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Abstract—Objective: Measures of Transfer Entropy (TE)
quantify the direction and strength of coupling between two
complex systems. Standard approaches assume stationarity of
the observations, and therefore are unable to track time-varying
changes in nonlinear information transfer with high temporal
resolution. In this study, we aim to define and validate novel
instantaneous measures of transfer entropy to provide an im-
proved assessment of complex non-stationary cardio-respiratory
interactions.
Methods: We here propose a novel Instantaneous point-process
Transfer Entropy (ipTE) and validate its assessment as applied
to cardiovascular and cardio-respiratory dynamics. In particular,
heartbeat and respiratory dynamics are characterized through
discrete time series, and modeled with probability density func-
tions predicting the time of the next physiological event as a
function of the past history. Likewise, non-stationary interactions
between heartbeat and blood pressure dynamics are charac-
terized as well. Furthermore, we propose a new measure of
information transfer, the instantaneous point-process Information
Transfer (ipInfTr), which is directly derived from point-process-
based definitions of the Kolmogorov-Smirnov distance.
Results and Conclusion: Analysis on synthetic data, as well as
on experimental data gathered from healthy subjects undergoing
postural changes confirms that ipTE, as well as ipInfTr
measures are able to dynamically track changes in physiological
systems coupling.
Significance: This novel approach opens new avenues in the study
of hidden, transient, non-stationary physiological states involving
multivariate autonomic dynamics in cardiovascular health and
disease. The proposed method can also be tailored for the study
of complex multi-system physiology (e.g., brain-heart or, more in
general, brain-body interactions).

Index Terms—Transfer Entropy, Point Process, Heart Rate
Variability, Complexity, Baroreflex, Respiratory Sinus Arrhyth-
mia, Kolmogorov-Smirnov Distance
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I. INTRODUCTION

Cardiovascular structure and functions, including vascular

anatomy, electrical conduction, heart rate and blood-pressure

variability, as well as cardio-respiratory dynamics, are associ-

ated with complex spatial and temporal patterns that can be

quantified through methodological approaches derived from

the theory of complex dynamical systems [1]–[4]. These

approaches go beyond standard time and frequency domain

analyses, as they account for the nonlinear relationship be-

tween the magnitude of physiological system responses and

the strength/amplitude of the system input [5]–[9].

To this extent, measures of entropy have been widely used

to quantify the randomness and regularity of a physiological

system given the analysis of time series originated by it [10]–

[12]. More specifically, during the last decades, application

of entropy measures to heart rate variability (HRV) series

has been proven very effective in characterizing healthy and

pathological states involving cardiovascular control [4], [9],

[13]–[25]. Heartbeat dynamics and its spontaneous fluctuations

result from complex interactions between the sympathetic

and parasympathetic (vagal) limbs of the autonomic nervous

system (ANS) [26], as well as from multiple self-regulating,

adaptive biochemical processes [26].

A significant contribution to heartbeat complex oscillations

is given by a dynamical, mutual interplay with numerous

other physiological subsystems (e.g., endocrine, neural, and

respiratory) [13]–[15]. Main phenomena refer to Respiratory

sinus arrhythmia (RSA), i.e., the modulation of HR due to

respiratory drive to cardiac vagal motor neurons, and the

baroreflex, i.e., changes of heart rate due to blood pressure

and related cardiovascular mechanics [3], [27], [28]. In this

context, transfer entropy (TE) [29] is a mathematical construct

devised to measure the nonlinear directional amount of infor-

mation transfer from one physiological variable to the other.

In the frame of cardiovascular research, TE measures

have been successfully applied for assessing the baroreflex

functions [30], [31], aging-related changes [32], and brain-

heart interactions [33] (see also [34]–[41] for methodological

variants and references therein).

Nevertheless, all TE-related estimates proposed so far are

unable to finely track the non-stationary information transfer

from one system to another, with a high-resolution in time.

A limitation of TE is that its estimation requires the data to

be stationary within a short-time window. Furthermore, the
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intrinsic unevenly sampled nature of heartbeat events is often

neglected, thus leading to the application of preliminary inter-

polation procedures that could affect complexity measures.

In this study, we overcome these limitations by proposing a

new definition of TE having time-varying properties, and no

need of interpolation techniques on the original physiological

time series. The new definition relies on the theory of prob-

abilistic point-processes applied to cardiovascular dynamics

[42], [43]. Briefly, given a series of RR intervals, it is possible

to estimate PDFs describing and predicting each heartbeat

event considering short-time recordings. For physiological

and computational reasons, a good choice for these PDFs is

represented by Inverse-Gaussian distributions whose first-order

moment is modeled through autoregressive functions of the

past samples (i.e., past heartbeat events) [42], [43]. The point-

process model of heartbeat dynamics automatically accounts

for the unevenly spaced heartbeat intervals and allows the

use of goodness-of-fit tools [42], [43]. Once all PDFs of the

RR interval series are estimated, since they are defined in the

continuous time, it is possible to elaborate the conditional PDF

of the present RR given its past history, and the conditional

PDF of the present RR given both its past and the past of respi-

ratory or blood pressure dynamics. Thus, following classical

TE definition, it is possible to obtain instantaneous transfer

entropy estimates defined by the instantaneous point process

Transfer Entropy measures, ipTE(t). Additionally, we here

propose a novel instantaneous measure of information transfer,

namely the instantaneous point-process Information Transfer,

ipInfT r(t) which is directly derived from Kolmogorov-

Smirnov distance calculations between conditional PDFs.

