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Introduction

During the last years, high-accuracy, full field kinematic 
measurements at different observation scales provided by 
2D Digital Image Correlation (DIC) procedures are being 
employed for an increasingly number of applications in 
material and structural mechanics, see e.g. [2–4]. Recent 
contributions range from civil engineering [5–8] to high 
temperature tests on metal alloys and ceramics for aggres-
sive environments [9, 10]. In particular, the availability 
of full-field data allows one to monitor during non trivial 
tests small regions over the specimen surface, in which the 
phenomenon of interest turns out to be predominant (see 
also [11–14]). Virtual tests on a small sub-domain can thus 
be performed by assigning local boundary conditions, which 
integrate or even supersede the overall ones prescribed to 
the whole tested sample (typically, the reaction force).

Such local strategies are especially suitable for com-
plex laboratory experiments, ad-hoc designed to generate 
strain and stress fields close to those expected under ser-
vice [15–18]. In this respect, a careful distinction is needed 
between the material behavior and the observable, struc-
tural response. Overall boundary conditions prescribed to 
the specimen have to be regarded as uncertain, due to the 
gap between the ideal constraints, as usually described in 
mathematical models, and their “actual” behavior (e.g., in 
the presence of compliant supports).

In a previous paper [1], a numerical-experimental 
methodology was developed to estimate parameters govern-
ing the mixed mode response of an adhesive joint inside 
a composite assembly. Therein a local approach was pro-
posed focusing on a Region-Of-Interest (ROI), for which 
(Dirichlet) boundary conditions were prescribed. Noise 
oscillations on boundary data (provided by DIC, see 
also [19]) propagated inside the ROI and affected the stress
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and strain distributions over the adherends and the traction 
profiles at the interface.

In this study, an improvement of the original strategy 
is presented. The boundary displacements to be prescribed 
along the ROI border at different instants are included as 
unknowns in the identification problem. The forward opera-
tor, based on a finite element discretization, is now regarded 
as a function of both the arguments, i.e. the cohesive 
parameters of the adhesive joint and the “actual” boundary 
displacements specifying the loading history. Also the cost 
(or objective) function to minimize, quantifying the discrep-
ancy between DIC measurements and model predictions, 
includes displacements both along the boundary and inside 
the sub-domain.

The paper is organized as follows. Section “Debonding 
Experiments and their Finite Element Simulations” 
outlines the main features of the reference experiments 
and their simulations. Sensitivity analyses with respect to 
boundary conditions are illustrated in section “Sensitivity 
Analyses with Respect to Boundary Displacements 
and Cohesive Parameters”. The novel extended for-
mulation for the identification problem is presented in 
section “Extended Identification Problem”, and the regular-
ization provisions are discussed in section “Regularization 
Provisions”. Section “Numerical Results” presents in 
detail the numerical exercises. Closing remarks and future 
prospects are gathered in section “Closing Remarks and 
Future Prospect”.

Notation With reference to the problem domain Ω , the 
interior part, the outer border (the frontier, along which dis-
placements are prescribed) and the closure will be denoted

by symbols
◦
Ω , ∂Ω and Ω ≡ ◦

Ω ∪ ∂Ω , respectively. Par-
tition of vector (or matrix) X into subvectors (or block
matrices) a and b will be indicated by (or by

). F(a, b) is intended to emphasize the pres-
ence of two (vector) arguments simultaneously active for
function F , whilst F(a | b) indicates that only the first argu-
ment a is active, the second dummy argument b being
frozen and taken constant. Indices i and k will indicate time
instants for pictures and steps of the extended procedure,
respectively. The acronyms ROI, DIC and FE will denote
the Region-Of-Interest, the 2D Digital Image Correlation
procedure and the Finite Element method, respectively.

Debonding Experiments and their Finite Element
Simulations

The main features of non-conventional tests on an adhe-
sively bonded assembly, assumed herein as a methodologi-
cal reference, and of its FE simulations are briefly outlined
in what follows. For further details, the interested reader is

referred to [1]. The experiments reported herein were con-
ceived to characterize a structural (60-μm thick) adhesive 
layer, made of BMS 5–101 produced by 3M (commercial 
denomination AF163 degree 10), joining a (1.4-mm thick) 
laminate skin and a Z-shaped reinforcement (stringer), both 
made of GLARE composites for aerospace applications (see 
e.g. [20]). Non-conventional tests were designed and
performed on rectangular joined specimens (surface area:
297 × 50 mm2) to generate within the adhesive complex
stress and strain states close to those expected under service,
see Fig. 1. The specimen was constrained at the ends, whilst
an increasing vertical displacement was prescribed by grips
to the upper part of the reinforcement till to induce com-
plete debonding under mixed mode conditions, resulting in
the overall reaction history of Fig. 2.

A small region on the specimen surface around the adhe-
sive layer (of area approximately equal to 0.6 × 1.3 mm2) 
was selected as ROI and optically monitored during the 
tests. The camera was equipped by a long-distance zoom 
objective and motorized stages to follow in real time the 
ROI during motion. Pictures were sampled at two different 
rates: initially a slow rate was used, while the frequency was 
increased up to 0.5 Hz when crack appeared along the joint.

Fig. 1 Z-shaped GLARE sample including the adhesive joint in (a),
reference picture at the microscale acquired by a zoomed camera for
DIC analyses in (b), FE discretization adopted for mechanical analyses
in (c)



Fig. 2 Experimental response in terms of vertical reaction force 
versus overall prescribed displacement

Selected digital images were post-processed to reduce rigid 
body motion components still present in them.

To reconstruct displacements on the basis of digital 
images, recourse was made to Correli©, a 2D DIC code 
based on a Galerkin, FE approach with Q4-(bilinear) shape 
functions [21]. Full field measurements were available at 
nt = 19 instants during the test. The behavior of alu-
minum substrates (cold-rolled 2024-T3 alloy) was described 
according to Ramberg-Osgood’s model, see e.g. [22]. All 
parameters governing the response of the aluminum alloy 
sheets were assumed to be known a priori with a sufficient 
accuracy, playing in the proposed inverse methodology the 
role of a diffuse “load cell”.

