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ABSTRACT In this paper, neural networks are trained to learn the optimal time, the initial costates, and
the optimal control law of time-optimal low-thrust interplanetary trajectories. The aim is to overcome the
difficult selection of first guess costates in indirect optimization, which limits their implementation in global
optimization and prevents on-board applications. After generating a dataset, three networks that predict
the optimal time, the initial costate, and the optimal control law are trained. A performance assessment
shows that neural networks are able to predict the optimal time and initial costate accurately, especially a
100% success rate is achieved when neural networks are used to initialize the shooting function of indirtect
methods. Moreover, learning the state-control pairs shows that neural networks can be utilized in real-time,
on-board optimal control.

INDEX TERMS indirect methods, low-thrust trajectory optimization, initial costates, neural networks

I. INTRODUCTION

SOLAR electric propulsion (SEP) is an ideal option for
interplanetary missions, because of its high specific im-

pulse and thus fuel saving capability. Since the successful
test by Deep Space 1 [1], many interplanetary missions such
as Hayabusa 1 and 2, Dawn, and BepiColombo [2] have
used SEP as their primary propulsion system. However, the
continuous action of SEP requires formulating the low-thrust
trajectory design optimal control problems.

Methods for optimizing low-thrust trajectories are gen-
erally categorized as indirect methods, direct methods, and
the hybridization of the two [3], [4], and indirect methods
are utilized a lot because of its optimality. Indirect methods
apply Pontryagin’s maximum principle and formulate the
original optimal control problem as a two-point boundary-
value problem (TPBVP). The TPBVP is generally solved
using shooting methods in which initial guesses of shooting
variables are required. An accurate guess of these shooting
variables can speed up the shooting process. However, due to
the non-intuitive nature of the costates, which are also shoot-
ing variables, it is hard to provide accurate initial guesses.
Therefore, the TPBVP may not converge easily. Some tech-
niques are proposed to improving the convergence, such as
homotopic approach [5]–[7], switching detection method [8],
[9], analytic derivatives [10], [11], and expressing orbital

states in modified equinoctial elements [12], [13]. Methods
concerning the guess of initial costates include initial costates
normalization [5], [14], costate transformation [15], provid-
ing initial guesses by solving simplified linear equations
[16], using Particle Swarm Optimization [17], shape-based
methods [18], pseudospectral methods [19], and k-nearest
neighbor methods [20], just to mention few.

Even though indirect methods perform well in optimiz-
ing low-thrust trajectories, the optimization process is time-
consuming, which involves two issues: global mission design
and real-time on-board implementation. For global mission
trades, especially in multi-target mission design, a huge num-
ber of trajectories needs to be optimized. However, some-
times only the optimum estimate is needed in preliminary
stages, and thus a fast estimation is useful to reduce the com-
putational time [21]–[23]. For real-time onboard implemen-
tation, due to the limitation of onboard computing resources,
it is difficult to ensure the convergence and optimality of a
real-time scheme.

In recent years, with the rapid development of Artifi-
cial Intelligence, neural networks (NNs) have attracted the
interest of many researchers and have had applications in
various fields, including astrodynamics [24]. NNs consist of
connected layers that are composed of neurons and are able to
exhibit desired behavior after learning [25]. In astrodynam-
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ics applications, NNs are trained mainly as predictors and
optimal controllers. As predictors, NNs are trained to learn
the optimal time and fuel of low-thrust transfers [26]–[28].
As controllers, NNs are trained to learn the optimal state-
control pairs [29]–[32] or image-control relations [33]. In
essence, it has been shown that NNs have good performances
as predictors and optimal controllers.

In this paper, NNs are utilized as both predictors and
optimal controllers in indirect optimization of low-thrust
trajectories, that is, they are trained to learn the optimal
time, the initial costate, as well as the optimal control of
time-optimal problems (TOP). Costates are learned in [32]
but they are not used to initialize the shooting function of
indirect methods. Compared to the techniques mentioned
above, predicting the optimal time and the initial costate can
provide an accurate initial guess for the shooting in a simple
and fast way. We show that NNs can predict the optimal time
and initial costate accurately, so improving the efficiency in
shooting convergence, and thus paving the way to real-time,
on-board controller.