After validation using synthetic data, we show exemplary

estimates of ipTE, as well as of ipInfT r, using experimen-

tal data gathered from healthy subjects undergoing postural

changes. Particularly, we consider the instantaneous quantifi-

cation of the information transfer from the respiration to the

heart rate, indicated with ipTERP→RR and ipInfT rRP→RR,

and from the blood pressure to the heart rate, indicated

with ipTEBP→RR and ipInfT rBP→RR. Of note, in order

to compare our results with an instantaneous measure of

self-entropy quantifying the self-information storage, we also

show results from a recently defined complexity index, the

inhomogeneous point-process approximate entropy ipApEn

[9], which is defined through monovariate analysis of heartbeat

dynamics data, and is also embedded within a point process

framework.

II. MATERIALS AND METHODS

The proposed instantaneous measures of information trans-

fer take inspiration from the standard non-parametric definition

of transfer entropy which, as mentioned above, follows the

Granger’s general principle of measuring the information that

the past of the driver brings to the present of the destination

above and beyond the information that is brought by its own

past. In fact, while modeling a RR interval series, Granger

causality aims to quantify the prediction error of a monovariate

autoregressive model and a bivariate model which includes,

e.g., respiratory dynamics.

Within a point-process framework, we have Inverse-

Gaussian PDFs describing and predicting each heartbeat event.

These PDFs can indeed be parametrized through a linear com-

bination of past heartbeat events (monovariate autoregressive

model) or through a linear combination of past heartbeat

events and a linear combination of past respiratory events

(bivariate autoregressive model). Then, the proposed instan-

taneous transfer entropy measure ipTE is directly derived

from the TE classical definition in terms of conditional PDFs,

whereas the proposed instantaneous measure of information

transfer ipInfT r refers to the instantaneous estimation of

the Kolmogorov-Smirnov distances between PDFs from these

mono- and bivariate models.

Mathematical and algorithmic details follow below, focusing

on the specific derivation of instantaneous information transfer

from respiration (RP events) and heart rate (RR events)

through ipTERP→RR and ipInfT rRP→RR. A similar proce-

dure yields the instantaneous information transfer from blood

pressure (BP events) and heart rate (RR events), ipTEBP→RR

and ipInfT rBP→RR, whose derivation is omitted for brevity.

A. Point-Process Models of Heartbeat Dynamics

Given the R-wave events {uj}
J
j=1 detected from the electro-

cardiogram, and RRj = uj−uj−1 > 0 as the jth R-R interval,

the generic probability distribution of the waiting time t−uj

until the next R-wave event given the information available at

time t′ is modeled as an Inverse-Gaussian model [42]:

f(t|Ht′ , ξ(t
′)) =

[
ξ0(t

′)

2π(t− uj)3

] 1

2

× exp

{
−
1

2

ξ0(t
′)[t− uj − µ(t′,Ht′ , ξ(t

′))]2

µ(t′,Ht′ , ξ(t′))2(t− uj)

}
, (1)

for t > uj . The associated cumulative distribution function is

defined as:

F (t|Ht′ , ξ(t
′)) =

∫ t

uj

f(τ |Ht′ , ξ(t
′)) dτ. (2)

For t ∈ (0, T ], and 0 ≤ u1 < · · · < uk < uk+1 <

· · · < uK ≤ T the times of the events, it is possible to

define N(t) = max{k : uk ≤ t} as the sample path of the

associated counting process. Its differential, dN(t), denotes

a continuous-time indicator function, where dN(t) = 1 when

there is an event, or dN(t) = 0 otherwise. The left continuous

sample path is defined as Ñ(t) = N(t−) = limτ→ t− N(τ) =
max{k : uk < t} = j.

Assuming history dependence, the instantaneous first-order

moment (mean) µRR of the distribution fa(t|Ha
t , ξ

a(t)) can

be defined as:

• A monovariate, discrete-time, linear autoregressive sys-

tem:

µRR(t,H
a
t , ξ

a(t)) = γ0 +

p∑

i=1

γ1(i, t)RRÑ(t)−i (3)

where Ha
t = (uj ,RRj ,RRj−1, ...,RRj−p+1) is

the history of the past heartbeat events, ξa(t) =
[ξa0 (t), γ0(t), γ1(1, t), ..., γ1(p, t)] is the vector of the
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time-varying parameters, and ξa0 (t) > 0 is the shape

parameter of the Inverse-Gaussian distribution.

