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Abstract Drop size distribution represents the statistical synthesis of rainfall dynamics at particle size
scale. Gamma and Lognormal distributions have been widely used in the literature to approximate the drop
diameter variability, contrarily to the natural upper boundary of the variable, with almost always site-
specific studies and without the support of statistical goodness-of-fit tests. In this work, we present an
extensive statistical investigation of raindrop size distribution based on eight data sets, well distributed on
the Earth’s surface, which have been analyzed by using skewness-kurtosis plane, AIC and BIC indices and
Kolmogorov-Smirnov test. Here for the first time, the Johnson SB is proposed as general functional form to
describe the drop diameter variability specifically at 1 min time scale. Additional analyses demonstrate that
the model is well suitable even for larger time intervals (�1 min).

1. Introduction

Rainfall remains one of the poorly quantified phenomena of the hydrological cycle, despite its fundamental
role [De Michele and Ignaccolo, 2013]. No universal law describing the rainfall behavior is available in the lit-
erature. This is probably due to the continuous description of rainfall, which is a discrete phenomenon,
made by drops [Ignaccolo and De Michele, 2011]. Raindrops represent the water exchange, under liquid
form, between atmosphere and earth surface, and the number of drops and their size have impacts in a
wide range of hydrologic, meteorologic, and ecologic phenomena [Norman et al., 1995; Pruppacher and
Klett, 2010; Strangeways, 2011].

From the statistical point of view, the rainfall variability at particle size scale is described by the drop size dis-
tribution (DSD). According to the specific problem of interest, the term DSD indicates the concentration of
raindrops per unit volume and diameter, NðDÞ, or the probability density function of drop diameter at the
ground, p(D). These two quantities are linked together and it is possible to pass from one to the other; for
additional details see Uijlenhoet and Pomeroy [2001] and Ignaccolo and De Michele [2013]. It is noteworthy
that rainfall is a nonhomogeneous phenomenon [Jameson and Kostinski, 2001; Ignaccolo et al., 2009], thus,
regardless of the form used, the ‘‘statistical rule’’ with which the drops occur is not invariant under time
translation. For this, DSD must be referred to small time intervals (DSD observed in 1 min, or less, the so
called instant DSD), where the phenomenon can be considered homogeneous [Joss and Gori, 1978]. DSD is
used in many applications, among others, to measure the multiwavelength rain attenuation for terrestrial
and satellite systems, to evaluate the below cloud scavenging coefficient of the aerosol by precipitation and
to make estimates of rainfall rate through radars, [Uijlenhoet and Sempere Torres, 2006]. In particular, DSD is
used to evaluate the parameters of the Z 2 R relationship between reflectivity (Z) and rainfall rate (R). It is
well known that variations in the form of DSD are one of the main causes of variability of Z 2 R parameters
[Jaffrain et al., 2011; Rosenfeld and Ulbrich, 2003; Tokay et al., 2001].

For many years, DSD has been represented parametrically by the negative Exponential law, proposed by
Marshall and Palmer [Marshall and Palmer, 1948; Laws and Parsons, 1943]. Nowadays, thanks to advanced
instrumentations, disdrometers, which allow to measure the rainfall drop by drop, and collect millions of
information per year, it has become clear that the negative Exponential law is a limiting form, resulting from
the long-term average in time and space [Waldvogel, 1974; Kostinski and Jameson, 1999]. In addition, accord-
ing to many observations, the Exponential law usually underestimates the number of large drops and over-
estimates the small ones [Fujiwara, 1965; Cataneo and Stout, 1968]. Other distributions have been adopted
[Williams and Gage, 2009], including Lognormal [Feingold and Levin, 1986; Rosenfeld and Ulbrich, 2003;
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Owolawi, 2011], Weibull [Jiang et al., 1997; Sekine et al., 2007; Ishii et al., 2011] and, above all, Gamma, with
or without truncations [Ulbrich, 1983; Willis, 1984; Ulbrich, 1985; Ulbrich and Atlas, 1998; Illingworth and
Blackman, 2002; Vivekanandan et al., 2004; Brawn and Upton, 2008; Kumar et al., 2011]. This last has been
widely used thanks to the parsimonious parameterization and the simple analytic calculation of statistical
moments and bulk variables, which are important motivations for practical application. Frequently, the
choice of a particular distribution is justified by the fact that it is able to reproduce bulk variables, like the
rainfall rate [Smith et al., 2009]. However, this criterion could not be considered statistically adequate
[Ignaccolo and De Michele, 2013]. In the wake of the insights of Sekhon and Srivastava [1971], different inves-
tigations have been made in order to find a unique mathematical model able to capture the great time and
space variability of DSD. These attempts include renormalization and rescaling procedures of different types
[see Sempere Torres et al., 1994; Testud et al., 2001; Lee et al., 2004; Ignaccolo et al., 2009, among others].