This paper is organized as follows: In Section 2, the
indirect method for time-optimal low-thrust trajectory op-
timization as well as the dataset generation procedure are
presented. In Section 3, architecture of NNs and random
search of hyper-parameters are introduced. In Section 4,
the evaluation methods of NN performance are detailed. In
Section 5, numerical examples of two type of missions, the
Earth to NEA and the Earth to Mars, are given. Conclusions
are drawn in Section 5.

II. DATASET GENERATION OF TIME-OPTIMAL
LOW-THRUST TRAJECTORIES
A. LOW-THRUST TRAJECTORY OPTIMIZATION
The orbital states are expressed in modified equinoctial el-
ements (MEE; p, ex, ey , hx, hy , L) because they are non-
singular, efficient, and robust. The relationship between MEE
and classical orbital elements can be expressed as:

p = a(1− e2)

ex = e cos(ω + Ω)

ey = e sin(ω + Ω)

hx = tan(i/2) cos(Ω)

hy = tan(i/2) sin(Ω)

L = ω + Ω + θ

(1)

where a is the semi-major axis, e the eccentricity, i the
inclination, Ω the right ascension of the ascending node, ω
the perigee anomaly, and f the true anomaly.

The dynamic equations of low-thrust propelled spacecraft
in a two-body model are:

ẋ = u
Tmax

m
Mα+ D ,

ṁ = −uTmax

Ispg0

(2)

where x = [p, ex, ey , hx, hy , L], m is the instantaneous mass
of the spacecraft, g0 the standard value of gravitational ac-
celeration, Tmax the maximum achievable thrust magnitude,
and Isp the thruster specific impulse. M is a transformation
matrix and D the gravity vector; their expression can be found
in [13]. u ∈ [0, 1] is the engine thrust ratio, andα is the thrust
unit vector of the thrust

α = [cosβ cosα, cosβ sinα, sinβ]> (3)

where α is the azimuth angle and β the elevation angle.
In TOP, the performance indexes take the forms:

J =

∫ tf

t0

dt (4)

Introducing the co-state vector λ(t)= [λx, λm], the Hamil-
tonian is

H = u
Tmax

m
λ>xMα+ λ>xD − u

Tmax λm
Isp g0

+ 1 (5)

and the dynamics of λ is given by

λ̇ = −∂H
∂x

(6)

According to Pontryagin’s minimum principle, the direc-
tion of the optimal thrust is determined as

α = − M>λx
‖M>λx‖

(7)

while the optimal thrust magnitude is

u =

 0, if ρ > 0,
1, if ρ < 0,
[0, 1], if ρ = 0,

ρ = −Ispg0‖M
>λx‖

m
− λm

(8)

Given the boundary condition, the optimal control problem
can be transformed into a TPBVP and it can be solved by
shooting methods solving shooting equations. The state vari-
ables of the spacecraft must satisfy the following boundary
conditions:

x (t0) = x 0, m(t0) = m0, x (tf ) = x f . (9)

The problem is to find {λ0, tf} such that [9], [12]:

Φ(λ0, tf ) :=

 x (tf )− xf
λm(tf )

H(tf )− λx(tf ) · ẋf

 = 0 (10)

We notice that λm > 0 since λ̇m = −∂H/∂m < 0 and
λm(tf ) = 0. Therefore, ρ in Eq.(8) is always negative, and
thus u = 1 for all times in TOP.
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B. DATASET GENERATION
Given a departure celestial body (the Earth) and a target
celestial body, a launch date (expressed in Modified Julian
Date) mjd1 is searched using Particle Swarm Optimization
(PSO). In PSO, the transfer model is approximated by the
two-impulse Lambert model and the performance index to
be minimized is the total ∆v. After finding the launch date
mjd1, a launch window set L ={(xi,mjdi),i=1:n}, where n
represents the length of the set, is created by increasing
the launch date using a step of 1 day and calculating the
corresponding initial states xi.

