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1. Introduction

Steady states of an open quantum system are considered equilibrium or 
nonequilibrium states according to whether or not they satisfy a quantum 
detailed balance condition (see [3, 4, 16, 17, 18, 19, 23, 26, 29] and the refer-
ences therein). Concepts of entropy production have been proposed in several 
papers ([5, 6, 14, 15, 20, 24, 29] is a short list far from being complete) as an 
index of deviation from detailed balance (see [22] also for classical Markov 
processes).

In [14, 15] we introduced a definition of entropy production rate for faith-
ful normal invariant states of quantum Markov semigroups, inspired by the 
one brought into play for classical Markov processes, by considering the 
derivative of relative entropy of the one-step forward and backward two-point 
states at time t = 0. Moreover, we proved an explicit formula for the entropy 
production of a quantum Markov semigroup in terms of the completely posi-



tive part of the generator (Theorem 3 here). This formula shows that nonzero 
entropy production is closely related with the violation of quantum detailed 
balance conditions and singles out states with finite entropy production as a 
rich class of simple nonequilibrium invariant states.

In this paper we compute the entropy production for a class of quantum 
Markov semigroups, a faithful invariant state ρ, arising in the weak coupling 
limit of a system coupled with reservoirs, whose generators L are sums of 
other generators Lω associated with positive Bohr frequencies ω of the system 
(see [2, 10, 11]).

Our main result is the explicit formula (15) for the entropy production 
rate in terms of second order moments of Kraus operators in the GKSL 
(Gorini-Kossakowski-Sudarshan-Lindblad) representation of the generator. 
This formula shows that the entropy production of a semigroup in this class 
is the sum of non-negative entropy productions of all semigroups generated 
by each Lω. As a consequence (Theorem 6) the semigroup generated by L 
satisfies the quantum detailed balance condition if and only if so does each 
semigroup generated by Lω.

The plan of the paper is as follows. In Sect. 2 we introduce the class of 
quantum Markov semigroups we are dealing with. In Sect. 3 we recall various 
notions of quantum detailed balance. Our new formula for the entropy pro-
duction is proved in Sect. 4 and, finally, in Sect. 5 we essentially show that 
equilibrium states for the semigroup generated by L are equilibrium state for 
all semigroups generated by each Lω.

2. QMS of Stochastic Limit Type

We will be concerned with the class of quantum Markov semigroups (QMS) 
we describe below under some restrictive assumptions in order to avoid do-
main problems and similar technicalities. This class arises in the weak cou-
pling limit as well as in the stochastic limit of a Hamiltonian system S inter-
acting with a reservoir (see [2, 10, 11] and the references therein).

Let h be a fixed d-dimensional (d < ∞) Hilbert space and let HS be a 
self-adjoint operator on h with spectral decomposition

HS =
∑

n

εnPεn ,

where εn 6= εm for m 6= n and Pεn is the orthogonal projection onto the
nullspace of HS − εn1lh (here 1lh denotes the identity operator on h). We
denote by B(h) the algebra of all bounded operators on h. We call Bohr
frequencies the differences εn − εm with εn > εm.

Choose an operator V on h and define

Vω =
∑

εn−εm=ω

PεmV Pεn . (1)



Moreover, let Hω be a self-adjoint operator on h commuting with HS . For 
all Bohr frequency ω let Lω be the GKSL generator of a QMS on B(h)

Lω(x) = i[Hω, x]−
γ−ω
2

(V ∗
ωVωx− 2V ∗

ω xVω + xV ∗
ωVω)

−
γ+ω
2

(VωV
∗
ω x− 2VωxV

∗
ω + xVωV

∗
ω ) , (2)

where γ−ω , γ
+
ω > 0. QMSs in our class are generated by the linear map L

L =
∑

ω

Lω . (3)

Note that, defining

Gω = −
1

2

(
γ−ω V

∗
ωVω + γ+ω VωV

∗
ω

)
− iHω (4)

we can write the generator Lω simply as

Lω(x) = G∗
ωx+ γ−ω V

∗
ω xVω + γ+ω VωxV

∗
ω + xGω .