Nevertheless, from the analysis of the literature, some issues emerge:

1. Generally, the used distributions are not upper bounded, in contrast with the lower and upper bounda-
ries of drop diameter, which ranges in a bounded interval. The lower bound corresponds to the smallest
diameter of drops having a falling velocity larger than the upward wind speed in the air; minimum sizes
occur in case of drizzle (diameter about 0.1 mm) produced by low layer clouds. The maximum diameter
of raindrops is about 6–8 mm, different sources provide different values. In any case, the presence of the
upper bound is certain: sizes larger than that do not normally occur because the raindrop particles sim-
ply break up or collide with other neighboring particles [Villermaux and Bossa, 2009].

2. With some exceptions, like Bringi et al. [2003] or Ulbrich and Atlas [2007], the studies available in the liter-
ature are often site-specific, i.e., analyzing the data of a single site. We propose an extensive analysis
based on eight data sets, covering several seasons and coming from four different climatic regimes, in
order to consider as many precipitation forms and patterns as possible.

3. Lastly, the choice of the probability distribution of drop diameter is actually not supported by statistical
tests, as it should be. This is probably due to the large sample size (N) of data, N � 100, which makes
restrictive the application of goodness-of-fit tests.

Dealing with these issues, in the next, we will try to answer to the following question. Is there a general
parametric probability distribution, which provides a statistically significant fit to 1 min samples of drop
diameter, and respects the natural limits of this variable? Clearly the positive answer to this question must
require, as proof, a large set of data, well distributed in space.

2. Probability Model for Drop Size

Here we first propose the Johnson SB distribution as a general functional form to describe the variability of
the DSD. This is part of the Johnson’s system of distributions, made known by Johnson [Johnson, 1949], as a
flexible model, able to cover a wide variety of distribution shapes. This system is composed by three fami-
lies, SB (System Bounded), SU (System Unbounded), and SL (System Lognormal), so that any data set with
finite moments can be fitted by one of them. The probability density function of a Johnson SB variate X is:

pðxÞ5 dffiffiffiffiffiffi
2p
p � k

ðx2nÞðk1n2xÞ � exp 2
1
2

c 1 d ln
x2n

k1n2x

� �� �2
( )

(1)

with x 2 ½n; n1k�; 21 < n <1; k > 0; 21 < c <1, and d > 0. n and k are, respectively, the location
and scale parameters, n and ðn1kÞ can be considered proportional to the minimum and maximum value of
the variable. c and d affect the shape of the distribution. In particular, increasing in absolute value c
increases the skewness, increasing d increases the kurtosis. Details are available in Appendix A.

We take in consideration the Johnson SB mainly for three reasons. (1) The bounded domain of the variable,
which is well suitable for the drop diameter. (2) The existence and the finiteness of all statistical moments, due
to the bounded support of the distribution [Spanos, 1999]. (3) The great variety of distribution forms, thanks to
the two parameters (d and c) controlling the shape [Kotz and Van Dorp, 2004]. It is able to reproduce various
forms: for example, when d! 0, regardless of the value of c, the probability density function becomes bimodal.

Thanks to its flexibility, the Johnson SB distribution has found applications in many fields like meteorology,
in particular in the distribution of cloudiness [Johnson, 1949] and in the description of the early time stage
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of evolution of drops due to coagulation
phenomenon [Tang and Lin, 2013];
hydrology, in the distribution of rain rate
[Kottegoda, 1987] and in the description
of the modified relative humidity
[Wakazuki, 2013], and ecology in the size
distribution of trees [Rennolls and Wang,
2005]. For these reasons, in this work,
Johnson SB distribution will be tested as
alternative to Gamma and Lognormal,
being the most used distributions to fit
the drop diameter data. For all the three
distributions, the Maximum Likelihood
method has been used to estimate the
parameters (see Appendix B for details).

3. Data Processing

We consider eight data sets consisting of 1 min DSD data, sampled using Joss-Waldvogel and Thies disdrome-
ters at different locations on the Earth’s surface. Table 1 provides the description of the data sets including
name of the site, K€oppen-Geiger climatic classification (code between brackets), a three-letter code used to
report the name of the measurement site in brevity, latitude, longitude, and altitude. The K€oppen-Geiger clas-
sification [Kottek et al., 2006] is reported to show that at least one site for each of the climatic regimes (with
exception of regime E, polar climate) has been considered, in order to study as many precipitation forms and
patterns as possible. Furthermore, on average, each data set covers a range of time of 1 year, including many
types of events (i.e., stratiform, convective and orographic) (see Table 2). Note that two different types of dis-
drometer have been used: the JWD impact disdrometer and the THIES optical disdrometer [see Joss and
Waldvogel, 1967; Frasson et al., 2011; Tokay et al., 2013 for instruments description].

