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1. INTRODUCTION

The development of biophysical patient-specific models of the human heart is crucial to gain better
insight on the mechanisms regulating its activity and to provide the clinicians with a powerful
instrument for diagnosis and therapeutic design. In this context, a key aspect is the study of the
electrical activation that triggers the heart contraction. This activity is regulated by the cardiac
conduction system (CCS), responsible for the fast and coordinated distribution of the electrical
impulse in the heart [1]. In particular, the ventricular activation is regulated by the peripheral part
of the CCS, the Purkinje fibers (PF), located in the inner ventricular walls of the heart, just beneath

*Correspondence to: Simone Palamara, Modellistica e Calcolo Scientifico (MOX), Dipartimento di Matematica,
Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milan, Italy.

†E-mail: simone.palamara@polimi.it



the endocardium. In healthy propagation, the electrical signal coming from the atrioventricular (AV)
node spreads rapidly into the PF and enters the ventricular wall at certain insertion sites, called
Purkinje muscle junctions (PMJ) [2]. From these sites, the depolarization wave propagates into the
myocardium, allowing for the ventricular excitation and contraction thanks to the activation of the
cardiac muscle cells [3].

Computational models of cardiac electrophysiology can predict the electrical activity in the ven-
tricles, and this can be an asset to clinicians in their diagnoses [4, 5] and selection of a therapy
[6, 7]. The inclusion of PF in such models is therefore essential to simulate the ventricular excita-
tion. This has been performed so far with surrogate models, based on space dependent conduction
velocities [7], or by introducing sparse endocardial sources [8], or even by explicitly building a
(non-patient-specific) network [9–13].

In [14], we presented a computational strategy for the generation of a patient-specific Purkinje
network in the case of healthy electrical propagation. This method exploits available clinical data
consisting in the activation times in some points of the endocardium of the left ventricle, trying to
locate the PMJ so as to improve the accordance with these data. In [14], we showed the consistency
and robustness of this methodology with respect to noisy data and different initial networks, while
in [15], this strategy has been successfully applied to real healthy cases, highlighting the improve-
ment of the accuracy obtained by using a patient-specific network with respect to the other models
proposed in the literature. These works clearly show that the PF play a central role in the description
of the electrical propagation.

In this paper, we extended the algorithm proposed in [14] for the generation of patient-specific
Purkinje networks to the case of clinical data related to pathological propagations. This extension
allowed us to apply our algorithm to patients affected by conduction disturbances. In particular, we
considered clinical data acquired on three subjects, one characterized by the presence of scar tissue
due to an old myocardial infarction and two suffering from the Wolff–Parkinson–White (WPW)
syndrome. To assess the accuracy of the proposed method, we compared the results obtained by
using the patient-specific networks with the ones obtained with a network generated without the
clinical data. The results showed the applicability and reliability of our method also in pathological
cases and the improved accuracy with respect to non-patient-specific networks, thus highlighting
the essential role played by patient-specific networks in computational models to obtain an accurate
description of the electrical activation in the left ventricle.

2. METHODS

2.1. Patient-specific clinical measurements

2.1.1. Description of the patients. Three patients have been considered in this study:

– subject 1, a 66-year-old individual with an old myocardial infarction and a characteristic apical
aneurysm. She or he is characterized by an enlargement of the left ventricular chamber, due
to a previous myocardial infarction at the apex with a resultant scar formation and a loss of
contractile function leading to a chamber dilation;

– subjects 2 and 3, a 46-year-old individual and a 45-year-old individual suffering from a
muscular pre-excitation, the WPW syndrome, given by the presence of an anomalous pathway,
the bundle of Kent, between the left atrium and the left ventricle, in absence of any structural
heart disease.

2.1.2. Acquisition of imaging data and reconstruction of the ventricular geometry. Subject 1
underwent an X-ray computed tomography acquired with a Philips (Eindhoven, Netherlands) CT
scanner with 237 slices, with 512 � 512 pixels and voxel size equal to 0:429 � 0:429 � 0:7 mm3.
Subjects 2 and 3 underwent a non-contrast enhanced 3D whole heart sequence, cardiac and respi-
ratory gated, performed with a 1.5-Tesla MRI Unit (Magnetom Avanto, Siemens Medical Systems,
Erlangen, Germany) and an eight-channel phased array torso coil. The following parameters have
been used: voxel resolution D 1:7 � 1:6 � 1:3 mm3; TE (echo time) D 1:46 ms; TR (repeti-



tion time) D 269:46 ms; slice thickness D 1:3 mm with 104 slices per single slab; acquisition
matrixD 256 � 173; flip angle D 90ı.

A manual segmentation of such geometries has been made by using the software ITK-SNAP (Paul
A. Yushkevich, Philadelphia, Pennsylvania, United States; Hui Zhang, Philadelphia, Pennsylvania,
United States) 2.4.0 [16].

2.1.3. Acquisition of electrical data. The activation time is defined as the time difference between
a selected point on the body-surface electrocardiogram (ECG) and the time of steepest negative
intrinsic deflection in the intracardiac electrogram measured by a mapping catheter, which is taken
as indicator that the activation front has reached the underlying muscle. The Ensite NavX system is
capable of accurately locating any electrode catheter within a 3D navigation field, allowing for the
reconstruction of the heart geometry and providing accurate, real-time catheter navigation to obtain
the maps of activation times. This system consists of three pairs of patches placed on the body
surface in orthogonal axes. A low power electrical potential is generated across each pair of patches
generating the three-dimensional navigation field. The system measures the local voltage of any
electrode and is able to separate the component due to the navigation field, which gives the position
of the electrode catheter, from the cardiac electrical potential, which allows to compute the activation
time in the point at hand. The EnSite NavX technology provides an algorithm for compensation of
catheter shifts due to respiratory motion, based on the identification of breathing-dependent changes
of transthoracic impedances. In [17], it has been shown through in vivo experiments that this system
enables accurate and reproducible real-time localization of electrode positions with a precision of
0:7˙ 1:5 mm, whereas in [18], it has been shown that this system does not distort the quality of the
local ECG. For further details on the EnSite NavX system, we refer the reader to [19, 20].