Since the Hilbert space h is finite-dimensional, the QMS generated by Lω
admits an invariant state ρ. Moreover, it is well-known (see e.g. [2]) that
there exists an invariant state whose density matrix ρ commutes with the
system Hamiltonian H so that it can be written as

ρ =
∑

1≤j≤d

ρj |ej〉〈ej | ,

where ρj ≥ 0, the above sum is finite,
∑

1≤j≤d ρj = 1, (ej)1≤j≤d is an or-
thonormal basis of h and each ej belongs to an eigenspace Pn of HS . We
shall also assume that ρ is faithful (if not we can reduce the semigroup by its
recurrent projection [13]).

The generators of these QMSs turn out to admit a special GKSL repre-
sentantion ([28] Theorem 30.16)

L(x) = i[H,x]−
1

2

2b∑

ℓ=1

(L∗
ℓLℓx− 2L∗

ℓxLℓ + xL∗
ℓLℓ) , (5)

where b is the number of Bohr frequencies, such that tr(ρLℓ) = 0 for all
1 ≤ ℓ ≤ b and operators (Lℓ)ℓ≥1 are linearly independent in B(h). Indeed, it
suffices to associate with each Bohr frequency ω a pair of operators

L2ℓ = (γ−ω )
1/2Vω , L2ℓ−1 = (γ+ω )

1/2V ∗
ω , (6)

where the indexes run over a finite set, and define H =
∑

ω Hω.



3. Quantum Detailed Balance and Entropy Production

A number of conditions called quantum detailed balance (QDB) have been 
proposed in the literature to distinguish, among invariant states, those en-
joying reversibility properties.

The first one, to the best of our knowledge, appeared in the work of 
Agarwal [3] in 1973 (see also Majewski [25]) and involves a reversing operation
Θ : B(h) → B(h), namely a linear ∗-map (Θ(x∗) = Θ(x)∗ for all x ∈ B(h)),
that is also an antihomomorphism (Θ(xy) = Θ(y)Θ(x) ) and satisfies Θ2 = I,
where I denotes the identity map on B(h). A QMS T satisfies the Agarwal-
Majewski QDB condition with respect to a faihtful normal invariant state
ρ if tr (ρxTt(y)) = tr (ρΘ(y)Tt(Θ(x))), for all x, y ∈ B(h). If the state ρ
is invariant under the reversing operation, i.e. tr (ρΘ(x)) = tr (ρx) for all
x ∈ B(h), as we shall assume throughout the paper, this condition can be
written in the equivalent form tr (ρxTt(y)) = tr (ρ ((Θ ◦ Tt ◦Θ)(x)) y) for all
x, y ∈ B(h). Therefore the Agarwal-Majewski QDB condition means that
maps Tt admit dual maps coinciding with Θ◦Tt ◦Θ for all t ≥ 0; in particular
dual maps must be positive since Θ is obviously positivity preserving. The
map Θ often appears in the physical literature as a parity map; a self-adjoint
x is an even (resp. odd) observable if Θ(x) = x (resp. Θ(x) = −x).

In our framework, since HS is the energy of the system, which is a typical
even observable, a reasonable map Θ is the transpose Θ(a) = a⊺ with respect
to an orthonormal basis (ej)1≤j≤d of h diagonalizing HS as in [12]. Interested
readers can consult [17, 18, 25] in more general situations.

The best known QDB notion, however, is due to Alicki [4] and Kos-
sakowski, Frigerio, Gorini, Verri [23]. According to these authors, a QMS
with generator L as in (5), with invariant state ρ whose density commutes
with H, satisfies the quantum detailed balance condition if tr (ρ xL(y)) =

tr(ρ L̃(x)y) where L̃ = L − 2i[H, · ]. As a consequence, the QMS T̃ on B(h)

generated by L̃ satisfies tr (ρ xTt(y)) = tr(ρ T̃t(x)y) for all t ≥ 0.