It is noteworthy that disdrometers are affected by measurement errors, which in general cause underesti-
mation of the rain totals [Tokay and Short, 1996; Tokay et al., 2001]. Studies in the literature indicate that
impact disdrometers may underestimate small drops [Tokay et al., 2005], while optical disdrometer may
overestimate the number of large drops in case of intense rainfall events [Lanzinger et al., 2006]. The causes
and the magnitude of these errors are different, according to the type of instrument used. The most rele-
vant errors are: errors caused by the dead time minimum interval between two consecutive drops, which
can be not enough sensitive (for impact disdrometers only); calibration errors, due to the discrepancy
between the channel width specified by the vender and the effective one; wind related errors; acoustic
noise from the surroundings. The last three types of errors can be reduced to a minimum by a proper instal-
lation of the instrument; these cautions have been used for all the considered sites.

Regarding the dead time errors, usually the so-called dead time correction is adopted. This was introduced,
on the advice of A. Waldvogel, by Sheppard and Joe [1994] in order to limit the underestimation of small
drops, caused by the use of JWD disdrometer. Note that many Authors have used this correction [i.e.,

Sauvageot and Lacaux, 1995; Uijlenhoet
et al., 2002; Brawn and Upton, 2008].
Many others [i.e., Tokay and Short, 1996;
Tokay et al., 2001; Uijlenhoet et al., 2003]
have chosen to not to implement it, for
different reasons: (1) it modifies the DSD
and increases the moments of the drop
size, such as the rain rate, significantly,
(2) it does not add drops if there are no
drops in a given channel or simply, (3) it
did not alter their findings. For sake of
clarity, we have applied the dead time

Table 1. List of the Sites Where Disdrometer Data Are Collected, With
K€oppen-Geiger Index in Brackets, Code, Latitude, Longitude, and Altitude

Site Code
Latitude

(8)
Longitude

(8)
Altitude

(m)

Bukit Koto Tabang,
Indonesia (AM)

BKT 0.12S 100.19E 864

Darwin, Australia (AM) DRW 12.45S 130.83E 12
Estation Obispo,

Mexico (BSH)
ETO 24.28N 107.20W 27

Kashima, Japan (CFA) KSH 35.95S 140.65E 45
Kwajalein Atoll,

Marshall Islands (AF)
MIK 8.71N 167.73W 1

Macugnaga, Italy (DFB) MAC 45.58N 7.57E 1300
Milano, Italy (CFA) MLN 45.28N 9.23E 123
Torino, Italy (CFA) TRN 45.03N 7.65E 239

Table 2. List of the Sites Where Disdrometer Data Are Collected With Starting
Minute Date, Ending Minute Date, Number of Total Minutes, and Type of
Instrument

Code Starting Minute Ending Minute Total Minutes Instrument

BKT 14 Aug 2001 30 Jul 2003 66,402 JWD
DRW 04 Nov 2005 10 Feb 2006 6863 JWD
ETO 18 Jul 2005 25 Sep 2005 1496 JWD
KSH 2 May 1979 24 Jul 1981 67,114 JWD
MIK 30 Apr 2003 31 Dec 2007 85,752 JWD
MAC 15 Sep 1999 06 Nov 1999 9530 JWD
MLN 15 Jul 2011 27 Dec 2012 34,696 THIES
TRN 1 Jan 2009 31 Dec 2009 27,587 THIES
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correction to JWD data. The results
show that its application does not qual-
itatively change the conclusions of this
paper (see supporting information for
details). For this reason, we have
decided to not to adopt this correction
in the rest of the manuscript.

Furthermore, in order to minimize sta-
tistical sampling errors, we exclude
minutes with a number of drops less
than 60 and/or with number of occu-
pied diameter classes less than 3.

The analyses reported in the next are
focused on the original data sets,
observed at 1 min time interval. In
order to be as general as possible, we
have extended the analyses to longer
periods, by considering in particular 2,
3, and 5 min temporal aggregation
(see Appendix C for details).

4. Skewness-Kurtosis Plane as
Synoptic View

Let us indicate with br the rth statistical
moment, defined as:

br5E
X2lX

rX

� �r� �
(2)

where X is the random variable, E½:� is
the expected value, l and r are, respectively, the mean and the standard deviation [Vargo et al., 2010]. We
thus consider the skewness-kurtosis plane as the locus of the couples skewness, b3, and kurtosis, b4, (Figures

1–3). In the b32b4 diagram, the limit curve, defined by b42b2
321�0, separates the theoretically impossible

area (dashed area), by the portion of the plain that can be occupied by the pairs ðb3; b4Þ of all distributions
[Pearson, 1916]. Each distribution family occupies a specific portion of the skewness-kurtosis plane, that can

be a point, as the Normal, a curve, as
the Gamma and the Lognormal, or an
area, as the Johnson SB and SU. In par-
ticular, the Johnson’s system has a very
important feature, it is designed to
cover the whole skewness-kurtosis
plane, thus it can match all the possible
combinations of the two moments.
This plane provides a synoptic view of
the different behavior of the probabil-
ity distributions and is sometimes used
as a tool for the identification of the
proper distribution for a given data set.
However, its application can be prob-
lematic and difficult in the case of
samples with limited length, where
inaccurate statistical estimates occur.
The candidate distributions are the

