manipulations remains true in

our framework since the control action exerted by the deterministic function

σ(·) does not modify the Markovian nature of the stochastic process defined

by the Markov chain {θ(t) = θ ∈ K}.

2.1 Aspects of Minimax Theory

The material of this section is mainly based on [11]. This is not the case of

the next three lemmas that are specific to deal with the forthcoming control

design problems. Let us consider the following minimax problem of interest

max
π∈Ω

min
µ∈Ω

π′Hµ (10)

where H = {hij} ∈ R
N×N is a given matrix and remember that Ω is the

unitary simplex. Since Ω is convex, the objective is linear for each π ∈ Ω or

µ ∈ Ω fixed then the conditions for the existence of a saddle point (π∗, µ∗)

are fulfilled. Hence, the optimal equilibrium f∗ = π′
∗Hµ∗ satisfies

π′Hµ∗ ≤ f∗ ≤ π′
∗Hµ ∀π ∈ Ω, ∀µ ∈ Ω (11)

In the sequel, some properties of this equilibrium solution which follows from

the celebrated von Neumann’s minimax theorem will be used. First, using

duality, the optimal value f∗ can be determined from the solution of one of

the following linear programming problems

max
f,π∈Ω

{

f :
∑

i∈K

πihij ≥ f

}

= min
f,µ∈Ω







f :
∑

j∈K

hijµj ≤ f







(12)

whose pair of primal-dual optimal variables is just (π∗, µ∗). On the other

hand, the equality f∗ = maxπ∈Ω π′Hµ∗ = minµ∈Ω π′
∗Hµ makes clear that

the optimal value of the equilibrium is also attained at some vertex of Ω



because the former relations imply that

max
i∈K







∑

j∈K

hijµj∗







= min
j∈K

{

∑

i∈K

πi∗hij

}

(13)

The next instrumental lemmas bring to light three specific properties

that are central in the development of a mode independent control for the

σ-MJLS. As it will be clear in the sequel, the optimal equilibrium f∗ is

associated to the time derivative of the stochastic Lyapunov function (6)

which naturally calls the necessity to characterize the conditions assuring

that f∗ < 0.

Lemma 1 The optimal equilibrium f∗ is negative whenever H +H ′ < 0.

Proof: It follows from the saddle point condition (11) which states that

f∗ ≤ π′
∗Hµ ∀µ ∈ Ω. However, taking into account that π∗ ∈ Ω we obtain

f∗ ≤ π′
∗Hπ∗

≤
1

2
π′
∗(H +H ′)π∗

< 0 (14)

from which the claim follows. ✷

Clearly, this a well known sufficient condition to assure that f∗ < 0

but in compensation it is well adapted to be handled by any LMI solver.

The conservatism introduced by this condition will be verified by means of

some numerical examples. The following simple multiplicative and additive

robustness properties are relevant to our purposes and so their proofs are

included for completeness.

Lemma 2 Let a diagonal positive matrix ∆ = diag{δ1, · · · , δN} > 0 be

given. Define the equilibrium solution of the minimax problem

fδ∗ = max
π∈Ω

min
µ∈Ω

π′∆Hµ (15)

Then, f∗ < 0 if and only if fδ∗ < 0.



Proof: Similarly of what we have been done to determine f∗, the optimal

equilibrium fδ∗ can be determined from

fδ∗ = max
π∈Ω

{

f :
∑

i∈K

πiδihij ≥ f

}

(16)

Assuming πδ∗ ∈ Ω solves (16) then there exists a scalar α∗ > 0 such that

π′ = π′
δ∗D/α∗ ∈ Ω is feasible to problem (12) and yields f∗ ≥ fδ∗/α∗. On

the other hand, assuming that π∗ ∈ Ω solves (12) then there exists a scalar

β∗ > 0 such that π′ = π′
∗∆

−1/β∗ ∈ Ω is feasible to problem (16) and yields

fδ∗ ≥ f∗/β∗. Consequently

(

1

β∗

)

f∗ ≤ fδ∗ ≤ α∗f∗ (17)

which implies the desired result. ✷

Lemma 3 Let a matrix ∆ = {δij} ∈ R
N×N with nonnegative elements.