Both the above QDB conditions depend in a crucial way from the bilinear
form (x, y) → tr (ρxy). In particular, if they hold true, all positive maps Tt
admit positive dual maps; as a consequence, all the maps Tt must commute
with the modular group (σρ

t )t∈R, given by σρ
t (x) = ρitxρ−it, associated with

the state ρ (see [23, Prop. 2.1], [26, Prop. 5] and also [9]) as well as the
generator L. This algebraic restriction is unnecessary if we consider the
bilinear form (x, y)→ ω

(
σi/2(x)y

)
for defining dual QMSs.

QDB conditions arising when we consider this bilinear form are called 
standard (see e.g. [11, 18]); we could not find them in the literature, but it 
seems that they belong to the folklore of the subject. In particular, they were 
considered by R. Alicki and A. Majewski (private communication).



DEFINITION 1 Let T be a QMS with a dual T ′ defined by

ω
(
σi/2(x)Tt(y)

)
= ω

(
σi/2

(
T ′
t (x)

)
y
)

for all x, y ∈ B(h), t ≥ 0 .

The semigroup T satisfies:

1. the standard quantum detailed balance condition with respect to the
reversing operation Θ (SQBD-Θ) if T ′

t = Θ ◦ Tt ◦Θ for all t ≥ 0,

2. the standard quantum detailed balance condition (SQDB) if the differ-
ence of generators L − L′ of T and T ′ is a derivation.

It is worth noticing here that the above standard QDB conditions coincide
with the Agarwal-Majewski and Alicki-Gorini-Kossakowski-Frigerio-Verri re-
spectively when the QMS T commutes with the modular group (σt)t∈R as-
sociated with ω (see [16, 18]).

In the framework of this paper all states are normal and will be identified
with their densities. In particular, ω(x) = tr (ρ x), σt(x) = ρitxρ−it and
ω
(
σi/2(x)y

)
= tr

(
ρ1/2xρ1/2y

)
.

In [18, Theorems 5, 8 and Remark 4] we proved the following character-
isations of QMS satisfying a standard QDB condition we recall here in the
present framework.

THEOREM 1 A QMS T satisfies the SQDB if and only if for any special
GKSL representation of the generator L by means of operators G,Lℓ there
exists a unitary (umℓ)1≤m,ℓ≤2b on a Hilbert space k (called the multiplicity
space) which is also symmetric (i.e. uℓm = umℓ for all m, ℓ) such that, for all
ℓ ≥ 1,

ρ1/2L∗
ℓ =

∑

1≤m≤2b

uℓmLmρ1/2 . (7)

THEOREM 2 A QMS T satisfies the SQBD-Θ condition if and only if for
any special GKSL representation of L by means of operators G,Lℓ, there
exists a self-adjoint unitary (uℓm)1≤m,ℓ≤2b such that:

1. ρ1/2G⊺ = Gρ1/2,

2. ρ1/2L⊺
ℓ =

∑
1≤m≤2b uℓmLmρ1/2 for all 1 ≤ ℓ ≤ 2b.

The SQBD-Θ condition is more restrictive than the SQDB condition because 
it involves also the identity ρ1/2G⊺ = Gρ1/2 (see [15, Example 7.3]). However, 
this does not happen if G⊺ = G and ρ commutes with G. This is a reason-
able physical assumption satisfied by many QMSs as, for instance, those of 
stochastic limit type we are considering in this paper. Conditions obtained 
including the reversing map Θ seem more suitable for studying quantum 
detailed balance [18, 21].