Figure 1. Skewness (b3)-kurtosis (b4) plane with sample values of 1 min data for
(a) Darwin and (b) Milano. The Normal occupies the squared black point, the Log-
normal (as the Johnson SL) the dash-dot curve, the Gamma the dashed curve,
the Johnson SB the dark gray area, and the Johnson SU the light gray area. Differ-
ent colors indicate different sample sizes: N � 1000 in cyan, 1000 < N < 2000 in
blue, and N � 2000 in red.

Figure 2. Skewness (b3)-kurtosis (b4) plane with sample values of 1 min data with
N � 2000 for all the data sets, (N � 1250 for ETO and MAC). DRW green dots,
MLN blue dots, TRN red dots, BKT yellow dots, KSH cyan dots, MIK purple dots,
ETO magenta triangles, and MAC navy triangles.
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ones closer to the pairs ðb3;b4Þ calculated empirically from data. It is interesting to note that the transfor-

mation of the variable X ! X2lX
rX

does not alter skewness, kurtosis, and in general the rth statistical moment

E X2lX
rX

� �rh i
. Thus, the renormalized drop diameter variable proposed by Ignaccolo et al. [2009] has the same

couple ðb3;b4Þ of the original variable. Consequently, this implies that the representation in the b32b4 dia-
gram does not vary if we consider rough or renormalized data.

A modified version of this plane has been already used by Niu et al. [2010] to investigate if the statistical
pattern of the 1 min DSDs, measured by a Parsivel disdrometer located in Guyuan, followed the Gamma dis-
tribution. The modified moment ratio diagram has been obtained by calculating the deviation coefficients
Cs and Ck, which represent the deviation in term of skewness and kurtosis from the classical Exponential dis-
tribution suggested by Marshall and Palmer, [1948]. For the Gamma distribution Cs 5 Ck, while for the expo-
nential distribution Cs 5 Ck 5 1. Niu et al. [2010] showed that the scatterplot of Cs and Ck calculated from
the observed DSDs confirmed the deviation from the Exponential distribution, the points did not cluster
around (1, 1). In our opinion however, it is impossible to state that the Gamma distribution well describes
the data. In fact, (i) the scatterplot does not show the negative axes (the Gamma distribution does not admit
negative values of Cs and Ck), while the cluster of the sample points seems to be cut by this limitation; (ii)
the sample points move away from the Gamma line especially with the increase of Cs and Ck; (iii) the data
set is site specific and is limited to 1 month precipitation data, (iv) only Gamma and Exponential distribu-
tions have been considered and plotted as reference line in the diagram.

Figure 3. (left) Mean-variance diagrams, (middle) skewness-kurtosis, and (right) fifth moment-sixth moment for Milano with N � 2000. The blue dots are the empirical moments, while
the red crosses are the theoretical moments calculated considering Johnson SB in the top row, Gamma in the medium and Lognormal in the bottom.
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Here three candidate distributions (Johnson SB, Gamma, and Lognormal) are used to match the empirical
moments. In order to do this, for each data set, and each minute, we calculate the first six empirical
moments (i.e., mean, standard deviation, b3, b4, b5, and b6) and we report the skewness and the kurtosis in
the b32b4 plane. The representation of the first six statistical moments gives an idea of the accuracy of the
evaluation of the physical quantities, which are proportional to these moments. For example, the rainfall
rate R is proportional to the third moment of the p(D), while the reflectivity Z to the 6.67th moment. Figure
1 shows as example the sample values of skewness and kurtosis in the b32b4 plane, distinguished by sam-
ple size, for Darwin (a) and Milano (b). Cyan dots represent minutes with N � 1000, blue dots 1000 < N
< 2000 and red dots N � 2000. The values are located principally in the SB domain (dark gray area). The
ones outside the SB domain are usually characterized by smaller sample sizes, i.e., N � 1000, due to the dif-
ficulty of estimating high order moments with small samples. It is important to notice that quite all the cou-
ples characterized by N � 2000 stay under the Lognormal (dash-dot) and the Gamma (dashed) curves, see
especially Milano (Figure 1b). Hence, the sample third and fourth moments do not fall in the domains of the
distributions which are considered the best candidates for the statistical representation of raindrop size. Fig-
ure 2 reports the couples skewness-kurtosis of all the data sets, considering N � 2000, with exception of
ETO and MAC that are characterized by minutes with smaller sample size. For these two data sets, we thus
consider in these analyses a threshold sample size of 1250. With the exception of some points belonging
mainly to Torino and Koto, all the couples occupy the Johnson SB sector and in particular, they stay in an
area constantly below Gamma and Lognormal domains. In Figure 3, we report for Milano the moment-ratio
diagrams mean-standard deviation, skewness-kurtosis, and b5–b6, comparing empirical (blue dots) and the-
oretical (red crosses) moments, for all the three distributions. It is easy to see that the correspondence is
definitely better for the Johnson SB distribution. Similar results are obtained in the other data sets (see sup-
porting information Figures S1–S7).