Then the TOP of each element in L are optimized using
the indirect method in Section II-A. The initial guess of the
shooting variables,λ0 in Eq.(10), will affect the convergence.
Therefore, the initial guess of the first element (x1,mjd1) is
given randomly, while the following element (xi+1,mjdi+1)
takes the solution Si of the previous element (xi,mjdi) as
initial guess. The the launch window set is to incorporate the
solution at each step: L ={(xi,Si,mjdi),i=1:n}

The dataset is generated based on the launch window set
L . To generate a data, at first an element in L is picked
randomly, denoted as (xr,Sr,mjdr). Then the initial state
xdata is obtained by perturbing xr:

xdata = xr + xr ◦ cγ (11)

where c=0.02, γ is a random vector of components between
-1 to 1, and ◦ is the hadamard product. Then the solution
Sdata of the TOP with xdata is solved using Sr as initial
guess. At last, the pair (xdata,Sdata) is stored to the dataset.
The procedure for dataset generation is shown in algorithm
1 and illustrated in Fig.1. In this work, for one dataset,
10,000 pieces of data are generated as training dataset, 1,000
pieces of data are generated as validation dataset, and 1,000
pieces of data are generated as test dataset. The training
dataset is used to train the network. The validation dataset
is used to stop training and prevent overfitting in the DNN
model selection process. The test dataset is finally used to
evaluate the performance of selected model. The validation
dataset and test dataset should be two datasets when a model-
selection process is considered. The optimal trajectories are
found by using Low-Thrust Trajectory Optimizer (LT2O), a
tool developed at Politecnico di Milano [34].

x1

mjd1

initial guesseslaunch window set initial states

x2

mjd2

x3

mjd3

xi

mjdi

xn-1

mjdn-1

xn

mjdn

celestial body orbit

FIGURE 1: Illustration of dataset generation

III. NEURAL NETWORK DESIGN
Three NNs, an optimal time prediction network Ntf that
predicts the duration of the optimal control problem, an

Algorithm 1 Dataset generation

search for mjd1 (Modified Julian Date) using PSO;
create launch window set {(xi,mjdi),i=1:n} using
mjdi+1=mjdi+1;
solve S1 = TOP(x1,initialguess=random);
for i=2:n do

solve Si = TOP(xi,initialguess=Si−1)
end for
while do

select one pair from {(xi,Si),i=1:n} randomly
perturb the initial state x = xi+xi ◦ cγ;
solve S = TOP(x,initialguess=Si);
store (x,S) to dataset

end while

initial costate prediction network Nλ0 that predicts the initial
costate of the indirect optimization method, and an optimal
control prediction network Nα that predicts the real-time
optimal control, are designed.

A. ARCHITECTURE OF NEURAL NETWORK
The NN considered in this paper is essentially a feed-forward
neural network with multiple hidden layers. The structure is
determined by the number of layers nlayer and the number of
neurons nneuron at each hidden layer. At each layer, denoting
the input li, the output li+1 is calculated as follows:

li+1 = f (wli + b) (12)

where w is the weight matrix, b the bias vector, and f
a nonlinear function named activation function. There are
three most commonly used activation functions expressed in
Eq.(13) for the hidden layers: the sigmoid function (sig), the
hyperbolic tangent (tanh) function, and the rectified linear
(relu) function.

fsig(x) =
1

1 + e−x
,

ftanh(x) =
ex − e−x

ex + e−x
,

frelu(x) = max(0, x)

(13)

The training is to adjust the value of the parameters of each
layer to minimize the loss function, which is expressed in the
form of mean squared error (MSE):

E =
1

n

n∑
i=1

(ŷ − y)
2
, (14)

where y is the actual value, ŷ the estimated value, and n
the number of data in the training iteration. Gradient descent
(GD) algorithms are state-of-art in training the parameters,
e.g.,

w ′ = w − η ∂E
∂w

, (15)

where η is the learning rate. Some modified gradient descent
algorithms are also very effective, such as momentum gradi-
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ent descent (MGD) [35] and Adam gradient descent (AGD)
[36].

As shown in Eq.(15) the learning rate η is a important
factor that affect the training. With a small learning rate, the
NN may take a very long time to converge, while with a
large learning rate the NN may oscillate around the optimal
solution. Therefore, it is a good strategy to start from a large
learning rate and decrease the learning rate gradually. Two
decay schedules are applied in this paper, exponential decay
(ED) and natural exponential decay (NED):

η′ED = ηct,

η′NED = ηe−ct,
(16)

where c is the decay rate and t is the step
The initialization of weights is also a factor that can affect

the training. Two initialization schemes are used: Fan_in
initializer and Fan_avg:

xin =

√
2

in
,

xavg =

√
6

in+ out

(17)

where in and out are the number of units of the previous and
following layers.