Likewise, assuming history dependence, the instantaneous

first-order moment (mean) µRP−RR of the distribution

f b(t|Hb
t , ξ

b(t)) can be defined as:

• A bivariate, discrete-time, linear system including heart-

beat and respiratory dynamics.

µRP−RR(t,H
b
t , ξ

b(t)) = φ0 +

p∑

i=1

φ1(i, t)RRÑ(t)−i +

+

q∑

j=1

φ2(i, t)RPÑ(t)−q (4)

with RP values are values from respiration

dynamics sampled at R-wave times, Hb
t =

(uj ,RRi,RRi−1, ...,RRi−p+1,RPj ,RPj−1, ...,RPj−q+1)
the history of the past heartbeat

and respiratory events, ξb(t) =
[ξb0(t), φ0(t), φ1(1, t), ..., φ1(p, t), φ2(1, t), ..., φ2(q, t)]
the vector of the time-varying parameters and ξa0 (t) > 0
and ξb0(t) > 0 the shape parameters of the Inverse-

Gaussian distribution.

B. Parameter Estimation, Model Selection, Goodness-of-Fit

The parameter vectors ξa(t) and ξb(t) are estimated using

the Newton-Raphson procedure to maximize the local likeli-

hood [43]. Because there is significant overlap between adja-

cent local likelihood intervals, the Newton-Raphson procedure

starts at time t with the previous local maximum-likelihood

estimate at time t − ∆, with ∆=0.005s. The time-varying

estimation of ipTE and ipInfT r starts from window length

W = 90s, thus proving an instantaneous complexity assess-

ment right after few seconds of observations [9]. We determine

the optimal orders {p, q} based on the model goodness-of-

fit tools [42], which are based on the Kolmogorov-Smirnov

(KS) test and associated KS statistics [42]. Autocorrelation

plots are also considered to test the independence of the

model-transformed intervals [42]. Once the order {p, q} is

determined, the initial model coefficients are estimated by the

method of least squares [42]. The recursive, causal nature

of the estimation allows to predict each new observation,

given the previous history, independently at each iteration. The

model and all its parameters are therefore also updated at each

iteration without priors.

C. Definition of Instantaneous Point-process Transfer Entropy

The proposed instantaneous point-process transfer entropy

ipTE(t) has its foundation in the theoretical definition of

transfer entropy, which in its standard form can be considered

as a non-parametric nonlinear extension of Granger causality

[44]. Considering the classical definition:

TEX→Y (t) = E

[
log

fYt|Y
−

t ,X−

t
(yt|y

−
t , x

−
t )

fYt|Y
−

t
(yt|y

−
t )

]
(5)

where X−
t and Y −

t denote the past history of the pro-

cesses X and Y , respectively, and fYt|Y
−

t ,X−

t
(yt|y

−
t , x

−
t )

and fYt|Y
−

t
(yt|y

−
t ) are the conditional PDFs. We con-

ceptually map fYt|Y
−

t
(yt|y

−
t ) with fa(t|Ha

t , ξ
a(t)), and

fYt|Y
−

t ,X−

t
(yt|y

−
t , x

−
t ) with f b(t|Hb

t , ξ
b(t)). Then, we obtain:

ipTERP→RR(t) = E

[
log

f b(t|Hb
t , ξ

b(t))

fa(t|Ha
t , ξ

a(t))

]
(6)

which, for Inverse-Gaussian PDFs, considering the equiva-

lence with Kullback-Leibler (KL) divergence, can be derived

in a closed form as follows (see full derivation in Appendix):

ipTERP→RR(t) =
1

2

[
ln

ξRR
0

ξRP−RR
0

+

+
ξRP−RR
0

ξRR
0

− 1 +
ξRP−RR
0 (µRR − µRP−RR)

2

µ2
RP−RRµRR

]
(7)

D. Definition of Instantaneous measures of Information Trans-

fer

The KL-divergence can be interpreted as a measure of

statistical distance. A natural extension to the theory presented

above is to consider other measures. A statistical distance

which is particularly relevant in the case of point processes is

the KS-distance, defining a new information transfer measure

ipInfT r as follows:

ipInfT r(t) =

k max
τ>t

∣∣F a(τ |Ha
t , ξ

a(t)) − F b(τ |Hb
t , ξ

b(t))
∣∣ . (8)

Given fa(t|Ha
t , ξ

a(t)), which is parametrized in

µRR(t,H
a
t , ξ

a(t)) and ξa0 (t), and f b(t|Hb
t , ξ

b(t)), which

is parametrized in µRP−RR(t,H
b
t , ξ

b(t)) and ξb0(t).
The ipInfT r(t) definition is thus concerned with the max-

imum vertical distance between the cumulative distribution

function of the Inverse-Gaussian distribution F a(t|Ha
t , ξ

a(t)),
which is related to the past heartbeat events exclusively, and

the cumulative distribution function of the Inverse-Gaussian

distribution F b(t|Hb
t , ξ

b(t)), which is related to the past

heartbeat and respiratory events. In this study, ipInfT r(t)
estimates were obtained setting an arbitrary value of k = 3.