Finally, Figure 4 shows the histograms of the estimated four parameters of the Johnson SB distribution for
Milano. The fill gray histograms are related to the entire data set, while the empty dashed red ones are
related to the data set with N � 2000. Above each histogram, there is a box plot in which it is possible to
distinguish the median value, the first and third percentiles and the outliers. Further studies are needed to
evaluate the presence of dependence among parameters, for example, using statistical tools reported in
Salvadori et al. [2007].

One problem affecting this analysis is in the fact that skewness and kurtosis are not bias-free, as stated by
many authors [see e.g., Bobee and Robiataille, 1975]. In order to understand if this bias could effectively
influence the outcomes we have proceeded as follows. First, we have estimated the bias of skewness and
kurtosis following Whiters and Nadarajah [2011] and we have calculated unbiased skewness and kurtosis
estimators according to their findings. The results have shown that the bias can be considered negligible.
The location differences of the sample estimates in the moment-ratio diagram are almost unnoticeable. Sec-
ond, we have alternatively made the analysis using the L-Moment Ratio Diagram (namely, L-skewness-L-
kurtosis diagram), which confirms what we have already seen in the skewness-kurtosis diagram. These
results are not reported here for brevity.

5. Model Selection

Here we have used two indices, the Akaike Information Criterion (AIC) and the Bayesian Information Crite-
rion (BIC), to rank Johnson SB, Gamma and Lognormal, according to their ability in fitting 1 min DSDs. AIC
and BIC indices are defined as:

AIC 5 2k 2 2L� (3)

BIC 5 k ln ðNÞ2 2L� (4)

where k is the number of parameters in the model and L� the maximized value of the log-likelihood. These
two indices have been developed starting from two different ideas. According to [Wagenmakers and Farrell,
2004], ‘‘. . . the BIC assumes that the true generation model is in the set of candidate models, and it measures
the degree of belief that a certain model is the true data-generating model. The AIC does not assume that any
of the candidate models is necessarily true, but rather calculates for each model a measure of distance between
the probability density generated by the model and reality.’’ Furthermore, the two indices differ in the way the
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number of free parameters is considered. For AIC the penalization function is constant, for BIC it depends
on the logarithm of the number of observations. Thus, at relatively low N (10 and less) BIC is more tolerant
of free parameters than AIC, but less tolerant at higher N (as the natural log of N overcomes 2). Since there
is no consensus on the choice on the index to use, we have decided to report the results of both the two
indices, which are consistent, making us confident in the results obtained. For both AIC and BIC, the chosen
model is the one that minimizes the values of the index. Actually, the selection of the model through the
individuation of the minimum AIC is not certain, especially if the sample size is small [Akaike, 1974]. A cor-
rection in the estimation of AIC for finite sample size, namely the corrected AIC, AICc, has been introduced
by Sugiura [1978]. The use of AIC and AICc criteria produces almost equal outcomes. For this reason AICc
results are not reported here.

Table 3 gives the results for Darwin and Milano data sets: for each distribution the number of times the
model is selected is reported in percentage. For example, considering AIC index and the whole MLN (DRW)
data set, Johnson SB is the best candidate distribution for 88% (69%), against 5% (14%) for Gamma and 8%
(17%) for Lognormal. Considering BIC, the percentages are less advantageous for Johnson SB because BIC is
more sensitive to the number of parameters. In case, we consider only the minutes with N � 2000, the
results are almost totally in favor of Johnson SB for both MLN and DRW data sets and both the indices.
Same results are obtained also for the other six data sets (see supporting information Table S1).

Furthermore, it can be useful to take into account the absolute differences between AIC (or BIC) values cal-
culated for the three distributions and each sample: small differences, in the order of some units, make the