To describe the joint response under mixed-mode load-
ing conditions, the exponential relationship proposed in [23] 
was adopted, namely:
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where Tn and Tt , Δn and Δt denote normal and tan-gential 
components of traction and displacement vectors, 
respectively. Symbols δn, δt , φn and r · φn designate the 
normal and tangential characteristic lengths, and the works-
of-separation (for a unit surface) under pure Mode I (peel) 
and Mode II (shear), respectively, being r = φt /φn the (non-
dimensional) ratio between the tangential and nor-mal 
works-of-separations, herein assumed a priori on the basis 
of literature data (see also [24, 25]). In what follows the 
three unknown parameters governing the adhesive layer 
behavior are gathered in vector x = {φn, δn, δt }T .

It is worth emphasizing that, over the optically moni-
tored surface, the out-of-plane component of traction vec-
tor is null and plane stress conditions are met. Actually, 
inside the tested sample stress triaxiality varies through the 
thickness, in such a way that plane strain conditions are 
approached over the middle plane. As a consequence the 
crack front cannot be cylindrical and noteworthy exhibits 
along the thickness a convex profile, more or less pro-
nounced. Unfortunately, three dimensional modelling of 
a suitable volume of interest, including the whole crack 
front, is herein prevented by lack of bulk kinematic data, 
needed to drive the simulation as prescribed boundary con-
ditions. These information could be provided by scanning 
in real time the loaded sample by means of an X-ray 
microCT, and processing the tomography sequence by 3D-
Volume DIC [26]. As a valid alternative to simulate the 
overall fracture response of thick samples (typically the 
reaction force, as in [27]), the plane strain approxima-
tion is often being adopted for its simplicity and reduced 
computing effort, although a proper assessment of the pre-
diction errors implied by this simplifying assumption is 
often omitted. In particular, for the problem in point forward 
analyses based on the plane strain approximation have gen-
erated kinematic residuals (i.e. discrepancies with respect 
to experimental displacements detected over the outer sur-
face) largely exceeding those predicted by their plane stress 
counterparts, even though the cohesive properties of the 
joint and the prescribed boundary conditions remained the 
same. This circumstance reveals that important modelling 
errors are implied by the plane strain assumption when 
referred to displacements of the outer surface. Moreover, 
in the present inverse procedure plane strain approxima-
tion has led to interface tractions markedly higher than their 
counterparts estimated under plane stress (and even than 
literature data). Therefore, for the present study the plane 
stress approximation was strongly preferred. For the read-
ers’ convenience, a brief Appendix was provided at the end 
of the paper, summaring the results of comparative forward 
and inverse analyses performed on a different experimental 
configuration.

In the considered problem, the monitored subdomain
Ω ⊂ R

2 over the free specimen surface was covered by
nel = 570 four-noded finite elements

(
Ω = ⋃nel

e=1 Ω(e)

)
.

The adhesive layer was discretized by means of 39 finite-
thickness interface elements, equipped with the cohesive
law specified in equation (1). The discretized equilibrium
equation at instant i reads

Ri ≡ F i
int

(
ui◦

Ω

)
− F i

ext = 0 (2)

where F iext denotes the vector of external forces. Displace-
ments implicitly defined by equation (2) as usual concern 
only the free nodes in the interior domain and are computed



by Newton-Raphson iterations. The nonlinear relationship
between the unknown model parameters and the selected
measurable quantities in the interior part of the ROI is
referred to as forward operator, and denoted by symbol
u

comp
◦
Ω

(
x, u∂Ω . Herein the two active arguments of the

w

above operator are emphasized, namely the cohesive proper-
ties of the interface x = {φn, δn, δt }T , and  the (nt × 2 n∂Ω  )-
dimensional vector u∂Ω  including boundary displacements 
at different measurement instants i = 1, ..., nt ≡ 19, in 
what follows both gathered in the augmented parameter 
vector .

Sensitivity Analyses with Respect to Boundary 
Displacements and Cohesive Parameters

Derivatives of the displacement field u ≡ {ux, uy }T with 
respect to the unknown parameter vector X are needed both 
for the optimal design of the experiments, and to compute 
gradients required in the first-order minimization proce-
dure [28]. Only a few hints are proposed in what follows, 
emphasizing the extension of sensitivity computation to 
boundary displacements.
   By differentiating the discretized equilibrium equations 
at time instant i in equation (2) and partitioning the param-
eter vector as above, the follo ing auxiliar equation holds(

being for simplicity ui ≡ ui◦
Ω

)
:

(3)

At the current time step i (i = 1, ..., nt ), the internal force
vector F i

int, the overall stiffness matrix K i
u , the pseudo-load

matrices at the r.h.s. are defined in the order as follows (see
also [29]):

F i
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where:
nel
A

e 1
indicates the assembly operator acting on the

(e)-th e 
=

lement, e = 1, ..., nel, and gathering local contri-
butions into the residual vector Ri of equation (2); B, σ i 

and k(e)(:, m(e)) denote the compatibility matrix, the cur-
rent value of local stress vector and the m(e)-th (in the local

convention) column of the (e)-th element stiffness matrix
at instant i, relevant to the m-th degree-of-freedom in the
global convention, respectively.

To compute sensitivities with respect to the m-th com-
ponent of boundary displacement vector at instant i, say(
ui

∂Ω

)
m

, contributions from no more than two finite ele-
ments (having in common that boundary node) are required
for assembling the pseudo-load matrix. Sensitivity trivially
equals one at the reference node, whilst it vanishes along
the remaining boundary nodes. Once that the inverse coef-
ficient matrix K−1

u is factorized and stored, only matrix
multiplications are required to solve equation (3), and the 
sensitivity computation turns out to be very fast despite of 
the high-dimensionality of pseudo-load matrix at the r.h.s. 
in equation (3).