Besides the hyper-parameters mentioned above, the batch
size B is also a parameter that must be chosen. Early stopping
is utilized here; the training will stop when there is no im-
provement on the validation dataset in the last N epochs. The
usage of the validation dataset can help prevent overfitting.

For the problem considered in this paper, the in-
puts are or include orbital states. The form of input,
which is also known as features, is also an important
factor that affects the performance of NNs. Therefore,
two forms of orbital states are considered: mee (p, ex,
ey , hx, hy , L), and Cartesian form eci (x, y, z, vx,
vy , vz), and the corresponding input forms are denoted
Fmee, and Feci, respectively. Therefore, there are altogether
six NNs {Ntf ,mee,Ntf ,eci,Nλ0,mee,Nλ0,eci,Nα,mee,Nα,eci}
that need to be trained.

For Ntf , the inputs are initial orbital states (a six-
dimensional vector) and the output is the predicted optimal
transfer time; forNλ0

, the inputs are also initial orbital states,
and the output is the predicted costate (a seven-dimensional
vector); for Nα, the inputs are states that consist of orbital
states and mass, and the output is the predicted optimal
control angles α and β that make up a two-dimensional
vector. The combination of the state and optimal control
is called the state-action pair. All inputs are normalized to
make their average zero and their standard deviation one. The
control angles α and β are scaled to the range [-1 1].

B. SELECTION OF NN MODELS
Random search [37] is applied in this paper to find hyper-
parameters [26]. The hyper-parameters that must be defined
are: number of layers (nlayer), number of neurons at each

hidden layer (nneuron), activation function (f ), initial learn-
ing rate (η), optimizer (opt), batch size (B), weights initial-
izer (ini), decay model (dm), decay step (ds), and decay rate
(c). ForNα, the activation function of the output layer fout is
selected from a linear function and tanh. The search space of
hyper-parameters is listed in Table 1. These parameters are
uniformly random, except that the learning rate is uniform
in the log-domain. The step for early stopping is set to 10
for the search, and after the model is selected the NN is
retrained setting the early stop step to 50. It should be noted
that the minimum layer number can be one, which makes up a
shallow network. To evaluate the performance of the shallow
network with many neurons, when the layer number is one,
the neuron number is set to be twice the value selected from
the search space. It should also be noted that the selection of
NN models is based on the validation dataset. In this work,
DNNs are trained using the python package tensorflow.

TABLE 1: Search space of random search

Hyper-parameters Search space
nlayer 1–7
nneuron 32–512

f sigmoid, tanh, relu
fout(Nα only) linear, tanh

η 0.1–0.0001
opt GD, MGD, AGD
B 100–1000
ini Fan_in, Fan_avg
dm ED, NED
ds 100–500
c 0.8–1

IV. EVALUATION OF NN PERFORMANCE
Besides the loss function in the form of MSE in Eq.(14),
some other approaches should be proposed to evaluate the
performance of NNs.

A. EVALUATION OF NTF AND Nλ0

Absolute percentage error (APE) is used to evaluate the
performance of Ntf :

APE =
|tnn − topt|

topt
(18)

where topt is the optimal value, tnn is the predicted value
given by Ntf .

The solution of the shooting function in Eq.(10) consists
of time of flight and initial costate, and their initial guess
can be given by Ntf and Nλ0

. The shooting success rate and
iteration number can be used to evaluate how accurate the
initial guess is. As comparison, the success rate and iteration
number of random initial guess and initial guess from the
launch window set L are also investigated.

It is also of interest to study how the error of initial guesses
given by Ntf and Nλ0 will be propagated by integrating
Eq.(2) and Eq.(6). Therefore, the orbital distance consisting
of δa, δe, δi, and δL is utilized to evaluate how accurate the
final states are compared to the target states at the final time.
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B. EVALUATION OF Nα

Trajectories controlled byNα, instead of the optimal control,
are integrated. The time of flight is given by Ntf . The orbital
distance introduced above is also used here to evaluate the
performance of Nα.

The optimality of Nα should also be evaluated. It is fair
to evaluate the optimality of Nα using the same final state
[29]. For one Nα-controlled trajectory, assume that there is
a virtual celestial body that has the same states as the final
states xf of a Nα-driven trajectory at the final time tf . Then
the trajectory from the same initial states at the same initial
time to this virtual celestial body is optimized using indirect
methods, and the optimal time tf,opt can be acquired. The
optimality error is then calculated by comparing tf and tf,opt.