A bi-ventricular mapping of the endocardium has been performed for all the three subjects by
means of the Ensite NavX system, and only the information on the left ventricle has been considered.
To this aim, a 7-Fr deflectable electro-catheter has been inserted through the right femoral artery with
a retrograde trans-aortic approach (Medtronic Enhancr II 5523/Medtronic Conductr) (Minneapolis,
Minnesota, United States). For the three subjects, we acquired electrical maps consisting in 193,
141, and 100 measures, respectively.

In what follows, let I WD ¹xi 2 �e; i D 1; : : : ; N º be the set of points where the measures have
been acquired, Ti the corresponding measured activation times, and �e the endocardium domain.

2.2. Modeling the electrical activation

The algorithm for the generation of the patient-specific Purkinje network proposed in this work is
based on the computation of the discrepancy between measured and computed activation times. The
latter are obtained by suitable mathematical models describing the electrical activation in the muscle
and in the Purkinje network. More precisely, we considered the eikonal equation to describe both
muscle and Purkinje network electrical activation.

2.2.1. Activation in the muscle. The activation times in the muscle could be obtained by solving
mathematical models for the tissue electrophysiology, such as the bidomain and monodomain ones
[21–24], consisting in modeling the ventricular tissue as a functional syncytium of electrically cou-
pled cells and in deriving continuous models for the ionic currents. Such models allow us to compute
the transmembrane potential in each point of the muscle by solving a time-dependent problem and
thus to recover the related activation times.

In this work, we considered a simplified model, the anisotropic eikonal equation [25, 26], which
describes directly the activation times in any point of the muscle. This is a steady problem, far less
expensive in terms of computational time than the bidomain and monodomain ones. However, it
provides only the activation times of the cardiac tissue and does not describe the cellular dynamics.
This prevents the application of the eikonal model to the study of phenomena such as re-entries or
arrhythmias. Additionally, the eikonal model does not take into account the effects of wave-front
curvature, or the interaction between a wave-front with the domain boundaries or with other fronts.
Nevertheless, the eikonal model has been proved to be a good approximation of the bidomain one



[25] if we are interested only in the activation times, and, for this reason, it has been used also for
clinical applications [27].

Let �m be the myocardial domain and um D um.x/ the unknown activation time. Then, the
anisotropic eikonal model reads´

Vf
p
.rum/T D rum D 1 x 2 �m;

um.x/ D um;0.x/ x 2 �m;
(1)

where D D D.x/ 2 R3�3 is the anisotropic tensor accounting for the orientation of the muscular
fibers, Vf D Vf .x/ is the conduction velocity along the fibers, �m is the set of boundary points
generating the front, and um;0.x/ is the value of the activation time on �m. For the anisotropic
tensor, we used the following expression: [25]

D.x/ D k2I C .1 � k2/a.x/a.x/T ; (2)

where k is the ratio between the conduction velocities in the orthogonal and longitudinal directions
with respect to the fibers and a is the unit vector tangential to the fibers.

To generate the muscular fibers in our real geometries, we used the strategy proposed in [28],
which produces a uniform transmural variation of the fiber direction. This method is based on the
identification of three orthogonal directions for each point of the domain, the first one determined
by solving a harmonic problem, the second one aligned with the longitudinal ventricular axis, and
the third one determined so to guarantee mutual orthogonality.

2.2.2. Activation in the Purkinje network. To solve problem (1), we need to provide suitable bound-
ary conditions on �m. In a normal propagation, �m coincide with the PMJ, because the signal
traveling along the Purkinje network enters the muscle through these junctions. In an anomalous
propagation, additional sources could be present, for example, given by fronts that originated from
the intramyocardial region. In any case, we need to introduce a mathematical model for the descrip-
tion of the activation in the Purkinje network. To this aim, we considered the 1D eikonal equation,
because we were interested in computing only the activation times in the network (in particular at
the PMJ).

Let �p be the one-dimensional Purkinje network and up D up.x/ the unknown activation time
in the network. Then, the eikonal model reads8<

: Vp
ˇ̌̌
ˇ@up@s

ˇ̌̌
ˇ D 1 x 2 �p;

up.x/ D up;0.x/ x 2 �p;
(3)

where Vp D Vp.x/ is the conduction velocity (5–10 times greater than the muscular one [29]), s
is the curvilinear coordinate along the network, �p is the set of points generating the front in the
network (e.g., in a normal propagation, the AV node), and up;0.x/ is the value of the activation time
on �p .

2.3. The solution of the coupled network/muscle problem

The PF form a subendocardial network characterized by a high conduction velocity Vp (3–4 m/s)
and are isolated from the muscle, except at their endpoints, the PMJ, which are located on the
endocardium. In a normal electrical propagation, the signal originates at the AV node and then
spreads into the Purkinje network. Once the electrical signal has reached the PMJ, it enters the
ventricle with a delay do of about 10–15 ms [10, 30], and then it propagates into the ventricular
muscle, with a slower conduction velocity Vf (0.3–1 m/s) (orthodromic propagation).

In some pathological cases characterized by disturbances in the electrical propagation, it is
important to consider also the propagation from the muscle toward the PF, owing to muscular
intramyocardial sources, as it happens, for example, in a premature muscular activation or in a
branch block (antidromic propagation; see, e.g., [31]). In this case, the signal enters the network at
the PMJ with a delay da of about 2–3 ms [10] and then propagates backward into the network. Thus,



in general, the electrical propagation is characterized by two fronts, one originating at the AV node
and one at the intramyocardial sources, leading to a coupled problem. This allows us to distinguish
between two kinds of PMJ, those activated by the AV node or by other PMJ (orthodromic PMJ)
and those activated by the muscular sources (antidromic PMJ). We observe that the antidromic PMJ
could not activate the muscle (and thus any measurement points). Indeed, these PMJ are activated
by the muscular front, and, owing to the antidromic delay, they are not able to generate a front that
reaches the muscle before the muscular front itself.