In other words, the ipInfT r(t) computation embeds a

measure of the KS distance between two Inverse-Gaussian

distributions whose first-order moments are parametrized as

a monovariate and bivariate autoregressive functions, respec-

tively.

Note that the use of an Inverse-Gaussian distribution is

justified by physiological and computational reasons. In fact,

Inverse-Gaussian functions are associated with an integrate-

and-fire model of cardiac contraction [42], and with better

goodness-of-fit [42]. Since this function is formally defined at

each moment in time, it is possible to obtain an instantaneous

estimate of µRR(t,H
a
t , ξ

a(t)) and µRP−RR(t,H
b
t , ξ

b(t)) at a

very fine timescale (with an arbitrarily small bin size ∆),

requiring no interpolation between the arrival times of two

beats.
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E. Other Instantaneous Heartbeat Dynamics Measures

For the sake of conciseness, we here reference to our

previous publications for the description of other instantaneous

heartbeat dynamics measures than ipTE and ipInfT r. In

the general sense, in fact, our framework allows for a quan-

titative characterization of many heartbeat dynamics based

on instantaneous time-, and frequency domain estimations

[42], as well as complex (e.g., ipApEn [9]) and multivariate

(e.g., RSA [45]) measures. Specifically, the time-domain

characterization is based on the first and the second order

moments of the underlying probability structure. Namely,

given the time-varying parameter set ξ(t), the instantaneous

estimates of mean µRR(t,Ht, ξ(t)), R-R interval standard

deviation σ2
RR(t,Ht, ξ(t)), and heart rate standard deviation

σHR(t,Ht, ξ(t)) can be derived at each moment in time as

follows [42], [43].

The linear power spectrum estimation reveals the lin-

ear mechanisms governing the heartbeat dynamics in the

frequency domain. In particular, given the model of

µRR(t,Ht, ξ(t)), we can compute the time-varying parametric

(linear) autospectrum [42], [43]. By integrating this autospec-

trum in each frequency band, we compute the indices within

the low frequency (LF = 0.04-0.15 Hz), and high frequency

(HF = 0.14-0.45 Hz) ranges, along with their ratio (LF/HF).

The instantaneous monovariate heartbeat complexity esti-

mation, ipApEn, just like the hereby proposed ipTE and

ipInfT r, relies on the distance calculation of heartbeat-

related PDFs in the phase space [9]. Of note, ipApEn modeling

is based on the Laguerre expansion of a nonlinear Wiener-

Volterra representation of complex heartbeat dynamics. Fi-

nally, it is worthwhile mentioning that estimation of RSA [45]

is derived from the transfer function between φ1 and φ2 of eq.

4.

III. EXPERIMENTAL SETUP

In this Section, we report on mathematical details of the

model generating synthetic cardio-respiratory data, as well

as on the experimental protocol involving healthy subjects

undergoing postural changes.

A. Synthetic Data

In this study, synthetic data refers to the output of a recently

proposed model of cardio-respiratory dynamics, through which

it is possible to compute the exact theoretical values of

standard TE measures for the simulated dynamics [46].

Briefly, the model is based on vector autoregressive pro-

cesses devised to reproduce realistic cardiorespiratory interac-

tions:

RPn = a1RPn−1 + a2RPn−2 + ǫn

RRn =

4∑

k=1

bkRRn−k + c(RPn−1 −RPn−2) + ζn (9)

where the processes RP and RR represent the respiration and

heartbeat dynamics, respectively. The terms ǫn and ζn are

independent Gaussian white noises with variances set to 2

and 1, respectively. Oscillations in the two processes at the

typical frequencies of cardiorespiratory variability are ensured

by placing pairs of complex-conjugated poles of magnitude

ρ and phase 2πf in the complex plane representation of the

processes. In particular, for the RR process, we initially set

very low frequency (VLF) oscillations with ρV LF = 0.2,

fV LF = 0.03, and low frequency (LF) oscillations with

ρLF = 0.8, fLF = 0.1, whereas for the RP process we

initially set ρHF = 0.9 and fHF = 0.3.

We investigated standard TE and the proposed ipTE and

ipInfT r measures by varying the simulation parameters ac-

cording to the following conditions:

• the coupling c was changed from 0 to 1 to simulate an

increasing RSA. This setting causes an increase of the

HF power in the spectral density of the simulated RR

interval series.

• the pole ρLF was changed from 0 to 0.8, with coupling

c = 0.8 − ρLF , to simulate a shift in the sympatho-

vagal balance toward sympathetic activation and vagal

deactivation. This setting causes an increase of the LF

power, and a simultaneous decrease in the HF power, in

the spectral density of the simulated RR interval series

Further details on the resulting model coefficients, and the

theoretical calculation of standard TE measures can be found

in [46].