4. A Formula for Entropy Production

We begin this section by recalling our notion of entropy production [15]. 
Since it provides an index describing deviation from detailed balance, it was 
introduced in [14, 15] through the forward and backward two-point states on 
B(h) ⊗ B(h)

−→
Ω t (x⊗ y) = tr

(
ρ1/2x⊺ρ1/2Tt(y)

)

←−
Ω t (x⊗ y) = tr

(
ρ1/2Tt(x

⊺)⊺ρ1/2y
)
,

which clearly coincide if and only if T satisfies the SQDB-Θ condition, and
their relative entropy S(

−→
Ω t,
←−
Ω t) as

ep(T , ρ) = lim sup
t→0+

S(
−→
Ω t,
←−
Ω t)

t
. (8)

Moreover, in [15, Theorem 5], we proved an explicit formula based on the

Kraus operators Lℓ in a GKSL decomposition of the generator L. Let
−→
Φ ∗

and
←−
Φ ∗ be the linear maps on trace class operators on h⊗ h

−→
Φ ∗(X) =

∑

ω

(
γ−ω (1l⊗ Vω)X (1l⊗ V ∗

ω ) + γ+ω (1l⊗ V ∗
ω )X (1l⊗ Vω)

)
, (9)

←−
Φ ∗(X) =

∑

ω

(
γ−ω (Vω ⊗ 1l)X (V ∗

ω ⊗ 1l) + γ+ω (V ∗
ω ⊗ 1l)X (Vω ⊗ 1l)

)
. (10)

Let θ be the antilinear conjugation in a basis (ej)1≤j≤d diagonalizing ρ and
let D be the entangled state on B(h)⊗ B(h) introduced in [15] as

D = |r〉〈r| , r =
∑

j

ρ
1/2
j θej ⊗ ej . (11)

It is not hard to check as in [15] that D is the density of the state
−→
Ω 0 =

←−
Ω 0.

THEOREM 3 Let T be QMS on B(h) and ρ a faithful invariant state. As-
sume:

1. ρ1/2G⊺ = Gρ1/2,

2. the linear spans of
{
Lℓρ

1/2 | ℓ ≥ 1
}
and

{
ρ1/2L⊺

ℓ | ℓ ≥ 1
}
coincide.

Then the ranges of
−→
Φ ∗(D) and

←−
Φ ∗(D) coincide and the entropy production

is

ep(T , ρ) =
1

2
tr
((
−→
Φ ∗(D)−

←−
Φ ∗(D)

)(
log
(
−→
Φ ∗(D)

)
− log

(
←−
Φ ∗(D)

)))

= tr
(
−→
Φ ∗(D)

(
log
(
−→
Φ ∗(D)

)
− log

(
←−
Φ ∗(D)

)))
. (12)



In order to compute explicitly the entropy production for QMS in the class 
described in Sect. 2 we begin by establishing a preliminary Lemma. We 
denote by 〈 · , · 〉 the scalar product in h ⊗ h.

LEMMA 1 Let X and Y be bounded operators on h, then

〈(Y ⊗ 1l)r, (1l⊗X)r〉 = tr
(
(ρ1/2θY ∗θ)∗Xρ1/2

)
(13)

〈(1l⊗ Y )r, (1l⊗X)r〉 = tr (ρ Y ∗X) . (14)

Proof. Both formulas follow from straightforward computations

〈(Y ⊗ 1l)r, (1l⊗X)r〉 =
∑

j,k

(ρjρk)
1/2〈Y θej , θek〉〈ej , Xek〉

=
∑

j,k

〈ek, θY θρ1/2ej〉〈ej , Xρ1/2ek〉

=
∑

j,k

〈ρ1/2θY ∗θek, ej〉〈ej , Xρ1/2ek〉

=
∑

k

〈ρ1/2θY ∗θek, Xρ1/2ek〉

= tr
(
(ρ1/2θY ∗θ)∗Xρ1/2

)
,

〈(1l⊗ Y )r, (1l⊗X)r〉 =
∑

j,k

(ρjρk)
1/2〈θej , θek〉〈Y ej , Xek〉

=
∑

j

〈Y ρ1/2ej , Xρ1/2ej〉

= tr (ρ Y ∗X) .