Figure 3 shows the sensitivity of horizontal displacement
field ux at instant i = 1, with respect to the horizontal dis-
placement at the upper left corner of the domain Ω (the
unitary value results out of scale). Sensitivity emanates from
the boundary node and diffuses over a wide part of the
modeled domain.

Extended Identification Problem

In the original inverse methodology presented in [1], exper-
imental displacements provided by DIC at different mea-
surement instants, gathered in the (nt ×2 n∂Ω)-dimensional
vector uexp

∂Ω , were deterministically prescribed along the
outer boundary ∂Ω of the monitored subdomain. Then
the cohesive parameters of the joint were estimated as
follows:

x̂ = arg min
x

∥
S1 · uexp

◦
Ω

− ucomp
◦
Ω

(
x uexp

∂Ω

]∥∥∥2

W
(5)

Fig. 3 Sensitivity of displacement field ux at instant i = 1 with
respect to horizontal boundary displacement

(
u1

∂ Ω

)
1 at the upper left

corner of the discretized subdomain. At that boundary node, sensitivity
equals one (out of scale)



In equation (5) the forward operator results as a function
of the cohesive parameters only (herein nx = 3). Displace-
ments at nodes located closely to the joint were selected
via the Boolean matrix S1 (weighting matrix W will be
discussed later). Vectors u ◦

Ω
and uexp

∂Ω orderly gather contri-

butions relevant to different time instants i (i = 1, ..., nt ).
The main disadvantage of the above formulation is that

boundary data estimated by DIC turns out to be noisy, and
such noise perturbations propagate from the outer border
toward the inner part of the ROI, making hardly legible the
stress and strain maps and presumably altering the traction
profiles. This situation is made even worse by the slender
geometry of the ROI, and by the nonlinear behavior of the
aluminum adherends.

To tackle these drawbacks, the identification problem in
equation (5) can be extended or generalized by relaxing in
some way the constraint u∂Ω = uexp

∂Ω , implicitly assumed for
the forward modeling. Since DIC measurements are noisy,
it is fully reasonable to admit non vanishing residuals also
along the border, and not only in the interior part of the ROI.
In this perspective, the vector of measurable quantities can
be augmented to encompass displacements belonging to the

whole ROI, i.e. to the closure Ω ≡ ◦
Ω ∪ ∂Ω . Such measur-

able quantities are expected to be close to the ones provided
by DIC, but not exactly coincident with them due to the
presence of noise and model error. The augmented parame-
ter vector , including both the cohesive
parameters (which are not time dependent) and the ”actual”
history of boundary displacements during the test, could in
principle be estimated by the formally unchanged formula-
tion of equation (5), in which data and parameter vector are
augmented, namely:

X̂ = arg min
X

{ ∥
S1 · uexp

◦
Ω

− ucomp
◦
Ω

(
x, u∂Ω

]∥∥∥2

W

+
∥

u exp
∂Ω − u∂Ω

∥2

W

}
(6)

If nt denotes the available time instants, the dimension of
the parameter space in equation (6) results nX = nx + nt ×
2 n∂Ω = 3+19 ·208 = 3955 ! Unfortunately, the minimiza-
tion process with such a number of simultaneous unknowns
is likely to become prohibitive in the presence of a nonlinear
and non-convex objective function, with an unstable depen-
dence of the solution vector on data possibly endowed by
solution multiplicity.

To drastically decrease the problem dimensionality of
equation (6) and increase robustness of the ill-posed inverse
procedure, a sequentially decoupled strategy is then pro-
posed. Recourse is made to an alternating minimization

procedure (see e.g. [30]), in which minimization is per-
formed iteratively through restricted or partial minimiza-
tions, with decoupling in the step among mechanical param-
eters and boundary displacements. At the k-th step (k > 1), 
two stages are then considered according to the following 
pseudo-code:

Stage 1, x0 ≡ x̂(k−1)

x̂(k) = arg min
x

ω1

(
x u

(k−1)
∂Ω

)

ω1 =
∥
S1 ·

{
u

exp
◦
Ω

− u
comp
◦
Ω

(
x u

(k−1)
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)}∥2

W

+cx · Rx(x) (7)

Stage 2, u∂Ω 0 ≡ uk−1
∂Ω

DO i = 1 : nt

û
i , (k)
∂Ω = arg min

ui
∂Ω

ω2

(
u

i ,�
∂Ω x̂(k)

)

ω2 =
∥

u
exp
◦
Ω

− u
comp
◦
Ω

(
u

i ,�
∂Ω x̂(k)

) ∥∥∥2

W

+
∥

u
exp
∂Ω − u

i ,�
∂Ω

∥2

W

+cu · Ru

(
ui

∂Ω

)

u
i ,�
∂Ω ≡

{
û

1 ,(k)
∂Ω ; ...; û

i−1 ,(k)
∂Ω ; ui

∂Ω ;
û

i+1 ,(k−1)
∂Ω ; ...; u

nt ,(k−1)
∂Ω

}
(8)

END DO

û
(k)
∂Ω ≡ u

nt ,�
∂Ω

k = k + 1

To avoid a cumbersome notation, in equations (7)-(8)
kinematic quantities relevant to nt time instants are intended
to be orderly gathered in vectors u ◦

Ω
and u∂Ω . Moreover,

vector u
i ,�
∂Ω includes the boundary displacements estimated

at the previous step k−1, sequentially updated during Stage

2; symbols Rx(x) and Ru

(
ui

∂Ω

)
denote nonnegative regu-

larization terms (to be discussed later), weighted by penalty
factors cx, cu ≥ 0, respectively. Weighting matrix W scales
and makes non-dimensional the kinematic residuals, being
‖u ‖2

W ≡ uT W−1u: its diagonal entries are set equal to
the maximum experimental displacement in absolute value,
separately for each component (horizontal or vertical) and
time instant, to make comparable the different contributions.