In order to demonstrate that proposed ipTE and ipInfT r

measures are able to identify the directionality of systems cou-

pling, we also gathered estimates from the following system:

RPn = a1RPn−1+a2RPn−2+ cr(RRn−1−RRn−2)+ ǫn

RRn =

4∑

k=1

bkRRn−k + ζn (10)

in which the information transfer is from RR to RP through

the coupling coefficient cr from 0 to 1.

B. Experimental Data

To show the applicability of ipTE and ipInfT r measures

in actual heartbeat data, we fitted the monovariate and bivariate

point-process models (see eqs. 3 and 4, respectively) using

RR interval series gathered from 16 healthy subjects (10

males, range: 24−34 yr; 28.6±2.9 yr, no known history of

cardiovascular disease) undergoing a tilt-table protocol. Each

subject, initially lying horizontally in a supine position, is

then passively tilted to the vertical position according to the

following protocol: 4 min in early supine position, 5 min tilted

head-up to an angle of 70◦ and 4 min back to later supine

position. Transitions from supine-to-upright and from upright-

to-supine lasted about 20s each. Throughout the experiment, a

12-lead ECG was recorded using a Biopac MP150 system,

with a sampling frequency of 1000 Hz. Respiratory signal

was recorded with a sampling frequency of 125 Hz, by

using TSD201 transducer which measures thoracic expansion

while breathing, giving a measure correlated with lung volume

changes. Arterial pressure was measured at the finger with

a non-invasive device (Finometer, inopress Medical System).

Further details can be found in [47], [48].
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Fig. 1. Simulation results using the synthetic models of cardiorespiratory dynamics. Top row panels show results associated with change in the cardiorespiratory
coupling c = [0, 1] (eq. 9), middle row panels show results associated with change in the pole ρLF = [0, 0.8] (eq. 9), whereas bottom row panels show
results associated with change in the cardiorespiratory coupling cr = [0, 1] (eq. 10). From the left, the theoretical TE, the proposed ipTE and ipInfTr,
and the model parameter changes as a function of the time are shown. Plots of ipTE and ipInfTr show instantaneous group-wise statistics expressed as
Median(X) (black lines) Median(|X − Median(X)|) (grey area), calculated using 100 simulations. Theoretical values of TE are superimposed in the
ipTE plots (red dashed lines).

IV. RESULTS

Given a generic index variable X , group-wise results are

expressed as Median(X)±Median(|X −Median(X)|). Re-

sults obtained by processing synthetic cardiorespiratory data,

as well as real heartbeat data follow below.

A. Synthetic Data

We obtained ipTE and ipInfT r estimations by fitting the

monovariate (eq. 3) and bivariate (eq. 4) point-process models

on the synthetic RR and RP series derived from eq. 9 and

10. For the model in eq. 9, series of length 1000 seconds were

generated 100 times for each of the two considered conditions:

c = [0, 1], and ρLF = [0, 0.8], whereas for the model in eq.

10, series of length 1000 seconds were generated 100 times

for cr = [0, 1]. The model orders were set as p = 7, q = 2
according to a preliminary KS plots goodness-of-fit analysis

[42]. The resulted ipTE and ipInfT r series along with the

respective theoretical TE are shown in Fig. 1, and summarized

in Table I.

For c = [0, 1], theoretical TE and ipTE, as well as

ipInfT r increase according to c. Statistically, during the last

500s of simulation, all of these measures significantly in-

creased with respect to the ones in the first 500s (p < 3∗10−17

from non-parametric Wilcoxon test for paired data with null

hypothesis of equal medians). For ρLF = [0, 0.8], TE and

ipTE, as well as ipInfT r decrease with respect to the in-

crease of ρLF . Particularly, ipTE and ipInfT r decrease starts

from circa 400s, i.e., ρLF greater than 0.2. In fact, during the

last 500s of simulation, all measures significantly decreased

with respect to the ones in the first 500s (p < 2 ∗ 10−17

from non-parametric Wilcoxon test for paired data with null

hypothesis of equal medians). For cr = [0, 1], theoretical TE

is null, with stationary ipTE values of 0.0317± 0.0038, and

ipInfT r of 0.2692± 0.0173.

The proposed ipTE and ipInfT r are therefore able to track

the complex directional information transfer of the simulated

physiological systems at each moment in time, being in

agreement with theoretical TE estimates.

TABLE I
RESULTS FROM THE SYNTHETIC DATASET.