Algorithm 1 Solution of the coupled network/muscle problem (1)–(3)
1. Solve the 1D eikonal problem (3)1 in the network with the following boundary condition

up;AV .x/ D up;AV;0.x/ x 2 �p;AV ;

where �p;AV identifies the AV node and with up;AV;0 given, thus determining the activation
times up;AV in the network if only the AV node was considered as source;

2. Solve the 3D eikonal problem (1)1 in the myocardium with the following boundary condition

um;m.x/ D um;m;0.x/ x 2 �m;m;

with um;m;0 given, thus determining the activation times um;m in the muscle if only the muscular
sources were considered;

3. Given the set of the locations of the PMJ P D ¹yj ; j D 1; : : : ;M º, we split P in two subsets
Po and Pa defined as follows: in Pa we include the locations of the PMJ which satisfy

um;m.yj /C da 6 up;AV .yj /C do;

that is those activated by the muscular front (antidromic PMJ), whereas in Po we include the
locations of the remaining PMJ, that is those activated by the network (orthodromic PMJ, see
Figure 1, left);

4. Solve the 1D eikonal problem (3)1 in the network with the following boundary conditions´
up;AV�a.x/ D up;AV;0.x/ x 2 �p;AV ;

up;AV�a.yj / D um;m.yj /C da yj 2 Pa;
(4)

thus determining the activation times up;AV�a in the network generated by the AV node and by
the antidromic PMJ;

5. Identify which orthodromic PMJ are activated by the AV node and which ones are activated by
an antidromic PMJ, thus generating the subsets Po�AV and Po�a (see Figure 1, left);

6. Solve the 3D eikonal problem (1) in the muscle with the following boundary conditions´
um;m�o.x/ D um;m;0.x/ x 2 �m;m;

um;m�o.yj / D up;AV�a.yj /C do yj 2 Po;
(5)

thus determining the activation times um;m�o in the muscle generated by the muscular sources
and by the orthodromic PMJ;

7. Identify the orthodromic PMJ which activate at least a measurement point, thus generating the
subset Po�active (orthodromic/active PMJ). Notice that in general we have Po�AV \Po�active ¤
¿ and Po�a\Po�active ¤ ¿. We call Io the subset of I of the measurement points xi activated
by the orthodromic/active PMJ (that is the ones belonging to Po \ Po�active), and Io�a the
subset of Io of the measurement points xi activated by the orthodromic/active PMJ belonging to
Po�a \ Po�active;

8. Set um D um;m�o and up D up;AV�a.



To solve the coupled problem given by (1) and (3) accounting for possible antidromic
propagations, we proceeded as follows. Let �m;m � �m be the subset of all boundary sources for
problem (1) located in the muscle domain. Of course, �m n �m;m coincides with the set of all the
orthodromic PMJ.

We made the following assumption:

H. The antidromic activation of the PMJ is produced only by the muscular sources.

The previous hypothesis states that the only muscular pathways that activate the network are gener-
ated by the muscular sources. In other words, a signal that starts from the AV node and enters the
muscle through a PMJ cannot re-enter the network. In this context, we considered Algorithm 1.

Hypothesis H allows us to avoid subiterations in Algorithm 1. Of course, it provides a simplifica-
tion, because it does not allow for re-entries in the network. Owing to the high values of the delays
do and da, it is reasonable to assume that for healthy PF, the phenomenon of the re-entry does not
significantly influence the solution of the coupled problem. However, this is an interesting point and
will be the subject of future works.

To summarize, referring to the notation introduced in Algorithm 1, we have the following sources:

– the AV node, which activates the orthodromic PMJ belonging to Po�AV ;
– the orthodromic PMJ activated by the AV node (belonging to Po�AV ), which activates the

myocardium and thus, possibly, some measurement points;
– the orthodromic PMJ activated by the antidromic PMJ (belonging to Po�a), which activates

the myocardium and thus, possibly, the measurement points belonging to Io�a;
– the antidromic PMJ (belonging to Pa), which are all activated by the muscular sources and

activate the orthodromic PMJ belonging to Po�a;
– the muscular sources, which activate the myocardium (and thus, possibly, some measurement

points) and the antidromic PMJ.

2.4. Patient-specific generation of the Purkinje fibers

In this section, we describe the algorithm for the generation of a patient-specific network,
which is in fact an extension of the one proposed in [14] to treat also pathological cases. The princi-
pal idea consists in starting from an initial network (generic network), and in adapting the locations
of the PMJ so as to minimize the discrepancy with the clinical measurements. In particular, the
key point is to separate the antidromic PMJ from the orthodromic ones. Indeed, the antidromic
PMJ are boundary sources for the network, thus possibly having a global influence in the activation
times in the network, whereas the orthodromic PMJ are boundary sources for the muscle activa-
tion. For this reason, we first adapt the locations of the antidromic PMJ, and then the ones of the
orthodromic PMJ.

We observe that to adapt the location of the antidromic PMJ, it is necessary to introduce some
new steps with respect to the algorithm proposed in [14], because in that work we dealt only with
a normal electrical propagation, where antidromic PMJ are absent. On the contrary, to adapt the
orthodromic PMJ, we follow the steps reported in [14], so that for further details on this point, we
refer the reader to that work.