At each Stage the optimal parameters are obtained by
minimizing a suitable discrepancy norm (objective or cost
function), see e.g. [16, 17]. During Stage 1, exclusively the
most sensitive displacements (closely to the adhesive joint)



are included in the objective function to minimize (selected
through the Boolean matrix S1), consistently with the origi-
nal procedure. At the first step (k = 1), Stage 1 is initialized
with a reasonable guess x0 for the cohesive parameters pro-
vided by the user, whilst the boundary displacements are
assumed to be trivially coincident with the experimental
(noisy) values provided by DIC, namely u∂Ω 0 ≡ u

exp
∂Ω ,

and frozen. Moreover, as clarified later, the regularization
provision Rx does not affect the results at the first step.
These assumptions imply that, at Stage 1, the initial esti-
mate of cohesive properties equals x̂NR achieved through
the original inverse procedure in equation (5). For the esti-
mation of the cohesive parameters x through equation (7),
first a (zero-order, derivative-free) direct search is used to
avoid local minima (the Nelder and Mead Simplex), fol-
lowed by a gradient-based first-order minimization (Trust
Region Method) to refine solution estimates.

At Stage 2, equation (8), while the cohesive parameters
are set equal to those estimated at the previous Stage 1,
i.e. x ≡ x̂k , and frozen, the history of boundary data is
updated. As a further simplification, displacements at the
frontier relevant to the one measurement instant only, say
ui

∂Ω , are sequentially assumed as simultaneous unknowns
(2 n∂Ω = 208) in the same minimization process. Objec-
tive function ω2 to minimize now includes all kinematic
data available in Ω . Vector u

comp
◦
Ω

gathers displacements

provided by the FE model along the whole loading his-
tory, specified by suitable boundary conditions at nt instants

ordered in vector u
i ,�
∂Ω . Besides the active argument ui

∂Ω ,

vector u
i ,�
∂Ω driving the simulation includes frozen bound-

ary conditions at remaining instants i �= i, either updated
in the current DO loop (i < i), or still equal (i > i) to
the estimates at previous step (k − 1) (symbol ”;” in equa-
tion (8) indicates vertical disposition). When convergence is
achieved by Trust Region algorithm (40 iterations at max-
imum are allowed for, as a compromise between solution
accuracy and reduced computing time), the minimization
process begins for displacements at the subsequent instant
i + 1, being always unchanged the cohesive parameters.
Finally, Stage 2 is terminated when boundary data relevant
to all the available nt instants have been updated, gathered in
vector û

(k)
∂Ω , and a new step k + 1 can start. The de-coupled

two-stage scheme presented above, equations (7) and (8), is
repeated sequentially along several steps run by index k, till
residual stabilization is ascertained from objective function
evaluations.

In conclusion, it is worth emphasizing what follows: (i)
most of the algorithms nowadays available for nonlinear and
nonconvex minimisation (see e.g. [31]) are conceived and
tested for a few hundred unknowns at maximum, and their
use in problems with a higher dimensionality is not cor-
roborated by a sufficiently wide expertise; (ii) in another

identification study of the same Author [17], the de-coupled
estimation of different parameter subsets, endowed by a
consistent partition of data, has allowed to significantly
improve the results, especially when noise levels were
increased.

Regularization Provisions

In the extended inverse problem, equations (7) and (8), two
regularization provisions were introduced, labeled in what
follows as (a) and (b), the former concerning the cohesive
parameters, the latter regularity of boundary data. In order
to preserve the constraint-free formulation, herein recourse
was made to a penalty approach, i.e. the regularizing condi-
tions (a) and (b) are included explicitly in the cost functions
as further addenda to minimize, enforced by nonnegative
penalty factors cx and cu at Stages 1 and 2, equations (7)
and (8) respectively. Their derivatives, required for gradi-
ent based minimization algorithms, can be easily computed
through the chain rule on the basis of displacement sensitiv-
ities already available through equation (3).

(a) Neumann condition along the crack path Condition (a)
can be regarded as an intriguing provision when dealing
with full-field kinematic data. As a matter of fact, some-
times a macroscopic crack lying along the joint may be
recognized without ambiguities in digital images. In the
present case, during the experimental test the light of illu-
mination lamps was passing from one side to another of
the sample, through the crack opening along the joint, and
this detail was detected by the camera. From a mechani-
cal standpoint the debonded part of the joint is expected to
be traction free, and locally one has Tn = Tt = 0: this
condition trivially implies a null internal force vector Fint

(with size 8 × 1) in the same location of the discretized
interface. However, the calibrated FE model may predict
tractions not exactly vanishing at the same location of the
joint, due to the presence of noise on processed data and
inaccuracies in forward and inverse modelling. This equi-
librium condition represents therefore a further constraint
available, to be prescribed explicitly along the severe conver-
gence process (during which even the boundary conditions

Table 1 Synthetic data at varying the noise standard deviation and rel-
evant 99 % confidence intervals. Objective functions ω1 and ω2 before
(k = 1) and after (k = 9) the extended identification procedure

noise (pixel) ω1 at k = 1 ω1 at k = 9 ω2 at k = 1 ω2 at k = 9

[−0.1, +0.1] 287.241 0.018484 0.889531 0.230670

[−0.2, +0.2] 212.375 0.078564 3.21092 0.814518

[−0.3, +0.3] 133.785 0.185585 7.95335 2.02478



Table 2 Synthetic data over Ω corrupted by additive random noise. Estimates of cohesive parameters xR at varying the noise level and average
error with respect to a priori known values (along the first row)

noise (pixel) φn [GPa · μm] δn [μm] δt [μm] mean error

no 2.032 8.721 71.04 no

[−0.1, +0.1] 1.961 8.724 73.09 2.12 %

[−0.2, +0.2] 1.703 8.134 64.65 10.6 %

[−0.3, +0.3] 1.826 7.043 59.85 15 %

are iteratively updated). A further difficulty is due to the
fact that herein the exponential relationship in equation (1)
is used for the joint, leading to interface tractions which
do not rigorously vanish when increasing the displacement
jumps, and the above constraint on Fint should be relaxed in
some way. Let (e) denote the interface element in point, and
i the selected time instant. The following inequality is then
considered:

|F (e)
int (x, u(e) , i )| ≤ cF (9)