Replacing the operators X,Y in Lemma 1 by operators Vω and taking into
account that θV ∗

ω θ = V ∗
ω if Vω is a real matrix, we have the following

COROLLARY 1 If the operators Vω, defined by (1), are represented by real
matrices we have

〈(Vω′ ⊗ 1l)r, (1l⊗ Vω)r〉 = δω,ω′tr
(
ρ1/2Vωρ

1/2Vω

)
,

〈(1l⊗ Vω′)r, (1l⊗ Vω)r〉 = δω,ω′tr (ρV ∗
ωVω) ,

where δω,ω′ is the Kronecker delta.

We are now in a position to prove our entropy production formula



THEOREM 4 Assume that Vω and Hω are real matrices for all Bohr fre-
quency ω, then the entropy production is

ep(T , ρ) =
∑

ω

[
γ−ω tr

(
ρV ∗

ωVω log
( γ−ω [tr (ρV ∗

ωVω)]
2

γ+ω [tr
(
ρ1/2V ∗

ω ρ
1/2Vω

)
]2

))

+ γ+ω tr

(
ρVωV

∗
ω log

( γ+ω [tr (ρVωV
∗
ω )]

2

γ−ω [tr
(
ρ1/2V ∗

ω ρ
1/2Vω

)
]2

))]
. (15)

Proof. Replacing X by D in (9) and (10) and denoting
−→
V ω = 1l ⊗ Vω,

←−
V ω = Vω ⊗ 1l one obtains

−→
Φ ∗(D) =

∑

ω

(
γ−ω |
−→
V ωr〉〈

−→
V ωr|+ γ+ω |

−→
V

∗

ωr〉〈
−→
V

∗

ωr|
)

(16)

←−
Φ ∗(D) =

∑

ω

(
γ−ω |
←−
V ωr〉〈

←−
V ωr|+ γ+ω |

←−
V

∗

ωr〉〈
←−
V

∗

ωr|
)
. (17)

By Corollary 1, each vector
−→
V ωr is orthogonal to any vector

−→
V

∗

ωr and each
−→
V ωr (respectively

−→
V

∗

ωr) is orthogonal to
−→
V ω′r (resp.

−→
V

∗

ω′r) with ω′ 6= ω.

Therefore, normalizing vectors
−→
V ωr,

−→
V

∗

ωr yield an orthonormal basis of h⊗h

(by adding appropriate vectors if necessary, on these vectors
−→
Φ ∗(D) and

←−
Φ ∗(D) are null, so that the computations remain unchanged). In this basis
−→
Φ ∗(D) turns out to be a diagonal matrix with 2 × 2 blocks associated with
each Bohr frequency ω given by

[
γ−ω tr (ρV

∗
ωVω) 0

0 γ+ω tr (ρVωV
∗
ω )

]
.

In order to write
←−
Φ ∗(D), compute first

←−
V ωr:

←−
V ωr =

tr
(
ρ1/2V ∗

ω ρ
1/2V ∗

ω

)

tr (ρV ∗
ωVω)

−→
V ωr +

tr
(
ρ1/2Vωρ

1/2V ∗
ω

)

tr (ρVωV ∗
ω )

−→
V

∗

ωr

=
tr
(
ρ1/2Vωρ

1/2V ∗
ω

)

tr (ρVωV ∗
ω )

−→
V

∗

ωr ,

since the first term is 0. In the same way we have

←−
V

∗

ωr =
tr
(
ρ1/2V ∗

ω ρ
1/2Vω

)

tr (ρV ∗
ωVω)

−→
V ωr +

tr
(
ρ1/2Vωρ

1/2Vω

)

tr (ρVωV ∗
ω )

−→
V

∗

ωr

=
tr
(
ρ1/2V ∗

ω ρ
1/2Vω

)

tr (ρV ∗
ωVω)

−→
V ωr .



Thus, by the cyclic property of the trace, we have

←−
V ωr =

tr
(
ρ1/2V ∗

ω ρ
1/2Vω

)

tr (ρVωV ∗
ω )

1/2

−→
V

∗

ωr

‖
−→
V

∗

ωr‖
,

←−
V

∗

ωr =
tr
(
ρ1/2V ∗

ω ρ
1/2Vω

)

tr (ρV ∗
ωVω)

1/2

−→
V ωr

‖
−→
V ωr‖

.