Define the equilibrium solution of the minimax problem

fδ∗ = max
π∈Ω

min
µ∈Ω

π′(H +∆)µ (18)

Then, f∗ ≤ fδ∗.

Proof: Once again we characterize the equilibrium (18) be means of

fδ∗ = max
π∈Ω

{

f :
∑

i∈K

πi(δi + hij) ≥ f

}

(19)

and the solution π∗ ∈ Ω is plugged on it to provide

fδ∗ ≥ min
j∈K

∑

i∈K

πi∗(hij + δij)

≥ f∗ +min
j∈K

∑

i∈K

πi∗δij (20)

which is the claim since by assumption δij ≥ 0. The proof is concluded.



As already commented these two properties are essential to obtain the

theoretical results to be presented in the next section. In the context of

mode independent control design for σ-MJLS, the only source of conserva-

tiveness has been introduced by the sufficient nature (and hence, in general,

conservative) of Lemma 1 which, however, is amenable in the numeric view-

point.

It is interesting to see what happens when the following problem is con-

sidered

max
i∈K

min
j∈K

hij (21)

The advantage when compared to (10) is that the optimal solution is much

simpler to calculate. However, the main difficulty to be faced is that, in gen-

eral, maxi∈Kminj∈K hij < minj∈Kmaxi∈K hij implying that a saddle point

does not exist and a similar relation as (11) does not hold. This occurs

because, obviously, the set K is not convex. However, if we search for a

solution of the form j(i) then maxi∈Kminj∈K hij ≤ maxi∈K hii which means

that the objective function is negative whenever hii < 0 for all i ∈ K. This

strategy is of mode dependent type being thus useless in the context of mode

independent control design.

3 Minimax Control Design

This section provides the main contributions of this paper. To this end, let

us consider the σ-MJLS with state space realization given in (1)-(2) and

introduce the following matrices

Rij = A′
ijPi + PiAij + C ′

ijCij +
∑

k∈K

λikPk (22)

for all i ∈ K and j ∈ K which allows, for any given x ∈ R
n, the determination

of all elements of the matrix {hij} = H ∈ R
N×N from

hij = x′Rijx (23)



Formally, at each instant of time t ≥ 0 the state variable x(t) = x is supposed

to be available and matrix H is calculated whenever matrices Pi for all i ∈ K

are known. It is used on the determination of the minimax strategy in both

cases, namely, mode dependent and mode independent control.

3.1 Mode Dependent Control

Under the assumption that at each instant of time t ≥ 0 the current vale of

the state variable x(t) = x ∈ R
n and the Markov mode θ(t) = θ ∈ K are

available, that is, both are measured online, let us consider the switching

function

σ(x, θ) = argmin
j∈K

hθj (24)

and determine matrices Pi > 0 for all i ∈ K to assure stochastic stability

and guaranteed H2 performance.

Theorem 1 If there exist symmetric matrices Vi and Wik for all k 6= i ∈

K×K satisfying the LMIs

[

AiiVi + ViA
′
ii +

∑

k 6=i∈K λikWik ViC
′
ii

• −I

]

< 0 (25)

[

Wik + Vi Vi

• Vk

]

> 0, k 6= i ∈ K (26)

then, with Pi = V −1
i for all i ∈ K, the mode dependent switching function

(24) assures global stochastic stability and the guaranteed H2 performance

E

{

r
∑

ℓ=1

∫ ∞

0
zℓ(t)

′zℓ(t)dt

}

<
∑

i∈K

πi0Tr(E
′
iV

−1
i Ei) (27)

Proof: Applying the Schur Complement to the second diagonal element of

(25), multiplying the result by λik ≥ 0 for all k 6= i and adding all terms it



follows that

∑

k 6=i∈K

λikWik >
∑

k 6=i∈K

λik

(

ViV
−1
k Vi − Vi

)

>
∑

k∈K

λikP
−1
i PkP

−1
i (28)

where the fact that λii = −
∑

k 6=i∈K λik and Pi = V −1
i for all i ∈ K has been

used. Hence, multiplying (25) to the right and to the left by diag{V −1
i , I}

after performing again the Schur Complement, the coupled Lyapunov in-

equalities Rii < 0 for i ∈ K are obatained.