Figure 4. Frequency histograms of the four parameters of Johnson SB. The entire MLN data set (fill gray histogram) and the minutes with N � 2000 (empty dashed red histogram).
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selection of the model uncertain. Let the AIC values be denoted as AICJ if referred to Johnson SB, AICG to
Gamma, AICL to Lognormal, and AICmin the minimum value. Then, the relative likelihood is defined as
exp ððAICmin2AICiÞ=2Þ, with i5J;G; L, and can be interpreted as the relative probability of the ith model
respect to the one having minimum AIC. If this probability is small, the selection of the model with smaller
AIC can be considered accurate. For example, if we consider a ðAICmin 2AICiÞ threshold value of 6 units, the
probability that the ith model is as probable as the one with AICmin , is around 0.05. At this point, we can
proceed as follows. We consider the minutes in which the Johnson SB, having AICmin , is selected and calcu-
late the percentage of minutes in which the relative AIC differences with the other distributions is less than
6. For the data set of Darwin (N � 2000) and for the 69% of the minutes for which Johnson SB is selected,
the percentage of minutes in which the difference AICJ2AICG (AICJ2AICL) is less than 6 is 22% (24%). For
the data set of Milan (N � 2000) and for the 90% of the minutes for which Johnson SB is selected, the per-
centage of minutes in which the absolute difference AICJ2AICG (AICJ2AICL) is less than 6 is 6% (12%). Given
these low percentages, it is possible to state that the selection of the Johnson SB model with the use of AIC
is accurate for the great majority of the cases. In addition, we can also calculate the percentages of minutes
in which Gamma (Lognormal) is selected, but for which the absolute difference AICG2AICJ (AICL2AICJ) is
less than 6. The percentages are indeed very high reaching 98% (99%) for the data set of Darwin and 96%
(99%) for the data set of Milan, showing a great uncertainty in the selection of Gamma and Lognormal dis-
tributions and attesting the Johnson SB as a valid alternative candidate. The same analysis has been carried
out considering BIC values, similar results have been obtained. Thus, AIC and BIC confirm what was already
found using the b32b4 plane.

6. Model Testing

Finally, we have considered the Kolmogorov-Smirnov (K-S) goodness-of-fit test to check the agreement
between a probability distribution and data. Even if AIC and BIC indices have selected the Johnson SB for
the majority of cases in all databases, we have applied this test to each of the three distributions. The K-S
test compares the cumulative frequency with the cumulative probability distribution. The K-S test statistic is
the maximum distance, in absolute value, between cumulative frequency and cumulative distribution. If
none of the parameters are estimated from the data, the test statistic has a limiting distribution, independ-
ent on the distribution under analysis. In this case (indicated in the next as standard), the critical value is
easily calculated according to the significance level (a) and the sample size (N). If N> 35 and a50:01, the
critical value is 1:6276=

ffiffiffiffi
N
p

. If the parameters are estimated from the data, the distribution of the test statis-
tic is dependent on the distribution under analysis, and the critical value must be calculated ad hoc. We
have made this calculation following the procedure proposed by Keutelian, [Keutelian, 1991; Ignaccolo and
De Michele, 2013]. It consists in the estimation of the critical value of the test statistic by the use of Monte-
Carlo simulations. For each distribution and each minute, the parameters have been estimated with the ML
method. These parameters have been used for the generation of 10,000 samples (for each minute) with

Table 3. (Top) Percentage of the Number of Times a Model Is Selected According to (Left) AIC and (Right) BIC for DRW and MLN,
Considering the Entire Data Set and Only the Minutes With N � 2000a; (Bottom) Percentage of Acceptance of the K-S Test Using the
(Left) Standard Method and (Right) the Keutelian Method (Right) for the Same Data Sets

Data Set

AIC BIC

Johnson SB Gamma Lognormal Johnson SB Gamma Lognormal

DRW 69 14 17 46 25 29
MLN 90 4 6 77 7 16
DRW (N � 2000) 99 0 1 97 1 2
MLN (N � 2000) 100 0 0 100 0 0

Standard method Keutelian method

Johnson SB Gamma Lognormal Johnson SB Gamma Lognormal

DRW 91 77 75 66 52 51
MLN 91 73 81 66 41 52
DRW (N � 2000) 78 22 14 32 3 1
MLN (N � 2000) 47 0 0 12 0 0
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length equal to the length of the considered sample minute. The parameters have been reestimated for
each of the 10,000 samples and the maximum difference, Dcrit, between the cumulative distribution func-
tion and the cumulative frequencies computed. The critical value of the test statistic is the 99% percentile,
Dcrit 99. The test is accepted if the maximum difference in absolute value, D, between the theoretical cumu-
lative distribution and the cumulative frequency of the observed sample minute is smaller than Dcrit 99.

The K-S goodness-of-fit test with a 1% level of significance is applied to each data set, considering both the
standard procedure and the one suggested by Keutelian [1991]. Table 3 shows the results in terms of per-

centages of acceptance of each of the three distribu-
tions, for Darwin and Milano, considering all minutes,
or only those with N � 2000. At first, it is easy to see
that the percentages of acceptance decrease passing
from standard to Keutelian procedure. The comparison
of the three distributions shows that Johnson SB is
always the choice which ensures the better result,
regardless of the data set and the method used. If we
consider the data sets with N � 2000, for Darwin and
the Keutelian (standard) procedure, Johnson SB has a
percentage of acceptance of 32% (78%), Gamma 3%
(22%), Lognormal 1% (14%). For Milano, the percen-
tages are even worse: Johnson SB has a percentage of

Figure 5. Skewness (b3)-kurtosis (b4) plane with sample values of Darwin data set with 1, 2, 3, and 5 min time interval.