To describe the Purkinje network, we consider several levels of generation, where active branches
and leaves could be identified. An active branch can generate other branches, whereas leaves ter-
minate at their end points, which are identified with the PMJ. In particular, the leaves Sj ; j D
1; : : : ;M; start from the base wj and terminate at the PMJ Pj ; see Figure 1, right.

2.4.1. Generation of the generic network. To generate the generic network, we proceeded as in
[14], following the proposals provided in [9, 11, 32], based on the introduction of a fractal rule,
namely the ‘Y’ production rule. In particular, first, we manually design the bundle of His and the
main bundle branches, according to anatomical a priori knowledge. Then, we generate the leaves
by means of a Bernoullian probability law with probability p D

p
l=Mlev , where l is the current

level and Mlev the maximum number of levels allowed. Moreover, the lengths of the left and right
branches Ll and Lr , and the branching angle ˛ (that is, the angle between two new branches)



Figure 1. On the left: classification of the PMJ. On the right: structure of the Purkinje network, with the
bases wk , the leaves Sk , and the PMJ Pk . In the picture, we have M D 3.

are described by Gaussian variables. This allowed to generate a generic Purkinje network N .0/,
characterized by M .0/ leaves Sj and PMJ Pj .

The idea is now to locate the PMJ so as to maximize the accordance with the endocardial
measures. A datum Ti located at xi is said to be satisfied if

j�i j 6 "; (6)

where

�i WD
ti � Ti

jTi j
; i D 1; : : : ; N; (7)

and ti WD um.xi /; i D 1; : : : ; N; are the activation times computed at the measurement points by
solving the coupled problem (1)–(3).

2.4.2. Classification of the PMJ. We first need to detect which are the orthodromic and antidromic
PMJ of the generic network. To this aim, we solve Algorithm 1 with this network. This allows us to
generate the subsets P.0/a , P.0/o�AV , and P.0/o�a and to compute the activation times u.0/m and u.0/p in all
the points of �m [�p , in particular at the PMJ and at the measurement points xi .

2.4.3. Move or delete the antidromic PMJ. In order to improve the accordance of the computed
activation times t .0/i with the measurements Ti , we start moving the antidromic PMJ. We observe
that the antidromic PMJ do not activate directly the measurement points, but they have an influ-
ence on those belonging to Io�a through the orthodromic PMJ belonging to P.0/o�a \ P.0/o�active . In
particular, we want to avoid that the signal reaches the measurement points too early, because this
would prevent to move other PMJ and to reduce the discrepancy with the measures. So, we move
the antidromic PMJ such that all the measurements indirectly activated by an antidromic PMJ are
either satisfied or late.

The movement of an antidromic PMJ is based on an iterative procedure. In particular, at each
iteration, we identify the measurement point xi 2 Io�a with the smallest and negative �i , and we
move the PMJ belonging to Pa, which, through an orthodromic/active PMJ, activates xi . To this
aim, at each iteration k D 1; : : : ; K1, we compute for each measurement point belonging to Io�a the



discrepancies (7), and then we take its minimum ı.k/. Now, if ı.k/ > �", with " a given tolerance,
then we stop the iterations without any further modification of the network N .k�1/, because all the
measurements points activated by the PMJ belonging to P.k�1/o�a \P.k�1/o�active are accurately satisfied
or late. On the contrary, if ı.k/ < �", we move the antidromic PMJ Pj , which is responsible,
through an orthodromic/active PMJ, of the premature activation in xi . In particular, we locate Pj on
the geodesic line r .k/ joining the muscular source, which activated Pj and the base wj of the leaf
ending with Pj , so as to satisfy the measurement xi . To this aim, let � be the activation time at the
base wj due to the 1D eikonal problem in the network. To avoid Pj from producing a signal that
is too early in xi , we would like the activation time in wj to be as close as possible to � � ı.k/Ti .
Indeed, if the activation time in wj was exactly � � ı.k/Ti , then the point xi would be activated
precisely at time Ti , thus producing a zero error. Therefore, we move Pj in the point y.k/j on r .k/

such that the quantity ˇ̌̌�
� � ı.k/Ti

�
�
�
um;m

�
y
.k/
j

�
C da C l

.k/=Vp

�ˇ̌̌
is minimal, provided thatˇ̌̌�

� � ı.k/Ti
�
�
�
um;m

�
y
.k/
j

�
C da C l

.k/=Vp

�ˇ̌̌
Ti

< ":

Here, l .k/ is the distance between y.k/j andwj , so that .um;m.y
.k/
j /CdaCl

.k/=Vp/ is the activation
time at the base wj after the movement of Pj (Figure 2).

Otherwise, if ˇ̌̌�
� .k/ � ı.k/Ti

�
�
�
um;m

�
y
.k/
j

�
C da C l

.k/=Vp

�ˇ̌̌
Ti

> "

for any point on r .k/, then we eliminate Pj . This allows us to produce in any case a new network
N .k/ and to compute the new activation times u.k/m in all the myocardium by solving Algorithm 1.
At the end of this procedure, if we have performed K1 iterations, we have generated the network
N .K1/.

Figure 2. Sketch of the antidromic moving procedure. On the left: the signal reaches the measurement point
x1 earlier at time T1 � �T . On the right: after the movement of the PMJ P1, the signal reaches the base
w1, the PMJ P3 and the measurement point x1 with a delay of�T , thus guaranteeing the satisfaction of the

datum T1.



2.4.4. Construction of the regions of influence. We are now ready to adapt the location of the
orthodromic PMJ. To this aim, we say that a set of M sources .´k; �k/ is compatible with the
measurements if the following holds:

um.xi / D Ti 8 i D 1; : : : ; N; (8)

with ²
Vf
p
.rum/T D rum D 1 x 2 �m;

um.´k/ D �k k D 1; : : : ;M:
(9)

Following [14], to identify possible compatible sources, we consider the following backward
eikonal problem in the unknown Qum:´

Vf

q
.r Qum/T D r Qum D 1 x 2 �m;

Qum.xi / D �Ti i D 1; : : : ; N:
(10)

The solution of such a problem divides the domain �m into N regions Ri , called regions of influ-
ence, which associate to each point xi , where the measurements are available, the points of the
myocardium which possibly activate xi at time Ti , if used as source points for the muscular propa-
gation. In particular, the boundaries of the regions Ri are identified by the points of collision of two
or more fronts propagating from the measurement points xi (see Figure 3 for the case N D 3).