Modulation
Index

Time [s]
p-value

Parameter [0-500) [500-1000]

c

TE 0.2330 0.6997 -

ipTE 0.1564±0.0512 0.4472±0.1001 1.9417e-17

ipInfTr 0.4657±0.0680 0.7447±0.0633 2.645e-17

ρLF
TE 0.5777 0.1741 -

ipTE 0.4712±0.0638 0.2774±0.0554 5.943e-18

ipInfTr 0.7435±0.0359 0.5864±0.0459 1.373e-17

p-values from non-parametric Wilcoxon test for paired data with null
hypothesis of equal medians

B. Experimental Data

In 12 out of 16 recordings, KS plots and autocorrelation

samples fell within 95% confidence intervals, whereas in the

remaining 4 KS plots were slightly outside the boundaries.
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KS distance analysis reveals a very satisfactory goodness-

of-fit, being as low as 0.0390±0.0078. According to KS

analysis, we selected a order of p = 7, and q = 2. Results from

univariate, non-parametric statistical analysis of instantaneous

features related to linear and nonlinear heartbeat dynamics

are summarized in Table II. Noticeably, trends in total RR

mean and variability, HF and LF/HF ratio, as well as in

RSA are in agreement with the current knowledge associated

with supine to upright changes (i.e., a reduced vagal activity

and RSA is associated with upright position). Instantaneous

statistics averaged among all subjects are shown in Fig. 2.

Concerning the instantaneous complexity-related measures, re-

sults show a significant decrease in the inhomogeneous point-

process approximate entropy, ipApEn, confirming previous

results demonstrating that upright position is associated with

a decreased heartbeat complexity (see also Fig. 2). Therefore,

by comparing ipTE and ipInfT r with its purely monovariate

counterpart ipApEn, we showed similarities in the dynamics

of the supine phases, and differences throughout the upright

phase. A plateau, in fact, is shown by ipTE and ipInfT r

dynamics (see Fig. 3) despite the higher variability of ipApEn

measures (see Fig. 2).

Instantaneous ipTERP→RR and ipInfT rRP→RR statistics

averaged among all subjects are shown in Fig. 3, whereas

instantaneous ipTEBP→RR and ipInfT rBP→RR statistics

averaged among all subjects are shown in Fig. 4. As expected,

ipT ransfEnRP→RR and and ipInfT rRP→RR significantly

decreases in upright conditions, whereas ipTEBP→RR

and ipInfT rBP→RR increase. However, ipTEBP→RR and

ipInfT rBP→RR trends do not reach statistical significance

due to a high inter-subject variability, although it is possible

to appreciate a clear variable increase for around 60s following

postural changes (see Fig. 4).

TABLE II
RESULTS FROM THE POSTURAL CHANGES DATASET.

Autonomic
Supine Upright p-value

Index

µRR [ms] 984.11±57.66 772.51±97.29 4.4e-4

σ2

RR [ms2] 829.78±461.84 293.93±233.55 9.73e-3

σ2

HR[beat2/min] 3.57±2.04 2.80±2.05 0.379

LF [ms2] 1233.80±677.83 966.15±470.70 0.379

HF [ms2] 544.57±161.12 185.37±148.90 0.017

LF/HF 2.00±1.09 11.17±7.92 0.001

ipApEn 0.340±0.042 0.271±0.042 0.015

RSA 0.064±0.025 0.020±0.012 0.003

ipTERP→RR 0.721±0.520 0.097±0.056 0.001

ipTEBP→RR 0.0082±0.0064 0.0089±0.0045 0.163

ipInfTrRP→RR 0.649±0.207 0.308±0.138 0.001

ipInfTrBP→RR 0.130±0.079 0.118±0.041 0.163

p-values from non-parametric Wilcoxon test for paired data with null
hypothesis of equal medians

V. DISCUSSION AND CONCLUSION

Inspired by the standard, theoretical definition of transfer

entropy (TE), we propose two novel measures of infor-

mation transfer: the instantaneous point-process transfer en-

tropy (ipTE), and the instantaneous point-process Information

Transfer (ipInfT r). Remarkably, these measures are able to

Fig. 2. Averaged instantaneous point-process statistics during resting and
upright conditions. Given a generic variable X , considering data from all
subjects, black lines indicate Median(X), whereas the grey area indicates
Median(|X −Median(X)|)). Vertical red lines indicate, from left to right,
the end of supine condition, the beginning of the upright condition, and the
end of the upright condition.

Fig. 3. Averaged ipTERP→RR (top panel) and ipInfTrRP→RR (bottom
panel) group-wise statistics during resting and upright conditions. Considering
data from all subjects, black lines indicate Median(X), whereas the grey area
indicates Median(|X−Median(X)|)). Vertical red lines indicate, from left
to right, the end of supine condition, the beginning of the upright condition,
and the end of the upright condition.

provide estimates of information transfer between two dynam-

ical systems with a high-resolution in time, therefore track-

ing two physiological systems in non-stationary conditions.

The mathematical definition, embedded into the point-process

framework, ensures continuous estimates in time without the

use of any interpolation procedure.