It follows that, in the above orthonormal basis of h×h, obtained normalizing

vectors
−→
V ωr,

−→
V

∗

ωr,
←−
Φ ∗(D) becomes

←−
Φ ∗(D) =

∑

ω

[
γ+ω

[tr
(
ρ1/2V ∗

ω ρ
1/2Vω

)
]2

tr (ρV ∗
ωVω)

|
−→
V ωr〉〈

−→
V ωr|

‖
−→
V ωr‖2

+ γ−ω
[tr
(
ρ1/2V ∗

ω ρ
1/2Vω

)
]2

tr (ρVωV ∗
ω )

|
−→
V

∗

ωr〉〈
−→
V

∗

ωr|

‖
−→
V

∗

ωr‖
2

]

and it turns out to be a matrix with 2 × 2 diagonal blocks associated with
each Bohr frequency ω given by




γ+ω
[tr
(
ρ1/2V ∗

ω ρ
1/2Vω

)
]2

tr (ρV ∗
ωVω)

0

0 γ−ω
[tr
(
ρ1/2V ∗

ω ρ
1/2Vω

)
]2

tr (ρVωV ∗
ω )




and our entropy production formula follows immediately.

5. Global and Local Equilibrium

In this section we show that the entropy production (15) vanishes if and only
if all the semigroups generated by each Lω satisfy the SQDB-Θ condition.

It is useful to introduce some notation that allows us to focus more clearly
contributions of each QMS generated by Lω to the entropy production:

ν−ω = tr (ρV ∗
ωVω) , ν+ω = tr (ρVωV

∗
ω ) , µω = tr

(
ρ1/2V ∗

ω ρ
1/2Vω

)
.

In this notation the entropy production is written as

ep(T , ρ) =
∑

ω

[
γ−ω ν

−
ω log

(
γ−ω ν

− 2
ω

γ+ω µ2
ω

)
+ γ+ω ν

+
ω log

(
γ+ω ν

+2
ω

γ−ω µ2
ω

)]
. (18)

Note that, by the Schwarz inequality,

µ2
ω ≤ ν+ω ν

−
ω . (19)



Moreover,

log

(
γ∓ω ν

∓ 2
ω

γ±ω µ2
ω

)
= log

(
γ∓ω ν

∓
ω

γ±ω ν
±
ω

)
+ log

(
ν+ω ν

−
ω

µ2
ω

)

so that we can rewrite the entropy production as

ep(T , ρ) =
∑

ω

(
γ−ω ν

−
ω − γ+ω ν

+
ω

)
log

(
γ−ω ν

−
ω

γ+ω ν
+
ω

)

+
(
γ−ω ν

−
ω + γ+ω ν

+
ω

)
log

(
ν+ω ν

−
ω

µ2
ω

)
.

COROLLARY 2 The entropy production is zero if and only if γ−ω ν
−
ω = γ+ω ν

+
ω

and ν−ω ν
+
ω = µ2

ω.

Proof. It suffices to note that log(ν+ω ν
−
ω /µ

2
ω) is non-negative by (19) and

(t− s) log(t/s) is non-negative for all reals t, s with t 6= s.

The following result shows that QMSs of stochastic limit type have zero
entropy production if and only if the standard quantum detailed balance
condition with reversing map Θ (SQDB-Θ condition) holds. This is not true
for an arbitrary QMS as shows in [15, Example 7.3].

THEOREM 5 Assume that Vω and Hω are real matrices for all ω, so that
the semigroup commutes with the reversing map Θ. Then the following are
equivalent:

1. the entropy production is zero,

2. ρ1/2L∗
2ℓ−1

= L2ℓ ρ
1/2 for all ℓ = 1, . . . , 2b,

3. (γ+ω )
1/2

ρ1/2Vω = (γ−ω )
1/2

Vωρ
1/2 for all ω,

4. the SQDB-Θ condition holds.