Exploiting the function Qum, we are now able to build a set of M sources that is compatible with
the measures. Indeed, let Ó1; : : : ; ÓM be M points such that at least one point falls in each region
Ri or its boundary. Moreover, set

O�k WD � Qum. Ók/; k D 1; : : : ; M: (11)

Then, we have the following result.

Proposition 1
The M sources . Ók; O�k/; k D 1; : : : ; M; with the O�k’s defined by (10)–(11), are compatible with
the measures .xi ; Ti /; i D 1; : : : ; N , that is, they satisfy (8)–(9).

Figure 3. Regions of influence. Representation of the contour lines of a possible solution of (10) withN D 3.
The lines represent the points of collision among two or more fronts, and they divide the domain into three

regions Ri , called regions of influence.



Proof
The proof is a trivial extension to the 3D case of the one given in [14] for endocardial propagations,
provided that the Euclidean distance is replaced by the anisotropic metric induced by the muscular
fibers. �

2.4.5. Move the orthodromic PMJ. This and the following step (delete and create orthodromic PMJ)
are taken from [14], so that we refer the reader to that work for further details.

As this procedure is given by a single step, we drop here the iteration index. Let Pj be an
orthodromic PMJ and N o the number of measurement points belonging to Io, which is those acti-
vated by an orthodromic PMJ. We constrain the movement of an orthodromic PMJ to stay within
its region of influence and to be relatively small so that the length of the modified branch is still in
the physiological range. We want that conditions (6) possibly hold for all the measurement points
belonging to Io. However, to check such conditions, one needs to solve a 3D anisotropic eikonal
problem for each movement of a PMJ. To limit the solution of 3D problems, we decided to use the
following discrepancies:

�ij WD
up

�
yij
�
C do �

�
�Qum

�
yij
��

jTi j
; j D 1; : : : ;Mi ; i D 1; : : : ; N; (12)

where Mi is the number of PMJ belonging to the region of influence Ri and yij is the location of
the j -th PMJ belonging to Ri . The quantities �ij measure the discrepancy between the activation
time in a PMJ computed with the 1D eikonal problem in the network, and the solution of the 3D
backward eikonal problem (normalized by the measure jTi j). The use of these quantities instead of
(7) has the advantage to use the solution of the backward problem, which has been already solved
to identify the regions of influence. We have the following result:

Proposition 2
Let the following conditions hold for all the orthodromic PMJ:

(i) Each region of influence contains at least one orthodromic PMJ.
(ii) j�ij j 6 " for all the orthodromic PMJ.

(iii) min
iD1;:::;No

�
min

jD1;:::;Mi
�ij jTi j

�
> �" Tmin; where Tmin WD min

iD1;:::;No
jTi j.

Then conditions (6) are all satisfied, that is, j�i j 6 "; i D 1; : : : ; N o.

Proof
The proof is the same of the one provided in [14], provided that the Euclidean distance is replaced
by the anisotropic metric induced by the muscular fibers. �

All the PMJ such that j�ij j > " are now moved in order to improve the accordance with the
clinical measures, guaranteeing, however, that new locations are compatible with the solution of
the 1D eikonal problem in the Purkinje network. Assume that the orthodromic PMJ Pj needs to be
moved and belongs to the region of influence Ri . We then decide to locate the PMJ on the geodesic
line r joining the measure xi and the base of the leaf ending at Pj . In particular, in analogy with the
movement of the antidromic PMJ, we want that the activation time in the new PMJ due to network
propagation is as close as possible to the one given by the backward 3D eikonal problem. To this
aim, let � be the activation time at the base wj due to the 1D eikonal problem in the network. Then,
we move Pj in the point yj on r such that the quantity

j.� C l=Vp C do/C Qum.yj /j

is minimal, provided that



j.� C l=Vp C do/C Qum.yj /j

Ti
< ":

Here, l is the distance between yj and wj , so that � C l=Vp C do is the activation time at the new
orthodromic PMJ Pj .

At the end of the moving procedure, we have obtained a new Purkinje network N .K1C1/.

2.4.6. Delete and create orthodromic PMJ. Given a measurement point xi activated by an
orthodromic PMJ Pj , we have three cases:

– xi is satisfied (j�i j < ").
– The signal generated from Pj reaches xi in late (�i > ").
– The signal generated from Pj reaches xi early (�i 6 �").
As discussed in [14], in the third case, we have no possibility to satisfy the measure in xi by

creating new PMJ, whereas in the second case, the creation of new PMJ could satisfy the measure.
For this reason, we delete the orthodromic PMJ Pj if �i 6 �". On the contrary, if �i > ", we create
a new orthodromic PMJ located on the geodesic line joining xi with a suitable point of the portion
of the network belonging to Ri (see [14] for further details).

After this procedure, we have obtained the final patient-specific Purkinje network N .
We notice that the network generated by our method depends on the starting network and on some

user parameters such as the mean value of the length and of the angles of the branches, the threshold
to detect the satisfied points, and the conduction velocities. Once the initial network, the clinical
measurements, and these parameters have been fixed, the solution produced by our methodology
after the ‘move’ and ‘delete’ procedures is unique, in the sense that it generates always the same
network. However, with the ‘create’ procedure, different networks could be generated, depending
on the order used to go through the not satisfied points.