Table 4. Percentages of the Number of Times a Model Is
Selected According to AIC and BIC for DRW Data Set,
Considering 1, 2, 3, and 5 Min Time Intervals

Johnson SB Gamma Lognormal

AIC 69 14 17
1 min

BIC 46 25 29
AIC 78 10 12

2 min
BIC 55 20 25
AIC 88 5 7

3 min
BIC 71 12 17
AIC 94 0 3

5 min
BIC 96 0 4
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acceptance of 12% (47%), while Gamma and Lognormal are rejected at all. Similar percentages of accep-
tance/rejection have been found for the other data sets (see supporting information Table S2). For
N � 2000, the percentages of acceptance of Johnson SB are better than the other two distributions, but low
however. This can be explained by the fact that the K-S test is applied to data sets with a very large sample
size, thus the differences between the theoretical and the empirical distributions are very small and the test
tends to be quite restrictive. Despite of it, Johnson SB obtains a considerable percentage of acceptance.
Conversely, when the sample size is small, less than about 100 [Kottegoda and Rosso, 2008], the random
fluctuations influence the K-S test in a way that it tends to pass for almost all the three distributions, and so
the test becomes less significant. Thus, for all the three distributions, with the increase of the sample size
we register a decrease of the percentages of acceptance, but these values decrease to reach almost zero in
case of Gamma and Lognormal, unlike the case of Johnson SB.

Plots comparing the three density functions (with parameters estimated through ML method) and the histo-
gram of 1 min disdrometer data and q-q plots (probability plot comparing sample and theoretical quantiles)
contribute to make clear the results of the statistical analyses (see also supporting information, Figures S8–
S15.)

7. Conclusions

Eight data sets of 1 min disdrometer data collected at different locations in the world have been considered
to investigate extensively the drop size distribution of rainfall. Gamma and Lognormal, the most widely
used distributions for the representation of DSDs, together with our proposal, the Johnson SB, have been
fitted to the data (with different temporal aggregations) and statistically compared. Even if Gamma and
Lognormal are simple and useful approximations of observed DSD spectra, our analyses show that they do
not seem to be enough accurate in the statistical representation of the drop diameter variability, with also a
physical argument.

Physically, this inadequacy stems from the fact that Gamma and Lognormal are upper unbounded, where
the drop diameter is both lower and upper bounded as the Johnson SB. Besides that, this last distribution
has been adopted in a recent precipitation-related study, to describe the early time stage of evolution of
drops due to coagulation phenomenon [Tang and Lin, 2013]. Clearly, there is not an established connection
between the distribution of drops in the clouds due to coagulation and the distribution of drops at the
ground. However, the fact that Johnson SB could represent both the two phenomena is intriguing and will
be the subject of future investigations.

Statistically speaking, Gamma and Lognormal are inadequate to capture the variability of high order
moments, unlike the Johnson SB. This is confirmed by the model selection analysis made through AIC and
BIC indices and the goodness-of-fit check through the K-S test.

In conclusions, the statistical analyses presented suggest the Johnson SB as a general functional form for
the description of the drop diameter variability at 1 min or larger (say 1–5 min) time intervals. Additional
analyses are still necessary to support our achievement and plug it in practical applications.

Appendix A: The Johnson’s System of Distributions

The Johnson’s system of distributions was derived by Johnson [1949], in order to find a general and flexible
model, which could cover a wide variety of shapes. This system is based on a transformed normal variate
and it is composed by three families, SB, SU, and SL, so that any data set with finite moments can be fitted
by one of them. If Z is a standardized normal variate (zero mean, standard deviation equal to 1), X a continu-
ous random variate, being Y5 X2n

k , the system can be defined by:

Z 5 c 1 df ðYÞ (A1)

where f is the transformation function, c and d are the shape parameters, k is the scale parameter, and n is
the location parameter, with d > 0 and k > 0. Three normalizing transformations has been defined, see
Johnson [1949] and George and Ramachandran [2011].

The Lognormal system of distribution, SL, which covers the Lognormal family and is defined by:
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Z 5 c 1 d ln
X2n

k

� �
; X > n (A2)

The bounded system of distribution, SB, which can be upper or lower bounded or both. It covers Gamma,
Beta and also other distributions; it is defined by:

Z 5 c 1 d ln
X2n

n1k2X

� �
; n < X < n1k (A3)

The unbounded system of distribution, SU, covering the Normal and T distributions above all and being
defined by:

Z 5 c 1 d ln
X2n

k

� �
1

X2n
k

� �2

11

( )1=2
2
4

3
5; 21 < X <1 (A4)

Thanks to these transformations, Z follows a standard Normal distribution, while X follows the Johnson
distribution.