The rationale behind ipTE and ipInfT r definitions relies

on the non-parametric estimation of TE as a nonlinear exten-

sion of Granger causality. Leveraging on the point-process the-

ory for cardiovascular dynamics, which associates an Inverse-

Gaussian PDF to each heartbeat events, we aimed at quan-

tifying the distances between two distributions parametrized
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Fig. 4. Averaged ipTEBP→RR (top panel) and ipInfTrBP→RR (bottom
panel) group-wise statistics during resting and upright conditions. Considering
data from all subjects, black lines indicate Median(X), whereas the grey area
indicates Median(|X−Median(X)|)). Vertical red lines indicate, from left
to right, the end of supine condition, the beginning of the upright condition,
and the end of the upright condition.

with the past heartbeat events (monovariate model), and the

past heartbeat and respiratory/blood pressure events (bivariate

model). While ipTE derives from the direction application

of TE over the estimated Inverse-Gaussian PDFs, ipInfT r

is derived from Kolmogorov-Smirnov distance calculations of

PDFs from monovariate and bivariate models. It should be

noted that a shifting window approach to estimate Granger

causality would only allow “discrete” estimates in time that

would work exclusively at the time scale of the observations.

In addition, the limited number of observations within the win-

dowed data need to be compensated by an appropriate model

in order to predict the nonlinear dynamics (and their evolution)

with sufficient accuracy. To this extent, our approach combines

causality with a proper mathematical framework ensuring that

the estimates can actually be derived in the “continuous” time

t, as reported in the PDF formulation, thus increasing the

number of observation points to a wider range of time scales,

and also defines a powerful underlying model coupled with a

clear goodness-of-fit assessment that allows to test the most

appropriate structures f(t|Ht′ , ξ(t
′)) for t > uj .

For these reasons, the proposed indices could provide a

more meaningful quantification than traditional directional

entropy measures. Moreover, all other advantages of the point-

process framework, e.g., goodness-of-fit measures such as KS

distance and autocorrelation plots that quantitatively allow to

verify the model fit and to choose the proper model order, are

embedded in the ipTE and ipInfT r definitions.

Validation on synthetic, physiologically plausible cardiores-

piratory data confirmed that the proposed ipTE and ipInfT r

are able to track the theoretical TE changes with a high-

resolution in time. Note that the constant bias shown in Fig. 1

for ipInfT r values in case of uncoupled systems is due to the

specific choice of k in eq. 8. Nonetheless, we demonstrated

how to finely track changes in the directional cardiorespiratory

coupling, as well as changes in the sympathovagal balance.

Once validated, we investigated ipTE and ipInfT r dynam-

ics in actual heartbeat data gathered from healthy subjects un-

dergoing postural changes. By grand-averaging along the time,

our experimental results are consistent with previous experi-

mental TE estimates during postural changes [30], [31], [34]–

[38]. Estimates of ipTERP→RR and ipTEBP→RR clearly

reveal trends associated with decreasing cardiorespiratory in-

formation transfer and increasing cardiovascular information

transfer during the transition from supine to upright position.

These trends are in agreement with those observed previously

using standard linear and nonlinear measures of TE and

Granger causality [30], [31], [36], [49]. In addition, the high

temporal resolution of the proposed estimates allowed us to

track specific trends, such as those related to the prompt

response to tilt of ipTERP→RR and ipInfT rRP→RR, which

decrease rapidly and are kept at low values throughout the

test (Fig. 3), or the different response of ipTEBP→RR and

ipInfT rBP→RR, which raise with a certain latency and

is not stable throughout the test (Fig. 4). Differently from

ipTERP→RR and ipInfT rRP→RR trends, we found that

ipTEBP→RR and ipInfT rBP→RR estimates are associated

with a high inter-subject variability. Particularly, during the

upright phase, ipTEBP→RR and ipInfT rBP→RR reach a

maximal value after about 1 minute from tilting. However,

both ipTEBP→RR and ipInfT rBP→RR start increasing after

about 30s. These dynamics are consistent with the fact that

each subject transitioned from supine to the upright position

in about 20s, and that the characteristic autonomic response

generates oscillations at around 0.1Hz, i.e., 10s.

From a physiological point of view, we have shown that

ipTE and ipInfT r promisingly provides helpful multivariate

time-varying and adaptive assessment for real-time moni-

toring of sympathovagal dynamics, which have also been

proven in agreement with previous works [50]. Furthermore,

ipTERP→RR and ipInfT rRP→RR are here applied to cardio-

respiratory dynamics, and it can consequently be linked to

respiratory sinus arrhythmia (RSA). It is also known that

RSA interacts with the baroreflex, as confirmed by previous

studies highlighting the causal relation between them [51]. As

a matter of fact, this study indeed shows that ipTEBP→RR and

ipInfT rBP→RR dynamics follow a similar behaviour as it

has been observed for baroreflex sensitivity [24]. We observed

different dynamics on group-wise statistics of ipTE and

ipInfT r between the supine-to-upright phase and upright-

to-supine phase. Differences between these two phases have

already been highlighted in the literature (see, e.g., [24], [52]–

[55]). Consistently with this literature, sympathetic withdrawal

and the restoring of resting-state vagal activity levels during

the upright-to-supine transition seem to occur with delayed,

slower dynamics, clearly different than the supine-to-upright

phase. At a speculative level, the slower vagal reactivation,

or even more probably, the slower sympathetic withdrawal

during recovery might be due to a delayed re-synchronization

at a central (brainstem) level, as also highlighted in paral-

lel mechanisms investigated in post-exercise recovery [56].