2.5. Description of the pathologies

In this section, we provide a brief description of the two pathologies considered in this work, and
we point out how to adapt our algorithm to them.

2.5.1. The case of old myocardial infarction (subject 1). If no arrhythmia or electrical disease
affecting the pathway of conduction is present (as what happened for subject 1), then all the PMJ are
orthodromic so that all the sources of the muscular activation are given by the PMJ. Hence, we can
apply our algorithm without the steps of moving and deleting antidromic PMJ, ending up with the
algorithm presented in [14]. For this reason, for subject 1, it was enough to solve our method without
the calibration of the antidromic PMJ, thus avoiding the solution of a coupled muscle/network prob-
lem. Moreover, as discussed in [14], the solution of a 2D isotropic eikonal problem, instead of an
anisotropic 3D one, is enough in this case, because all the sources are located on the endocardium.

However, some remarks are in order. In particular, the myocardium of a patient with an old
myocardial infarction is characterized by the presence of scar tissue, which replaces the healthy one
in the region affected by the ischemic attack. This region is characterized by a reduced blood supply,
resulting in the death of the muscular cells and thus in a progressive deterioration of the electrical
activity. For this reason, the muscle is no longer excitable in the scar region, and then we imposed a
zero conduction velocity on this portion of the endocardium [4] (Vf D 0). Moreover, we assumed
that the ischemic attack affects also the conduction property of the Purkinje network located in the
scar region. In particular, in this region, we set Vp about four times smaller than the physiological
value, supposing that the signal propagates, even if slowly, also into the portion of PF belonging to
the scar region [33]. We notice, however, that the state of the Purkinje system close to the scar region
remains to be fully elucidated; in particular, it is still to be definitively proved that the PF have no
access to the blood pool.

The location of the scar region for our computations has been estimated thanks to the electrical
mapping, because the clinicians measured a null potential at the points belonging to the scar.



2.5.2. The case of the Wolff–Parkinson–White syndrome (subjects 2 and 3). The WPW syndrome
is characterized by an accessory pathway between the left atrium and the left ventricle, named
the bundle of Kent. In this case, we have a muscular intramyocardial source and therefore both
orthodromic and antidromic PMJ, so that the complete algorithm presented in this work has
been considered.

Observe that the clinical measures are all located on the endocardium, so that it was not possible
to use the measures to locate the intramyocardial source. For this reason, the latter has been modeled
as a single activation, located in the point that guaranteed the best accordance with the measures,
among those where possibly the bundle of Kent enters the left ventricle.

3. RESULTS

In this section, we show the numerical results obtained by applying the strategy proposed in this
work for the generation of a patient-specific Purkinje network for pathological cases. The aim is
to compare the measured activation times with those obtained by using both the patient-specific
network and the generic network.

First of all, we mention the boundary conditions that we have used for subjects 2 and 3 for the
harmonic problem in the fibers generation (Section 2.2.1): we set an angle of �75ı at the endo-
cardium and C45ı on the epicardium for subject 2, and �60ı at the endocardium and C45ı on the
epicardium for subject 3 (an angle of C90ı corresponds to a fiber pointing toward the apex of the
ventricle). In Figure 4, we reported the orientation of the muscular fibers obtained with this strat-
egy in the case of subject 2. We remark that it was not necessary to describe the muscular fibers
for subject 1, as explained in Section 2.5.1. Moreover, we imposed a time delay in the orthodromic
propagation do D 10 ms for subject 1, and do D 14 ms for subjects 2 and 3, and a delay in the
antidromic propagation da D 3 ms for subjects 2 and 3. Such values of the muscular fiber angles
and of the delays have been chosen with a trial-and-error strategy to maximize the accordance with
the clinical measures and are in the physiological ranges reported in [34] and [30], respectively.
We remark that the results are quite independent of the value of the fiber angles prescribed at the
boundaries, provided that they are chosen in the physiological ranges. Furthermore, the timing of
the muscular source and of the AV node is chosen with a trial-and-error procedure to maximize the
accordance of the results with the clinical measures.

For each of the three subjects, in Table I (first two rows), we reported the number of branches and
PMJ for the generic and patient-specific networks, while in Figure 5, we depicted these networks.

Figure 4. Muscular fibers orientation for subject 2.



Table I. Number of branches and PMJ, conduction velocities in the network (Vp), on
the endocardium (Ve), along the muscular fiber (Vf ) and transverse to the muscular

fiber direction (Vt ).

Subject 1 Subject 2 Subject 3

Generic network # branches 2144 1617 1493
# PMJ 308 596 528
Vp (m/s) 3.1 3.5 3.1
Ve (m/s) 0.29 — —
Vf (m/s) — 0.980 0.855
Vt (m/s) — 0.490 0.570

Patient-specific network # branches 2047 1555 1404
# PMJ 211 534 439
Vp (m/s) 3.1 3.5 3.1
Ve (m/s) 0.29 — —
Vf (m/s) — 0.980 0.855
Vt (m/s) — 0.490 0.570

Figure 5. Generic networks (left), generated without any patient recorded data, and patient-specific net-
works (right), generated with the proposed algorithm by using clinical data. Each row represents a different
subject. In yellow, we depicted the PMJ. For the first subject, we depicted only the endocardium, while for
subjects 2 and 3, we depicted all the myocardium. For subject 1 (first row), we depicted in black the region
of endocardium identified with the scar, and for subjects 2 and 3 (second and third rows), we depicted in

blue the anomalous source due to the WPW syndrome.

To obtain the generic network, we used a mean value of branch length equal to 7:0 ˙ 0:3 mm for
subject 1, the one with a dilated ventricle, and equal to 4:0 ˙ 0:3 mm for subjects 2 and 3, and a
mean value of branch angle 60˙ 1:8ı for all the subjects. All these values fall in the physiological
ranges proposed in [12].