In equation (9) each component of the internal force vec-
tor (in absolute value) at (e)-th interface element is required
to be lower than a given threshold, at an assigned time
instant i. The a priori selection of the above threshold
vector cF may appear somewhat arbitrary or subjective.
However, in the present case a rather intuitive and sim-
ple tuning strategy can be envisaged. In fact, threshold cF

is selected as the minimum nodal force which does not
affect the original unconstrained identification problem in
equation (5): therefore, cF ≡ |F(e)

int (̂x
NR)| is assumed,

where x̂NR denotes the optimal parameter estimate pro-
vided by the original, not regularized formulation. Due to
the adopted tuning strategy, during the first step (at k = 1)
of the extended procedure, above inequality is satisfied, and
the solution at Stage 1 equals that of the original inverse
problem.

To formulate the inequality constraint of equation (9) in
a penalty form, the following mathematical artifice is con-
sidered (see e.g. [32]): g(x) ≥ 0 ⇒ (|g(x)| − g(x)) = 0.
Then one has: g = (−|F(e)

int | + cF ) ≥ 0 ⇒ Rx =
1/F 2

0 · ‖ | g | − g ‖2 = 0, where the reference nodal force F0

makes this expression non-dimensional, consistently with
the discrepancy norm.

(b) Orthogonal basis for boundary displacements The
second regularizing provision herein adopted concerns
the boundary data. In the extended formulation the
unknown boundary displacements at different instants
are constrained (through suitable projection operators)
to belong to the space spanned by a set of orthog-
onal Čebyšhëv polynomials (of the I kind), properly
selected by the user. Boundary displacements can then be
expressed as a linear combination of the adopted trun-
cated basis functions defined over the whole ROI (as
it occurs in some spectral methods). This kind of poly-
nomials exhibit peculiar features, namely stability with
respect to data, even when a regular grid is used for
least-square fitting, and fast convergence, in the sense that
very few terms are usually needed, see e.g. [33]. This
regularity condition for the boundary displacements at a
given instant i can be easily expressed by formulae as
follows:

P ⊥ · ui
∂Ω = 0 (10)

where P ⊥ is the orthogonal projection operator, with
respect to the space spanned by the adopted truncated
basis. Consistently, the relevant regularization term is built
as follows (exploiting projector idempotency): Ru =
1/L2

0 ui T
∂Ω P ⊥ ui

∂Ω ≥ 0, where symbol L0 denotes a refer-
ence length. It is worth emphasizing that the penalty factor

Table 3 Synthetic data at varying the noise level. Mean and maximum value for the normalized discrepancy between the estimated vertical
displacement over Ω and its noiseless counterpart at instant i = 3 during the test, before (k = 1) and after (k = 9) the extended identification
procedure

noise (pixel) mean at k = 1 mean at k = 9 max at k = 1 max at k = 9

[−0.1, +0.1] 0.01075 0.001941 0.08126 0.03893

[−0.2, +0.2] 0.02367 0.006788 0.2424 0.1413

[−0.3, +0.3] 0.03388 0.009212 0.3230 0.1380



Fig. 4 Horizontal displacement component (parallel to the joint) com-
puted by the FE model at instant i = 7, estimated by: the original 
identification procedure, in (a); the extended strategy, in (b)

cu in equation (8) allows for a relaxation of the above 
constraint.

Numerical Results

Synthetic data The proposed methodology was first val-
idated through pseudo-experimental data, i.e. synthetic 
data generated by parameters assumed 
to be known a priori. To this purpose a synthetic his-
tory of boundary displacements u∂Ω  was selected, con-

sistently with Čebyšhëv polynomials adopted for bound-
ary data regularization and generating in the modeled 
subdomain mixed mode loading conditions for the joint. 
Then, on the basis of the above loading history and 
of assigned cohesive parameters x, displacements in the
interior domain were computed by the forward opera-
tor ucomp

◦
Ω

(
x u∂Ω . In this way, a complete set of syn-

thetic kinematic measurements over Ω was generated.
Thereafter, such kinematic fields were corrupted by arti-

ficial noise both in the interior domain
◦
Ω and along the

outer boundary ∂Ω , to simulate the experimental scatter.

Fig. 5 Horizontal displacement component (parallel to the joint) com-
puted by the FE model at instant i = 19, estimated by: the original
identification procedure, in (a); the extended strategy in (b)

Gaussian perturbations with null mean value and prescribed
standard deviation (no spatial correlation considered) were
added to each nodal displacement as follows:

(11)

Preliminarily, the possible dependence of parameter esti-
mates on the initialization vector (at step k = 1) was
investigated on the basis of noiseless data. Different initial-
izations of cohesive parameters x̂0 were then considered at
Stage 1, also because a priori information on joint prop-
erties inside the final manufact are likely to be poor. In
all exercises, by the inverse procedure the correct solutions
were fastly recovered in a few steps. It is worth noting that,
during the first step k = 1, stage 2 is initialized by the avail-
able pseudo-experimental data set u

exp
∂Ω , coincident with the

boundary conditions driving the test simulation at previous
Stage 1 and entering the objective function ω2. This choice,
endowed by reasonable block constraints on the solution
vector (equal to ± 5 pixel for each nodal displacement),
avoided premature convergence to secondary minima.