Nevertheless, the detailed physiological mechanisms are still

unknown, and further investigation would entail inclusion of

the time-varying behaviour of cardiovascular variables beyond

heart rate variability.

We have also proved that our novel ipTE and ipInfT r

measures are able to overcome some of the inter-individual

variability shown by a monovariate complex HRV assessment
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(e.g., ipApEn).

Similarly to the recently proposed complexity variability

framework [8], the proposed entropy measures also allow

for the study of multivariate complexity variability, i.e., the

analysis of coupled interacting complex systems, referring to

the fluctuations in multivariate complexity instead of analysis

of central tendency exclusively. We remark that the proposed

methodology has been derived to quantify the statistical coher-

ence between nonlinear systems evolving in time. Neverthe-

less, from a theoretical (and philosophical) perspective its not

straightforward to discern behaviours of physiological nonlin-

earity from non-stationarity [57]. It could be possible, in fact,

to consider simple, possibly multivariate, linear models with

non-stationary transition dynamics [58], or a single nonlinear

model with multiple operating regimes [59]. Our approach

concerns multivariate, non-stationarity physiological systems

as modelled through multivariate linear equations, therefore

complying with non-stationarity, linear physiological systems,

or nonlinear physiological systems whose nonlinearity is de-

rived from non-stationarity. Indeed, a single nonlinear model

with multiple operating regimes could be approximated with a

linear non-stationary model. Moreover, our use of linear para-

metric models to predict non-Gaussian (i.e., Inverse-Gaussian)

statistics should capture some of the cardiovascular system

nonlinearity. This is different from the approach proposed

in most of our previous studies (e.g., [8], [9], [17], [60]–

[62]) which dealt with monovariate nonlinear, non-stationary

physiological systems.

To conclude, the proposed methodology offers a promising

mathematical tool for the dynamic analysis of a wide range of

applications and to potentially study any physical and natural

stochastic discrete process (e.g. [43]). We envisage significant

avenues in the study of hidden, transient, non-stationary phys-

iological states involving multivariate autonomic dynamics

in health and disease. Furthermore, the flexible definition of

ipTE and ipInfT r, which is not limited to bivariate for-

mulations or strictly linked to specific physiological systems,

allows for future tailoring of the model to the definition of fully

multivariate instantaneous measures of information transfer

and to the study of complex multi-system physiology such

as brain-heart interactions or, more in general, brain-body

interactions.
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APPENDIX

The inverse-Gaussian (IG) distribution with mean µ and shape
factor ξ0 has probability density:

f(x;µ, ξ0) =

(

ξ0

2πx3

) 1

2

exp

[

−ξ0(x− µ)2

2µ2x

]

(11)

If X ∼ IG(µ, ξ0), then the following relationships hold:

EIG(µ,ξ0)[X] = µ, EIG(µ,ξ0)

[

1

X

]

=
1

µ
+

1

ξ0
(12)

The Kullback-Leibler (KL) divergence from a distribution Q to a
distribution P is defined to be the integral:

DKL(P ‖ Q) = Ep

[

ln
p(x)

q(x)

]

=

∫

∞

−∞

p(x) ln
p(x)

q(x)
dx, (13)

where p(x) is the density of P and q(x) is the density of Q.
For two IG distributions IG(µ, ξ0) and IG(µ′, ξ′0), the KL diver-

gence is:

DKL(IG(µ′

, ξ
′

0) ‖ IG(µ, ξ0)) =

∫

∞

−∞

f(x;µ′

, ξ
′

0) ln
f(x;µ′, ξ′0)

f(x;µ, ξ0)
dx

=

∫

∞

−∞

f(x;µ′

, ξ
′

0)

[

1

2
ln

ξ′0
ξ0

−
ξ′0(x− µ′)2

2µ′2x
+

ξ0(x− µ)2

2µ2x

]

dx

=
1

2
EIG(µ′ ,ξ′

0
)

[

ln
ξ′0
ξ0

+
2ξ′0
µ′

−
2ξ0
µ

+

(

ξ0

µ2
−

ξ′0
µ′2

)

X + (ξ0 − ξ
′

0)
1

X

]

=
1

2

[

ln
ξ′0
ξ0

+
2ξ′0
µ′

−
2ξ0
µ

+

(

ξ0

µ2
−

ξ′0
µ′2

)

µ
′ + (ξ0 − ξ

′

0)

(

1

µ′
+

1

ξ′0

)]

=
1

2

[

ln
ξ′0
ξ0

+
ξ0

ξ′0
− 1 +

ξ0(µ
′ − µ)2

µ′µ2

]

.