The conduction velocities in the network (Vp), on the endocardium (Ve) for subject 1, along the
muscular fiber direction (Vf ) and transverse to the muscular fiber direction (Vt ) for subjects 2 and



Figure 6. Computed activation times for the three subjects. Each row represents a different subject. Left:
generic network, generated without any patient recorded data. Right: patient-specific network, generated

with the proposed algorithm by using the clinical data.

3, have been tuned in order to maximize the accordance with the clinical measures with a trial-and-
error strategy. We reported for all the subjects such quantities in Table I (third, fourth, fifth, and
sixth rows). We notice that, for all the subjects, Vp falls in the physiological ranges 3.0–4.0 m/s,
whereas for subject 1, Ve is slightly outside the physiological range 0.3–1.0 m/s [35]. Moreover, we
notice that the value of the estimated velocity along the fibers direction Vf falls in the physiological
range 0.6–1.0 m/s for both subjects 2 and 3 [29]. Finally, we notice that the estimated value of the
velocities Vf and Vt satisfies, for both subjects 2 and 3, the physiological ratio Vf =Vt 2 .1:5; 2:0/
[36]. Moreover, in all the simulations, the value of the tolerance " was set equal to 0.15.

In order to assess the accuracy obtained by using the generated networks, for all the subjects,
we performed a cross-validation test. In particular, we used 50% of the measures for the generation
of the patient-specific network (training set), and the remaining measures to validate the networks
(testing set).

In Figure 6, we show for the three subjects the activation times obtained by solving Algorithm 1
with the generic and patient-specific networks, whereas in Figure 7, we show the errors intended as
the absolute values of the differences between the measured activation times in the testing sets and
the corresponding computed data. Moreover, in Table II, we report the mean of these errors.

From these results, we observe that in all the cases, the use of the patient-specific network
improved the accuracy with respect to the generic network. In particular, subject 1 highlighted a very
large improvement, the mean error being halved when using the patient-specific network. Regarding
subjects 2 and 3, we observe a lesser improvement in the accuracy when using the patient-specific
network. This is probably strictly related to the WPW syndrome, as reported in Section 4.



Figure 7. Errors between the measured activation times in the testing set and the corresponding computed
data for the three subjects, represented by spheres located in the points where the measures have been
acquired. Each row of the figure depicts the results of a subject obtained with the generic networks (left),
generated without clinical data, and with the patient-specific networks (right), generated with the proposed

methodology by using the clinical measures in the training set.

Table II. Mean errors (ms) for the three subjects in the case of the generic
(top) and patient-specific (bottom) Purkinje networks.

Subject 1 Subject 2 Subject 3

Generic network 30.57˙ 27.91 9.30 ˙ 7.29 10.11 ˙ 7.38
Patient-specific network 14.06 ˙ 15.52 7.16 ˙ 6.47 7.53 ˙ 6.30

To have a more accurate description of the error distribution, in Figure 8 (first row), we show
for the three subjects the histograms representing the number of points N (over the total number)
characterized by specific ranges of the error. These results confirmed the improvement in the accu-
racy obtained with the patient-specific networks. Again, we observed a significant improvement for
subject 1 and a lesser improvement for subjects 2 and 3.

We observe that for subjects 2 and 3, the points of the endocardium could be activated either
by the Purkinje network or by the underlying muscle owing to the anomalous pathway. Then, for
such patients, we built the subset K of the testing set given by the measurement points activated
in our simulations by the networks, and the subset W of the testing set given by the measurement
points activated by the front propagating from the anomalous pathway. In Table III, we reported the
mean errors related to each of these two subsets, whereas in Figure 8 (second row), we reported the
corresponding histograms. These results clearly show that there is an appreciable improvement in
the accuracy when using the patient-specific network for the measurement points activated by the PF



Figure 8. Histograms of the errors. From left to right, we reported the results for subjects 1, 2, and 3,
respectively. In the second row, we reported for subjects 2 and 3 the histograms relative to the measurement

points belonging to the subset K.

Table III. Mean errors for the patients suffering from WPW on the subsets K and W in the case
of the generic and patient-specific Purkinje networks.

Network Mean absolute error on K (ms) Mean absolute error on W (ms)

Subject 2 Generic 9.09˙ 6.74 9.79˙ 8.38
Patient specific 6.01˙ 5.00 8.38˙ 7.54

Subject 3 Generic 10.67˙ 7.47 8.82˙ 6.99
Patient specific 6.95˙ 6.06 8.66˙ 6.60

(subset K), whereas no significant improvements are observed for those activated by the anomalous
signal (subset W).

4. DISCUSSION

4.1. The case of old myocardial infarction

4.1.1. State of the art. The myocardial ischemia has been studied with computational models for
over 20 years. The first computational models of this pathology studied the development of depres-
sions in the ST segment of the ECG due to the developing of ischemic currents at the interface
between damaged and healthy cells [37–39]. More recent studies investigated the possibility to
recover information on the size and location of the ischemic region from such depressions by solv-
ing an inverse problem [5, 40]. The ischemic currents are developed during the plateau phase of the
cell electrical activity, when all the muscle heart cells have been already activated. For this reason,
the presence of the Purkinje network in these works has been neglected. Instead, if we are interested
in modeling the ventricular activation to recover the QRS complex, it is mandatory to model the
presence of the Purkinje network [33, 41]. As far as we know, the only work that included a (non-
patient-specific) Purkinje network for the study of the ischemia is [10], where the authors studied the
effect of such a network on the propagation of arrhythmias. Instead, in [3, 42], surrogate models of
the PF have been considered, by using a variable-in-space conduction velocity on the endocardium.