V. NUMERICAL EXAMPLES
The initial mass of the spacecraft is 1500 kg. The maximum
thrust Tmax is 0.3 N and the Isp is 3000 s. Two types of
missions, the Earth to Near Earth Asteroids (NEA) mission
and the Earth to Mars mission are considered. The length of
launch window set is 20 days. The NEA 2016HO3 is selected
as the target. The launch window for NEA mission is [2026-
11-1 2026-11-21], and for Mars mission is [2026-6-8 2026-
6-28]. The orbit elements of celestial bodies are calculated
using the data given by JPL [38]

Altogether 12,000 trajectories for each mission are gener-
ated, and there are 548,710 state-action pairs in NEA mission
and 701,756 state-action pairs in Mars mission. The datasets
are visualized in Fig.2 for NEA mission and in Fig.3 for Mars
mission, respectively. It can be seen that the dataset covers
a large range along the transfers from the Earth to NEA or
Mars. The histograms of tf and λ0 of the NEA mission
dataset and Mars mission dataset are shown in Fig. 4 and Fig.
5, respectively.

FIGURE 2: Visualization of the NEA mission dataset

A. NN TRAINING RESULTS
Random search is run 100 times for each dataset to select
the hyper-parameters. Since the initialization of weights and
bias are random, each complete training process can lead to

FIGURE 3: Visualization of the Mars mission dataset

FIGURE 4: Histogram of tf and λ0 of the NEA mission
dataset

FIGURE 5: Histogram of tf and λ0 of the Mars mission
dataset

different results. Therefore, The NN with the selected hyper-
parameters is retrained three times using 50 as the early
stop step, and the one that has the best performance on the
test dataset is used for our following analysis. The selected
hyper-parameters and MSE on the test dataset are listed in
Table 2 for NEA mission and in Table 3 for Mars mission.
It can be found that all NNs are deep networks, and AGD
is used by most NNs. In NEA mission, mee shows better
performance than eci in general, while they are competitive
in Mars mission. In the following part that will evaluate the
NN performance, {Ntf ,mee, Nλ0,eci, Nα,mee} are used for
NEA mission, and {Ntf ,mee, Nλ0,eci, Nα,eci} are used for
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TABLE 2: Hyper-parameters and MSE of NEA mission.

nlayers nneurons f fout η opt B ini dm ds c MSE
Ntf,mee 4 254 sigmoid linear 0.0057 AGD 500 Fanavg ED 110 0.94 0.00003973
Ntf,eci 3 460 relu linear 0.000034 AGD 150 Fanavg ED 160 0.83 0.00005037
Nλ0,mee 4 452 tanh linear 0.000034 AGD 200 Fanavg ED 170 0.84 0.01125374
Nλ0,eci 4 350 tanh linear 0.00021 AGD 500 Fanin ED 150 0.84 0.01123626
Nα,mee 3 382 relu tanh 0.00042 AGD 650 Fanin NED 130 0.84 0.00107357
Nα,eci 6 390 relu linear 0.00077 AGD 100 Fanin NED 80 0.86 0.00138577

TABLE 3: Hyper-parameters and MSE of Mars mission.

nlayers nneurons f fout η opt B ini dm ds c MSE
Ntf,mee 4 264 sigmoid linear 0.0041 AGD 400 Fanin ED 150 0.96 0.00000675
Ntf,eci 5 386 relu linear 0.0020 MGD 550 Fanavg ED 190 0.98 0.00003590
Nλ0,mee 5 444 sigmoid linear 0.0015 AGD 200 Fanavg NED 120 0.88 0.00003804
Nλ0,eci 3 298 tanh linear 0.000067 AGD 100 Fanavg ED 130 0.81 0.00002933
Nα,mee 4 392 relu linear 0.00089 AGD 550 Fanin ED 140 0.85 0.00409602
Nα,eci 3 436 tanh tanh 0.00044 AGD 650 Fanin NED 130 0.90 0.00320074

Mars mission. Meanwhile, the generalization capability is
also evaluated by changing the factor c in Eq.(11) to 0.03
A1 and 0.05 A2 to generate data that outside the original
initialization area A0.