Proof. 2 ⇔ 3. Clear from the definition (6) of L2ℓ and L2ℓ+1. Indeed,

(γ+ω )
1/2

ρ1/2Vω = ρ1/2L∗
2ℓ−1

and (γ−ω )
1/2

Vωρ
1/2 = L2ℓρ

1/2 for all ℓ = 1, . . . , b.

1⇒ 3. By Corollary 2 we have ν−ω ν
+
ω = µ2

ω and so the Schwarz inequal-
ity (19) turns out to be an equality. It follows that the operators Vωρ

1/2

and Vωρ
1/2, thought of as vectors in the Hilbert space of Hilbert-Schmidt

operators on h are parallel, i.e. ρ1/2Vω = cωVωρ
1/2 for some constant cω.

Computing the scalar product with Vωρ
1/2 we immediately find µω = cων

−
ω ,

i.e., since µ2
ω = ν−ω ν

+
ω , cω = (ν+ω /ν

−
ω )

1/2
so that

ρ1/2Vω =

(
ν+ω
ν−ω

)1/2

Vωρ
1/2



and 3 follows from γ−ω ν
−
ω = γ+ω ν

+
ω .

3 ⇒ 4. The SQDB-Θ condition is characterized by [18, Theorem 8],
namely Theorem 2 in this paper. Now, the identity ρ1/2θG∗θ = Gρ1/2 holds
because we have assumed that Vω and Hω are real matrices. Moreover, since
Lℓ = θLℓθ and L∗

ℓ = θL∗
ℓθ for all ℓ ≥ 1, condition 2 of Theorem 2 holds

choosing as unitary self-adjoint the operator u flipping even and odd indexes
ℓ, i.e. ukj = 1 if either k = 2ℓ and j = 2ℓ − 1 or k = 2ℓ − 1 and j = 2ℓ and
ukj = 0 otherwise.

4⇒ 1. For all vector v =
∑

α,β vαβ θeα ⊗ eβ we have
〈
v,
−→
Φ ∗(D)v

〉
=

∑

ℓ,j,k,β,β′

vjβ′vkβ

〈
eβ′ , Lℓρ

1/2ej

〉〈
Lℓρ

1/2ek, eβ

〉
(20)

and also, by the properties of the antiunitary θ
〈
v,
←−
Φ ∗(D)v

〉
=

∑

ℓ,j,k,α,α′

vα′jvαk

〈
θeα′ , Lℓρ

1/2θej

〉〈
Lℓρ

1/2θek, θeα

〉

=
∑

ℓ,j,k,α,α′

vα′jvαk

〈
θLℓθρ

1/2ej , eα′

〉〈
eα, θLℓθρ

1/2ek

〉

=
∑

ℓ,j,k,α,α′

vα′jvαk

〈
ej , ρ

1/2θL∗
ℓθeα′

〉〈
θL∗

ℓθρ
1/2eα, ek

〉
.

Now, the SQDB-Θ condition holds, then ρ1/2θL∗
ℓθ =

∑
m uℓmLmρ1/2 for a

unitary self-adjoint (uℓm)1≤ℓ,m≤2b so that,
∑

ℓ uℓm′uℓm = δm′m and
〈
v,
←−
Φ ∗(D)v

〉
=

∑

ℓ,j,k,α,α′,m,m′

vα′jvαkuℓm′uℓm

〈
ej , Lm′ρ1/2eα′

〉〈
Lmρ1/2eα, ek

〉

=
∑

j,k,α,α′,m

vα′jvαk

〈
ej , Lmρ1/2eα′

〉〈
Lmρ1/2eα, ek

〉
.