At an arbitrary t ≥ 0 set x(t) = x 6= 0 and θ(t) = θ ∈ K. The mode

dependent switching function (24) imposes

LV (x, θ) + z′z = x′Rθσx

= min
j∈K

hθj

≤ hθθ < 0 (29)

where the last inequality follows immediately from (25) which also implies 
that LV (x, i) + z′z ≤ hii = x′Riix < 0 for all i ∈ K, that is, the system is 
stochastically stable. On the other hand, (9) holds and applying it to the 
initial conditions x0 = Eieℓ, successively, for ℓ = 1, · · · , r and adding terms 
we conclude that the guaranteed H2 performance (27) holds. The proof is 
concluded. 

The design conditions for mode dependent switched control provided in 
Theorem 1 are expressed by LMIs of reduced dimensions when compared to 
those normally adopted in the literature, see [4]. Of course, the fact that 
the Markov mode θ(t) = θ ∈ K is supposed to be known, the conditions of 
Theorem 1 may produce j(θ) = θ ∈ K since hii < 0 for all i ∈ K. In this 
case, the switching rule (24) imposes to the closed-loop σ-MJLS exactly the 
same performance as the one of the optimal linear state feedback H2 control 
of MJLS. This important feature will be addressed in the next section. The



switching control (24) is alternatively given by

σ(x, θ) = argmin
µ∈Ω

∑

j∈K

hθjµj (30)

which means that there is no improvement if we adopt, instead (24) this

linear parameter varying strategy µ(t) = µ ∈ Ω. In other words, both control

strategies produce the same result. The next section puts in evidence that

this is not true for mode independent control.

3.2 Mode Independent Control

Mode independent control is a key issue in the context of σ-MJLS because it

avoids the necessity to implement online measurement of the Markov mode

θ(t) = θ ∈ K. In this section, a new solution to the mode independent guar-

anteed H2 control design problem is proposed. It follows from the adoption

of the minimax linear parameter varying control law

σ(x) = µ∗ = argmin
µ∈Ω

π′
∗Hµ (31)

where π∗ ∈ Ω is the optimal solution of the linear programming problem (12).

This function becomes effective for stability and guaranteed performance

once the Lyapunov matrices Pi > 0 for all i ∈ K are adequately determined

as the next theorem indicates.

Theorem 2 If there exist symmetric matrices Vi > 0, Wik for all k 6= i ∈

K×K and a matrix Q = {qij} ∈ R
N×N satisfying the LMIs (26),

[

AijVi + ViA
′
ij − qijI +

∑

k 6=i∈K λikWik ViC
′
ij

−I

]

< 0 (32)

for all i, j ∈ K × K and Q+Q′ < 0 then, with Pi = V −1
i for all i ∈ K, the

mode independent switching function (31) assures global stochastic stability



and the guaranteed H2 performance

E

{

r
∑

ℓ=1

∫ ∞

0
zℓ(t)

′zℓ(t)dt

}

<
∑

i∈K

πi0Tr(E
′
iV

−1
i Ei) (33)

Proof: At an arbitrary t ≥ 0 set x(t) = x 6= 0. For any i ∈ K, the minimax

linear parameter varying control (31) implies that

LV (x, i) + z′z = x′Riσx

≤ max
π∈Ω

x′

(

∑

i∈K

πiRiσ

)

x

≤ max
π∈Ω

min
µ∈Ω

x′





∑

i∈K

∑

j∈K

πiµjRij



x

≤ max
π∈Ω

min
µ∈Ω

π′Hµ (34)