To assess robustness of the inverse procedure, progres-
sively higher noise levels were considered for the synthetic



Fig. 6 Vertical displacement component (normally to the joint) com-
puted by the FE model at instant i = 7, estimated by: the original
identification procedure, in (a); the extended strategy, in (b)

fields, being ± 0.1, ± 0.2 and ± 0.3 pixel the 99 % con-
fidence intervals of additive perturbations. Even in the
presence of noise, stabilization of the parameter estimates
and relevant objective functions was observed after a few
steps (k = 5 ÷ 6). The stopping criterion utilizes objec-
tive function evaluations at two subsequent steps: their
percentage difference is compared with a threshold tuned
by the user. In the numerical campaign, at the end of
the identification procedures, objective functions in equa-
tions (7) and (8) attained values markedly lower than
those exhibited at the beginning of the inverse analyses
(at k = 1), as documented in Table 1. Resulting esti-
mates of cohesive parameters together with the correct
values assumed a priori are reported in Table 2, includ-
ing also average percentage errors (per single parameter).
In Table 3 the estimated displacement fields are com-
pared with their noiseless counterparts (known a pri-
ori), on the basis of the maximum and average value
of normalized discrepancies, before and after the iden-
tification procedure (at k = 1 and k = 9, respec-
tively). For all the considered exercises, the identification
procedure provided boundary displacements closer to the

Fig. 7 Vertical displacement component (normal to the joint) com-
puted by the FE model at instant i = 19, estimated by: the original
identification procedure, in (a); the extended strategy, in (b)

correct values than the initial noisy data, with an aver-
age normalized discrepancy of a few percentages, whilst
the estimation error on each cohesive parameter never
exceeded 15 %. In conclusion, the identification results
provided by the extended procedure on the basis of pseudo-
experimental data can be considered rather satisfactory, in
terms of estimate stability and robustness with respect to
noise.

Experimental data In the original, not regularized identi-
fication procedure of equation (5), estimates of mechan-
ical parameters for the joint, gathered in vector x̂NR =
{φ̂n, δ̂n, δ̂n}T , resulted as follows: φ̂n = 2.32 [GPa·μm],
δ̂n = 8.56 [μm], δ̂t = 84.8 [μm]. It is worth noting that
for such basic formulation the FE simulations were driven
by noisy displacements u

exp
∂Ω provided by DIC and deter-

ministically prescribed along the boundary of the discretized
subdomain. Indeed noise oscillations can be noted when
focusing on the boundary nodes in Figs. 4(a) and 5(b) as
for the horizontal displacement component (parallel to the
joint), and in Figs. 6(a) and 7(a) for the vertical deformation
(normally to the joint). In particular, at instant i = 7 vertical



Fig. 8 Stress component σxx over the adherents computed by the
FE model at instant i = 7, estimated by: the original identification
procedure, in (a); the extended strategy, in (b)

displacements turn out to be small in absolute value, and the
presence of important (in percentage) noise perturbations
is not surprising. Because of the nonlinear behavior of the
metal adherents, high frequency fluctuations due to noise
propagate from the outer boundary into the subdomain, and
are not rapidly attenuated as occurs in linear elasticity. The
slender geometry of the monitored subdomain worsens this
situation. As a confirmation of this, spurious peaks of stress
without physical meaning can be observed closely to the
outer border ∂Ω , see Figs. 8(a) and 9(a) for the component
σxx at instant i = 7 and 19, respectively. The same fluc-
tuations can be recognized for the traction profiles along
the joint, even though someway attenuated: the simplified
kinematics of the adopted interface elements, with only two
deformation modes (peel and shear), play herein a beneficial
role acting as an implicit regularization.

As for the traction component normally to the joint, in
Fig. 10(a) bell-shaped softening profiles in tension (Δn >

0) can be clearly recognized, with a negligible noise-to-
signal ratio. On the contrary, along the compressed part of
the joint (Δn < 0), marked oscillations appear ahead of the
crack tip. As mentioned in [1], in compression the normal

Fig. 9 Stress component σxx over the adherents computed by the
FE model at instant i = 19, estimated by: the original identification
procedure, in (a); the extended strategy, in (b)

response of the finite-thickness interface was assumed to be
linearly elastic (with a continuous slope at the origin), and
decoupled from the tangential response: therefore the stress
oscillations in compression passively follow the underlying
strain field. Significant shear displacements develop along
the joint from the very beginning of the test, and in percent-
age noise turns out to be less evident for this component
and relevant traction, see Fig. 10(b). Relative displacements
tangentially to the joint achieve the maximum value of about
105 μm at instant i = 19, being however small the dif-
ference between instants i = 7 and i = 19, as it can be
ascertained by comparing Figs. 4(a) and 5(a), respectively.
The normal displacements instead monotonically increase
during the test, up to achieve at the final instant i = 19
a (relative) opening displacement of about 190 μm, at the
right end of the joint, see Fig. 7(a). As a consequence, mode
mixity turns out to vary continuously during the test.

In the extended and regularized identification procedure,
equations (7) and (8), the initialization (at step k = 1)
for the vector of interface parameters is provided by a rea-
sonable guess x̂0, whilst boundary conditions are set equal
to the experimental displacements u

exp
∂Ω and frozen during



Fig. 10 Normal and tangential traction acting over the joint, in (a)
and (b) respectively, provided by the original identification procedure
at different instants i during the test simulation (i = 1, ..., nt ≡ 19)

Stage 1. Their roles are inverted during Stage 2. Mechanical
parameters of the joint estimated by the extended regular-
ized procedure are gathered in vector x̂R = {φ̂n, δ̂n, δ̂n}T ,
and resulted as follows: φ̂n = 2.032 [GPa·μm], δ̂n = 8.721
[μm], δ̂t = 71.04 [μm]. The change of the parameter
values, with respect to the original estimates x̂NR defined
above, was limited: a reduction of about 15 % can be
observed for the work of separation φn and for the shear
characteristic length δt , endowed by a small perturbation of
the normal characteristic length δn.