In the next, we focus the attention to Johnson SB. The cumulative distribution function of the Johnson SB is
not available in a closed form, but can be expressed through the Normal distribution as:

FðxÞ5 U c1d ln
x2n

k1n2x

� �� �
(A5)

where U is the standard cumulative Normal function.

The quantile with fixed level of probability a, xa , is calculated as:

xa5n1k 11exp
c2U21ðaÞ

d

� �� �21

(A6)

where U21 is the inverse of U.

The rth statistical moment around zero, l0r, of Johnson SB is a transcendental quantity not so easy to
calculate,

l0r5
1ffiffiffiffiffiffi
2p
p

ð1
21

e21
2z2

11expð2ðz2cÞ=dÞÞ2r dz r51; 2; . . .ð (A7)

where z is a unit normal variable. Johnson [1949] proposed a method for the estimation of the first four
moments around 0. At first, an algebraic simplified formula of l01 has been derived starting from the general
l0r integral. Then, the higher moments l02; l03, and l04 can be expressed in terms of the partial derivatives of
the l01 with respect to the parameter c. Alternatively, a recurrence formula, which emphasizes the depend-
ence of l0k on c and d, has also been derived. Through its use, it is possible to evaluate the first four noncen-
tral moments. The passage between raw and central moments can be easily done [see e.g., Kottegoda and
Rosso, 2008].

In this work the central moments, br, of the Johnson SB distribution are calculated numerically using a
Monte Carlo approach.

Appendix B: Maximum Likelihood Parameters Estimation

We use the Maximum Likelihood (ML) method to estimate the parameters of the Johnson SB, Gamma and
Lognormal. Regarding Gamma and Lognormal, the ML estimation of the parameters is implemented
through the use of the R package ‘‘MASS’’ and the function fitdistr [see Venables and Ripley, 2002]. The same
package is also used to calculate the six central moments which are necessary to obtain the couples of the
mean-variance, skewness-kurtosis, and b5–b6 planes. The ML parameters estimation for the Johnson SB is
trickier, because a function like the previous one concerning this distribution is not available until now. The
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problem is solved as follows. Starting from the density function of the Johnson SB, equation (1), the log-
likelihood function can be written as:

L�5NlnðkÞ1NlnðdÞ1Nlnð2pÞ21=2
2Nc2=22

X
lnðxi2nÞ

2
X

lnðn1k2xiÞ2cd
X

lnðxi2nÞ1cd
X

lnðn1k2xiÞ

2ðd2=2Þ
X
½lnðxi2nÞ2lnðn1k2xiÞ�2

(B1)

where
P

stands for
PN

i51 and N is the number of observations in the data set. Taking the partial derivatives
respect to the parameters and equating these to zero, a system of four equations is obtained [see Kotte-
goda, 1987]. In practice the R function optim has been adopted, with the assumption of specified initial val-
ues (nstart and kstart). Being the Johnson SB a bounded distribution in the interval ½n; n1k� and being the
DSDs physically bounded below and above by the minimum and maximum drops diameter, Dmin and Dmax,
the initial values of n and k are chosen sufficiently below and above the lowest and the highest sample
observations, respectively. Thus, nstart is set equal to ðDmin2e1Þ and kstart is set equal to ðDmax2nstart1e2Þ,
where e1 and e2 are two arbitrarily small quantities.

Appendix C: Analyses at 2, 3, and 5 Min Temporal Aggregation

With the aim of proving the generality of the proposed Johnson SB model, we have made the analysis of dis-
drometer data observed at longer time intervals, in particular 2, 3, and 5 min temporal aggregations. We do not
go beyond 5 min in order to group together data with the same mean and variance, following Ignaccolo and De
Michele [2010]. Figure 5 shows the skewness-kurtosis plane (the red dots represent the (b3–b4) couples) for the
data sets of Darwin (AM climate). In the figure, there are four plots related to the four aggregation time intervals
(1, 2, 3, and 5 min). The comparison between the plots shows that the increase of the aggregation time does not
generally affect the location of the cloud of points in the (b3–b4) plane. The dots are mainly located in the John-
son SB domain and the percentage of dots inside this area increases with the increase of the aggregation time.

The evaluation of the AIC and BIC indices confirms the outcomes of the skewness-kurtosis plane (see Table 4
related to the data sets of Darwin). For each distribution and each aggregation time, the number of times the
model is selected is reported in percentage, considering both the raw data sets and the data sets with dead time
correction. The table shows that the higher the aggregation time, the higher the Johnson SB percentage is.

Similar results have been obtained with the other seven data sets (both raw and dead time corrected), dem-
onstrating the potentiality of the Johnson SB distribution, which is able to outperform the other two consid-
ered models (namely Gamma and Lognormal) even across different time scales.
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