Now, adopting the same algebraic manipulations as before in the proof of

Theorem 1 to inequalities (26), performing the Schur Complement with re-

spect to the second diagonal element of (32) and multiplying the result from

both sides by V −1
i = Pi it follows that

hij = x′Rijx

< qij‖Pix‖
2
2 (35)

Defining the positive diagonal matrix D = diag{‖P1x‖
2
2, · · · ‖PNx‖22} and

using Lemma 1, together with Lemma 2 and Lemma 3 it is seen that

max
π∈Ω

min
µ∈Ω

π′Hµ < max
π∈Ω

min
µ∈Ω

π′DQµ < 0 (36)

because Q + Q′ < 0. Hence, stochastic stability and (9) hold. Applying (9) 
to the initial conditions x0 = Eieℓ, successively, for ℓ = 1, · · · , r and adding 
terms the conclusion is that the guaranteed H2 performance (33) holds. The 
proof is concluded.



This result is somewhat surprising because all matrix variables including

Q = {qij} ∈ R
N×N are determined by means of LMIs. Hence, no kind of

relaxation procedure to deal with temporarily fixed variables is necessary. In

addition, the products of matrices and variables appears to be adequate to

include state feedback gains in the set of matrix variables, keeping unchanged

the convex nature of the problem, an aspect to be addressed in future works.

Finally, it is important to stress that to be feasible for Q + Q′ < 0, the

diagonal elements must be strictly negative but the off diagonal ones are

allowed to be positive, a fact that certainly contributes to increase the quality

of the control policy (31) as far as the minimization of the guaranteed calH2

cost is concerned.

3.3 MJLS Control Design

This section is devoted to apply the previous results to design mode depen-

dent and mode independent state feedback control of MJLS. See [4] and the

references therein for a rather complete study on optimal H2 control includ-

ing historical and numerical aspects. The MJLS state space realization is

given by

ẋ(t) = Aθx(t) +Bθu(t) + Eθw(t) (37)

z(t) = Cθx(t) +Dθu(t) (38)

where x ∈ R
n, u ∈ R

m, w ∈ R
r and z ∈ R

s are the state, the control,

the exogenous input and the controlled output, respectively. As usual, it

is assumed that the system evolves from initial conditions x(0) = 0 and

θ(0) = θ0, with P(θ0 = i) = πi0 > 0, ∀i ∈ K and D′
iDi > 0 for all i ∈ K.

Under the assumption that the Markov modes are available for feedback,

the optimal state feedback control is u(t) = Lθx(t) with the state feedback

gains given by

min
Li,Pi>0

{

∑

i∈K

πi0Tr(E
′
iPiEi) : Rii < 0, i ∈ K

}

(39)



where Rii for all i ∈ K are given in (22) with Aii = Ai + BiLi and Cii =

Ci +DiLi. It is well known that the optimal solution of problem (39) lies

on the border of the feasible set defined by the inequalities Rii < 0 and,

consequently, it can be calculated from the stabilizing solution of the set

of coupled Riccati equations Rii = 0 for i ∈ K. This requires an iterative

procedure whose description and convergence are discussed in [4]. A simpler

alternative follows from the reformulation of problem (39) in terms of the

new matrix variables Vi = P−1
i > 0, i ∈ K, yielding

min
Li,Vi,Wij

{

∑

i∈K

πi0Tr(E
′
iV

−1
i Ei) : (25) − (26), i ∈ K

}

(40)

which is immediately converted to a convex programming problem by in-

troducing the one to one change of variables Li = YiV
−1
i , i ∈ K. It is

important to mention that when compared to the various numerical meth-

ods available in the literature to deal with the optimal H2 control for MJLS,

problem (40) appears to have an advantage. Actually, LMIs of smaller di-

mensions certainly causes a reduction on the computational burden. Once

the optimal gains are determined we are able to determine Rij by setting

Aij = Ai +BiLj and Cii = Ci +DiLj for all i ∈ K and j ∈ K.