4.1.2. Discussion of the results. The results reported in Figures 7 and 8 and in Table II for sub-
ject 1 clearly show the big improvement when the patient-specific network is used to compute the
activation times on the endocardium. In particular, the mean error decreased by 54:0% with respect
to the one obtained with the generic network, with over 60% of the measures characterized by an
error less than 10 ms. Moreover, we observe the lack of PMJ in the patient-specific Purkinje net-
work in the region opposite to the septum, just between the two big scar regions (Figure 5, first row
on the right). This probably reflects the fact that the Purkinje network is in fact a little bit damaged
in that region, owing to the vicinity of the infarction. Of course, the generic network is not able to
recognize such a damaged region, because it localizes the PMJ randomly. Accordingly, looking at
Figure 6 (first row), we can appreciate the differences between the two networks in the activation
pattern in the region opposite to the septum, leading to different values of the errors in this region,
as shown in Figure 7.

These results showed that our approach could be used successfully in presence of a muscular
conduction damage and that it is able to capture the specificity of the patient at hand.

4.2. The case of the Wolff–Parkinson–White syndrome

4.2.1. State of the art. The WPW syndrome often leads to supraventricular tachycardia that needs
to be treated with an ablation therapy [43]. Computational studies related to this pathology can
be found in [44], where a model of the WPW has been presented with the aim of analyzing the
relation between the location of the intramyocardial pathway and the wave form of the ECG, and
in [45], where the development of supraventricular tachycardia as a consequence of WPW has been
investigated. In both papers, simplified non-patient-specific models of the PF have been considered.
In particular, in [44], about a thousand of sources of activation have been used with proper activation
times to model the PMJ, whereas in [45], the conduction system has been modeled with a simple
network representing the bundle of His and the main bundle branches coupled with a thin layer with
discrete sites of activation representing the PF and the PMJ. In the recent work [31], the authors
considered the presence of generic accessory pathways with a full biophysical detailed model of the
ventricles in a rabbit for the study of tachycardia and arrhythmias.

4.2.2. Discussion of the results. The results reported in Figures 7 and 8 and in Table II for subjects 2
and 3 show again an improvement in the accuracy when the patient-specific network is used instead
of the generic one. However, in this case, a deterioration of this improvement can be noticed with
respect to the previous case. In particular, for subject 2, the mean error decreased by 23:0%, while
for subject 3, it decreased by 25:5%.

Such a deterioration in the performance of the patient-specific network with respect to the pre-
vious case can be ascribed to the fact that a percentage of the measurement points (the subset W)
is directly activated by the anomalous pathway, and therefore, it is not affected by the presence
of the Purkinje network. For subject 2, the one with the worst improvement in accuracy, the sub-
set W contains 48:0% of the measures in the testing set, while for subject 3, it contains 30:0% of
these measures. Therefore, to study the effective improvement in the accuracy obtained by using the
patient-specific network, we computed in Table III and Figure 8 the mean error associated only to
the measurement points in the subset K, which is those activated, in our simulation, by the PF. These
results show that when focusing on the points of K, a better improvement in the accuracy obtained
by the patient-specific network is noticed. In particular, for subject 2, the mean error decreased
by 33:8%, while for subject 3, it decreased by 34:9%, highlighting the importance of including
a patient-specific network at least for the points activated by the network itself. Accordingly, no
appreciable improvement is noticed for the measurement points in W , that is, those activated in our
simulations by the anomalous pathway.

These results highlighted that for the WPW syndrome, it is important to use a patient-specific
Purkinje network when we want to accurately describe the activation in a region of the endocardium
far from the anomalous pathway. On the contrary, if we were interested only on the activation near
the intramyocardial pathway, a non-patient-specific network could be enough.



5. CONCLUSIONS AND LIMITATIONS

In this work, we proposed a computational algorithm for the generation of a patient-specific Purkinje
network in the general case of pathological electrical propagations in the ventricle. In particular, this
method can be applied to cases when also muscular sources, in addition to the AV node, contribute
to the activation. We applied this method to three cases characterized by electrical pathological prop-
agations. We compared the results obtained by using the patient-specific Purkinje network with the
ones given by considering a no patient-specific (generic) network. The numerical results highlighted
the following:

1. the improvement in the accuracy obtained by using the patient-specific network in the case of
an old myocardial infarction;

2. the importance of considering a patient-specific Purkinje network to detect the specificity of
the electrical propagation of the patient at hand, as highlighted in the case of a muscular
conduction problem (myocardial ischemia);

3. the reliability of the patient-specific Purkinje network to accurately describe the propagation
in the case of the WPW syndrome, in particular far from the anomalous muscular pathway.

These conclusions show that our method provides an effective tool to accurately model the acti-
vation of the left ventricle in the case of pathological electrical propagations with different origins,
from conduction problems in the myocardium to the presence of an additional muscular pathway.

The main limitation of this work consists in neglecting the re-entry phenomena in the Purkinje
network. In particular, we assumed that a signal that starts from the AV node and enters the muscle
through a PMJ cannot re-enter the network. We observe that owing to the high values of the ortho-
dromic and antidromic delays at the PMJ, it is reasonable to assume that, at least for not damaged
Purkinje networks, the phenomenon of the re-entry does not significantly influence the propagation.
A second limitation is given by the use of the eikonal problem to compute the activation times in the
left ventricle. Other models, such as the bidomain or the monodomain ones, could be used to provide
more accurate results, accounting also for the modeling of the transmembrane potential. Finally, we
notice that the aim of this work does not consist in reproducing the real Purkinje network. Rather,
we wanted to provide an algorithm to generate a realistic network able to describe accurately the
electrical activation of the patient at hand, capturing its peculiarities.

As next steps of our work, we want to consider also other pathologies, such as the left bundle
branch block, with the aim of studying the electrical propagation during the cardiac resynchroniza-
tion therapy. In this case, it will be mandatory to consider also the activation coming from the right
ventricle. Moreover, we want to extend our method to consider also the re-entry phenomena and to
include more sophisticated models such as the bidomain or the monodomain ones.
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