By the proposed alternating minimization strategy, equa-
tions (7) and (8), also the boundary conditions prescribed
to the discretized subdomain are iteratively updated at vary-
ing index k. The truncated basis entering the boundary

data regularization term Ru

(
ui

∂Ω

)
in equation (8) rele-

vant to i-th time instant, is constituted of 10 Čebyšhëv
polynomials, either dependent by one variable only or prod-
uct of two one-dimensional functions. Such a basis has
been selected after preliminary exercises, seeking a com-
promise between the minimum basis dimension and the
best approximation of the underlying deformation fields.
It should be regarded as a priori information, specifying
the mathematical model [16]. However, the optimal dimen-
sion of the truncated basis can be selected also by applying

Fig. 11 Normalized discrepancy between the experimental vertical
displacement along the boundary u

exp
y ∂Ω and its estimate ûy ∂Ω by the

extended procedure, at instants i = 7 and i = 19, in (a) and (b)
respectively

Akaike’s information criterion to the specific set of data, see
e.g. [34]. Figure 11 shows the residuals computed by the
extended procedure to correct the DIC-measured boundary
displacements, expressed at time instant i by the the nor-

malized discrepancy ri
y =

(
u

i exp
y ∂Ω − ûi

y ∂Ω

)
/ max | ui exp

y ∂Ω |.
As expected, correction ry , which exhibits a variable sign
along the boundary, is more significant at instant i = 7
(Fig. 11(a)), where peaks of 8 % can be observed, whilst
it becomes negligible at the last instant i = 19, where
it does not exceed 1 ÷ 2 %, see Fig. 11(b). From the
wavelengths of boundary residual profiles, it is possible
to recognize functional terms included into the truncated
basis, defined in the square [−1, 1]2 and then mapped into
the specific geometry (separately for the two adherents).
In fact, higher order Čebyšhëv polynomials were selected
along the direction parallel to the joint, and low order ones
normally to the joint (through the height of the aluminum
layers), plus some coupling terms.

The Neumann condition Rx along the cracked part of
the joint is prescribed exclusively at instant i = 9 at the



Fig. 12 Normal and tangential traction acting over the joint, in (a) and
(b) respectively, provided by the extended identification procedure at
different instants i during the test simulation (i = 1, ..., nt ≡ 19)

right end of the modeled joint, where a macroscopic crack
appeared in the available pictures. This local condition was
satisfied at all the subsequent instants, even though not
explicitly prescribed. This circumstance confirms that the
crack front propagates monotonically from the right toward
the left end of the modeled interface (as emphasized by the
arrow in Fig. 12).

In the extended strategy the stress distributions turn out to
be significantly smooth, as shown in Figs. 8(b) and 9(b) for
the stress component σxx , and high frequency oscillations
closely to the joint disappeared. Also interface tractions
exhibit a more regular profile, as depicted in Fig. 12. If
compared with the predictions of the original procedure
(generated by estimates x̂NR, see Fig. 10), the joint response
along the tangential direction exhibits a 10% increment in
modulus, with a difference of about 9 [MPa], as resulting
in Fig. 12(b), being the shear strength dependent on the
ratio φn/δt . Simultaneously, the normal strength in tension
is reduced, see Fig. 12(a). In particular, maximum value of
normal traction along the joint, achieved at instant i = 16,
is significantly lower than before (max T R

n = 43.4 [MPa]
versus max T NR

n = 62.4 [MPa]), whilst the compressive
normal stresses for the considered instants turn out to be
higher in modulus of about the same quantity.

Table 4 Truly experimental data. Estimates of joint mechanical
parameters x̂R at varying the penalty coefficient cx in equation (7)
for the Neumann condition, being fixed the threshold vector cF and
penalty coefficient cu = 106

cx φn [GPa · μm] δn [μm] δt [μm]

10+10 2.032 8.721 71.04

10+6 2.054 8.704 70.49

10+2 1.932 9.123 64.37

0 5.841 168.4 141.8

It is worth emphasizing that the two regularization pro-
visions detailed above play a crucial role in order to sta-
bilize the parameter estimates against data perturbations.
In the absence of the equilibrium condition Rx , identifica-
tion results exhibit a lack of physical meaning, endowed
by parameter values very far from those predicted by the
original procedure due to the problem ill-posedness. In fact,
when cx = 0 is assumed (see Table 4), a large increase of
the characteristic lengths δn and δt is observed. Predicted
tractions do not vanish anymore along the joint and, remark-
ably, only slightly descending branches can be observed
where complete debonding was instead expected. Moreover,
whilst the maximum value of tangential traction Tt still
appears reasonable (due to the marked increase of φn), the
normal traction Tn reduces to a few MPa. The main mechan-
ical features of the process in point (softening, debonding)
are indeed lost, and even mode mixity is altered. When
instead the constraint on boundary displacements Ru in
equation (10) is relaxed by decreasing its penalty coefficient
cu (see Table 5), high-frequency noise appears again closely
to the outer boundary, and, with it, the resulting stress dis-
tributions inside the ROI are corrupted, exactly as in the
original approach.

Closing Remarks and Future Prospects

In this study, an extended inverse methodology was devel-
oped on the basis of kinematic measurements provided

Table 5 Truly experimental data. Estimates of joint mechanical
parameters x̂R at varying penalty coefficient cu in equation (8) for
boundary data regularization, being fixed the threshold cF for the
Neumann condition and its penalty coefficient cx = 1010

cu φn [GPa · μm] δn [μm] δt [μm]

10+6 2.032 8.721 71.04

10+2 1.809 8.933 82.32

10−4 1.834 8.892 81.46

10−8 1.833 8.893 81.44



by 2D Digital Image Correlation (DIC), and it was used
to assess the mechanical properties of an adhesive joint
inside a bonded assembly for aerospace applications. A
local approach was considered, focusing on a small sub-
domain over the sample surface monitored during mixed
mode experiments, discretized by finite elements under
plane stress conditions and driven by prescribed bound-
ary conditions. The problem of reconstructing the “actual”
boundary displacements for such subdomain, and that of
estimating the mechanical parameters of joints or interfaces
inside the industrial manufact, were tackled simultaneously
in a coupled framework.