B. PERFORMANCE OF NTF AND Nλ0

Ntf is a network that predicts the optimal time of an optimal
control problem, and Nλ0 is a network that predicts the
initial costates of indirect optimization methods. From each
initialization area A0, A1, A2, 100 initial states are randomly
generated respectively, and the corresponding predicted op-
timal time and initial costate are found by evaluating Ntf
and Nλ0

. Then the indirect problem is solved by using three
different initial guess methods: random initial guess (Rand,
initial guess from L , and NN prediction.

Results are given in Table 4. As for A0, in both missions,
the error of optimal time prediction is less than 0.1%. L and
NN can both ensure 100% success rate. However, compared
to L , NN is simpler to generate the initial guesses without
looking up from a set. As for the average iteration number,
the one of NN is about half than that in L , which means NNs
improve the convergence efficiency. The orbital distances
in both missions are quite small. As the initialization area
getting large from A0 to A2, the error of optimal time
prediction increases but it is still less than 2%. The success
rate of L decreases but the success rate of NN is still 100%,
which shows the excellent generalization capability of NNs.
The iteration number is still about half in NN than in L . The
orbital distances are also acceptable. These results show that
NNs have excellent performance and generalization capabil-
ity in predicting the optimal time and initial costates.

C. PERFORMANCE OF Nα

The Nα is a network that predicts the optimal law to im-
plement real-time onboard optimal control. From each ini-
tialization area A0, A1, A2, 100 initial states are randomly
generated respectively. Then Nα controlled trajectories are
integrated. The examples of optimal control, NN prediction

and NN control are shown in Fig.6. The NN prediction is the
control that Nα predicts given the states from the optimal
trajectory, while the NN control is the control from a Nα-
controlled trajectory. It can be found that NN prediction is
very close to optimal control and NN control also coincides
well with the optimal control. The orbital distance and opti-
mality error are given in Table.5. In NEA mission, the orbital
distance and optimality error are small in A0 and A1 but
become quite large in A2. In Mars mission, the results are not
as good as that in NEA mission but are still acceptable when
considering Nα as a long-distance guidance and control law.
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FIGURE 6: Comparison of different control

VI. CONCLUSION
In this paper, three neural networks, Ntf , Nλ0

, and Nα,
are trained to learn the optimal time, initial costates, and
optimal control law of time-optimal low-thrust indirect tra-
jectory optimization, respectively. Hyper-parameters of NNs
are searched by random search, and evaluation methods of
Ntf , Nλ0

, and Nα are also proposed. Results show that NNs
have the capability to provide an accurate initial guess of
optimal time and initial costates that are shooting variables
in indirect optimization methods, even if outside the original
initialization area. Compared to random initial guess and
initial guess from the launch window set L , NN prediction
is superior in aspects of success rate and iteration number.
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TABLE 4: Performance of Ntf and Nλ0
.

APEtf , % success rate iterations orbital distance
Rand L NN Rand L NN δa, AU δe δi, deg δL, deg

NEA A0 0.0802 43 100 100 84.51 7.96 4.84 0.003002 0.001557 0.006040 0.430759
A1 0.3241 36 98 100 70.13 9.01 5.07 0.008708 0.004210 0.024537 1.082738
A2 1.9032 34 90 100 84.60 13.60 7.03 0.025053 0.016950 0.205458 4.889173

Mars A0 0.02111 70 100 100 36.34 7.45 4.41 0.004314 0.003143 0.001842 0.122544
A1 0.1069 82 100 100 31.49 8.62 4.59 0.007950 0.005900 0.003652 0.272159
A2 1.7038 76 93 100 34.98 11.72 7.20 0.028195 0.020773 0.027707 1.660816

TABLE 5: Performance of Nα.

orbital distance Optimality error, %
δa, AU δe δi, deg δL, deg

NEA A0 0.008522 0.006014 0.055284 0.411350 0.834291
A1 0.009873 0.007281 0.150389 0.850601 2.246412
A2 0.028864 0.022576 1.089927 11.995903 18.656750

Mars A0 0.033320 0.022061 0.074826 2.777529 2.137036
A1 0.087914 0.037381 0.162581 8.391229 9.881813
A2 0.197655 0.056714 0.390094 24.657194 19.847472

Moreover, NN prediction ensures 100% success rate in all
cases. Results of Nα show that NNs can be utilized in real-
time onboard optimal control. However, more precise design
and training of NNs should be further investigated to improve
the terminal accuracy of NN control.
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