Changing indexes and comparing with (20), by the arbitrarity of v, we find
−→
Φ ∗(D) =

←−
Φ ∗(D) and the entropy production, given by (15), is zero. �

Remark. It is worth noticing here that conditions of Theorem 5 are also
equivalent to the QDB-Θ condition and so in our class of QMSs of stochas-
tic limit type the SQDB-Θ and QDB-Θ. Indeed, since the modular group

is given by σt(x) = ρitxρ−it, the identity (γ+ω )
1/2

ρ1/2Vω = (γ−ω )
1/2

Vωρ
1/2

reads σ−i/2(Vω) = (γ−ω /γ
+
ω )

1/2
Vω. Taking the adjoint of (γ+ω )

1/2
ρ1/2Vω =

(γ−ω )
1/2

Vωρ
1/2 we find also, in the same way, σ−i/2(V

∗
ω ) = (γ+ω /γ

−
ω )

1/2
V ∗
ω . It

follows that

σ−i(Vω) = σ−i/2

(
σ−i/2(Vω)

)
=
(
γ−ω /γ

+
ω

)1/2
σ−i/2(Vω) =

(
γ−ω /γ

+
ω

)
Vω

σ−i(V
∗
ω ) = σ−i/2

(
σ−i/2(V

∗
ω )
)

=
(
γ+ω /γ

−
ω

)1/2
σ−i/2(V

∗
ω ) =

(
γ+ω /γ

−
ω

)
V ∗
ω



and

σ−i(L2ℓ) =
(
γ−ω /γ

+
ω

)
L2ℓ , σ−i(L2ℓ+1) =

(
γ+ω /γ

−
ω

)
L2ℓ−1

σ−i(L
∗
2ℓ) =

(
γ+ω /γ

−
ω

)
L∗
2ℓ , σ−i(L

∗
2ℓ+1) =

(
γ−ω /γ

+
ω

)
L∗
2ℓ−1 .

Straightforward computations show that σ−i(Hω) = Hω. It follows then from
[16, Theorem 9], that the QDB-Θ condition holds.

Theorem 5 and the above remark lead us to the following result essentially
showing that ρ is an equilibrium state for the QMS generated by L if and
only if it is an equilibrium state for the QMSs generated by each Lω.

THEOREM 6 Let L be the generator of a QMS as in Sect. 2, let ρ be a
faithful invariant state. Assume that Vω is a real matrix for all ω and Hω is
a linear combination of V ∗

ωVω and VωV
∗
ω . Then the following are equivalent:

1. the QMS generated by L satisfies the SQDB-Θ condition,

2. for all ω, the QMSs generated by each Lω admits ρ as invariant state
and satisfies the SQDB-Θ condition.

Proof. Clearly 2 ⇒ 1.
Conversely, if the QMS generated by L satisfies the SQDB-Θ condition,

then by Theorem 5 and the above Remark we have

ρV ∗
ωVωρ

−1 = ρV ∗
ω ρ

−1 ρVωρ
−1 =

γ+ω
γ−ω

V ∗
ω

γ−ω
γ+ω

Vω = V ∗
ωVω

and so ρ commutes with V ∗
ωVω. In the same way, we can check that it

commutes with VωV
∗
ω . As a consequence, by the commutation rules found in

the above Remark ρV ∗
ω = (γ+ω /γ

−
ω )V

∗
ω ρ and ρVω = (γ−ω /γ

+
ω )Vωρ and we have

Gωρ+ γ−ω VωρV
∗
ω + γ+ω V

∗
ω ρVω + ρG∗

ω

= (Gω +G∗
ω)ρ+ γ+ω VωV

∗
ω ρ+ γ−ω V

∗
ωVωρ

=
(
Gω +G∗

ω + γ+ω VωV
∗
ω + γ−ω V

∗
ωVω

)
ρ = 0 .

Thus ρ is an invariant state for the QMS generated by Lω. This semi-

group also satisfies the SQDB-Θ condition because, from (γ+ω )
1/2

ρ1/2Vω =

(γ−ω )
1/2

Vωρ
1/2, condition 2 of Theorem 2 follows immediately. �

Remark. If we drop the assumptions on matrices Vω and Hω similar result
holds considering the quantum detailed balance condition without reversing
operation Θ. In this case, however, the forward

−→
Ω t and backward

←−
Ω t states

used to define the entropy production, defined in the same way without trans-
positions, must be thought of as states on the tensor product of the opposite 
algebra B(h)o with B(h) (see [15, Remark 2]).
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