Hence, the switching mode dependent control provided by Theorem 1 is

implemented as u(t) = Lσ(x,θ)x(t) where the switching control σ(x, θ) ∈ K is

given in (24). For mode independent control, notice that due to convexity,

it can be verified that for each i ∈ K and for all µ ∈ Ω, the inequality

∑

j∈K

Rijµj ≥ (Ai +BiL)
′Pi + Pi(Ai +BiL) + (Ci +DiL)

′(Ci +DiL) (41)

∑

with L = j∈K Ljµj , holds. Consequen
∑

tly, the minimax state feedback
control is implemented through u(t) = j∈K µj∗(t)Lj x(t) where σ(x) = 
µ∗ ∈ Ω is given in (31).

A final remark concerns the concept of consistency of switched linear
systems, see [6]. The switching control provided by Theorem 1 is consistent
because the comparison of (40) and (25)-(27) shows that the switching con-



trol imposes to the closed-loop system a guaranteed H2 performance that

can not be worse than the minimum cost provided by (40).

4 Illustrative Example

To illustrate the theoretical result obtained so far, the following academi-

cal example has been borrowed from [2]. The matrices of the state space

realization (37)-(38) are

A1 =

[

0.14 0.80

4.00 −1.01

]

, B1 =

[

1.44

2.52

]

A2 =

[

1.74 0.20

0.00 −2.51

]

, B2 =

[

2.44

5.52

]

C1 = C2 =







1 0

0 1

0 0






, D1 = D2 =







0

0

1






, E1 = E2 =

[

1.70

−1.20

]

The Markov chain is characterized by the transition rate matrix

Λ =

[

−1.09 1.09

2.87 −2.87

]

and the initial probability π0 = [1 0]′. First of all, a near optimal solution to

the convex problem (40) with minimum cost Jopt ≈ 2.4260 and the associated

state feedback gains

[

L1

L2

]

=

[

−1.6077 −0.7937

−2.0740 −0.5569

]

has been calculated. Then, mode dependent and mode independent control
have been designed from the direct application of Theorem 1 and Theorem
2, respectively. Each case has being validated by Monte Carlo simulation of
500 runs in the time interval t ∈ [0, 4] seconds using the method of [8] to
describe adequate and efficiently the Markov jump process.
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Figure 1: Time simulation

Optimal Mode Dependent Mode Independent

Guaranteed 2.4260 2.4245 2.6554
Simulated 2.4287 2.4559

Table 1: Theoretical and simulated H2 performance

The costs indicated in Table 1 deserve some remarks. The guaranteed
cost and the respective value obtained by simulation agree, in the cases of
mode dependent and mode independent control. As expected, the guaran-
teed cost of the mode dependent control is approximately Jopt which allows
the conclusion that, in this particular exemple, the obvious mode dependent
control σ(x, θ) = θ ∈ K produces almost the same performance.

On the other hand, the case of mode independent control, puts in evi-
dence the quality of our design. Again, the guaranteed and simulated H2 

performances are very close to Jopt which indicates that the proposed control
is actually effective even thought the Markov mode is unknown.

Figure 1 shows two time simulations corresponding to mode independent
(top row) and mode independent (bottom row) control. In both cases, the
graphics on the left show the closed-loop system mean trajectories (in red)



of each state inside a region (in gray) defined by one standard deviation. A

single trajectory is also shown. On the top right the graphic shows the time

evolution of the corresponding Markov mode and the switching control (24)

which coincides in this cases. On the bottom right it is presented the time

evolution of the Markov mode and the minimax control (31) which evolves

continuously on time from µ1(0) = 0.6784 to µ1(4) = 0.4268. Mainly in the

mode independent case, the minimax control appears to be very effective.

5 Conclusion
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