A suitable minimization strategy based on alternating
directions was proposed to drastically reduce the high
dimensionality of the extended inverse problem, exceeding
a few thousand unknowns. Restricted (or partial) minimiza-
tions were performed, decoupling in each step the estima-
tion of cohesive parameters (time independent) and that
of boundary displacements at different instants along the
test. To increase robustness of the inverse procedure, reg-
ularizing provisions were effectively implemented through
original formulations. The regularization terms, added as
penalty factors in the objective functions to minimize,
enforced smoothness of boundary displacements and equi-
librium along the debonded part of the joint. The procedure
was preliminarily assessed by synthetic data with different
signal-to-noise ratios. When truly experimental data were
processed, the results in terms of traction profiles along the
joint and of stress distributions over the adherends turned
out to be rather satisfactory.

It is worth emphasizing that, by the proposed approach,
code for 2D Digital Image Correlation was dealt with as a
black box, and raw digital images were processed indepen-
dently from the mechanical model and without any regu-
larization provision (besides those intrinsic to the Galerkin
formulation adopted for DIC). As a further ambitious devel-
opment, corroborated by several partial attempts proposed
in the recent literature (see e.g. [35]), a coupled frame-
work can be considered, including in a consistent fashion
the optical inverse problem, the mechanical forward oper-
ator and the identification of governing parameters. By
such a computational strategy, all the available informa-
tion from different sources and with diverse uncertainties
could be synergistically combined, exploited for mutual reg-
ularization, and the global errors and residuals rigorously
assessed.
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Appendix

Plane Stress and Plane Strain Approximations

In the present Appendix a comparative assessment of the 
plane strain and plane stress approximations applied to the 
discretized domain was summarized for the readers’ con-
venience. Additional forward simulations were performed 
on the ROI subjected to a mechanical test with a differ-
ent configuration. As shown in Fig. 13, the ROI model 
was encastred at the left end, and a concentrated load 
was applied at the right upper corner (a force per unit 
out-of-plane thickness). The increasing loading generated 
stresses and strains in the elastic-plastic adherents, and 
mixed mode loading conditions inside the joint. Plane stress 
and plane strain conditions were alternatively assumed, 
while the cohesive properties of the adhesive joint remained 
the same. As expected, discrepancy between displacements 
computed under plane stress and those predicted under 
plane strain increases with the applied loading, being how-
ever the plane strain solution more stiff: in Fig. 13, the
applied force f per unit thickness is plotted as a func-
tion of resulting displacement at the application point B, 
and the relevant deformed meshes are comparatively shown 
(the dashed line in the force-displacement plot indicates 
the current force value). These additional simulations made 
available further synthetic data concerning a different con-
figuration, both under plane strain and under plane stress 
conditions.

(i) In the first exercise, displacements generated by
the above experiment under plane strain conditions
were used to perform inverse analyses. In partic-
ular, during the identification procedure displace-
ments at the nodes along the boundary were used
to drive plane strain simulations of the ROI, while
displacements inside the ROI generated through the
same forward analyses (i.e. with the plane strain
approximation of the specimen in Fig. 13) entered
the objective function to minimize as comparison
terms. In this case the cohesive parameters x of the
joint were correctly estimated, and no difference was
observed with respect to the plane stress exercises
discussed in the paper.

(ii) Thereafter, kinematic data generated by the novel
test in Fig. 13 under plane stress conditions were
applied to drive simulations of the ROI according
to the plane strain assumption: in other terms, plane
stress displacements were used to drive plane strain
analyses as prescribed boundary conditions, and also
were included in the objective function as compari-
son terms. The coupling of plane stress kinematic data
with plane strain simulations has led to estimates of



Fig. 13 Simulation of a novel mechanical test on the region of inter-
est under plane strain and plane stress conditions: deformed meshes
(dashed line indicates the current force value) and relevant responses in
terms of applied force f (per unit out-of-plane thickness) and vertical
displacement of the application point B

cohesive parameters which result very different from
the values assumed a priori in the specimen of Fig. 13,
and moreover generate along the joint unrealistically
high tractions.

(iii) Finally, to further corroborate the work done, kine-
matic fields provided by the novel test under plane
stress conditions were used (as in the paper) to drive
the simulations of the ROI according to the plane
stress approximation. Also in this case, all the cohe-
sive parameters were correctly estimated.
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10. Leplay P, Réthoré J, Meille S, Baietto MC (2012) Identification of 
asymmetric constitutive laws at high temperature based on Digital 
Image Correlation. J Eur Ceramic Soc 32:3949–3958

11. Ki HG, Chew HB, Kim KS (2012) Inverse extraction of cohesive 
zone laws by field projection method using numerical auxiliary 
fields. Int J Numer Meth Engn 91:516–530

12. Mathieu F, Aimedieu P, Guimard JM, Hild F (2013) Identifica-
tion of interlaminar fracture properties of a composite laminate 
using local full-field kinematic measurements and finite element 
simulations. Comp Part A 49:203–213 
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20. Moriniére FD, Alderliesten RC, Tooski MY, Bemedictus R (2012) 
Damage evolution in GLARE fibre-metal laminate under repeated 
low-velocity impact tests. Cent Eur J Engn 2(4):603–611

21. Besnard G, Hild F, Roux S (2006) Finite-element displacement 
fields analysis from digital images: Application to Portevin-Le 
Châtelier bands. Exp Mech 46:789–803
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