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1. Introduction

This paper proposes a novel perspective on non equilibrium dissipative evolution of 
open quantum systems within the Markovian approach. In this context, equilibrium 
states are invariant states characterised by a quantum detailed balance condition (see 
[3,5,13,23,25,31]), a natural property generalising classical detailed balance. However, 
a concept that distinguishes, among non equilibrium states, those that on one hand have 
a rich non trivial structure and, on the other hand, are sufficiently simple to allow a 
detailed study, is still missing.

Entropy production has been proposed in several papers [8,9,12,21,24,27] as an 
index of deviation from detailed balance related with a rate of entropy variation. In [15] 
we proposed a definition of entropy production rate for faithful normal invariant states 
of quantum Markov semigroups analogous to those introduced for classical Markov 
semigroups in models for interacting particles.

The entropy production is defined in [15] as the relative entropy of the one-step 
forward and backward two-point states at time t (Definition 3 here) obtained from a 
maximally entangled state deformed by means of the given invariant state (see (11)).



Since it is a function vanishing at t = 0, the entropy production rate is its right derivative
at t = 0.

In this paper, we prove an explicit trace formula for the entropy production in terms
of the completely positive part of the generator of a norm continuous quantum Markov
semigroup (Theorem 5). Our formula shows that non zero entropy production is closely
related with the violation of quantum detailed balance conditions and singles out states
with finite entropy production as a rich class of simple non equilibrium invariant states.
Moreover, it provides an operator analogue (Theorem 8a) of a necessary condition for
finiteness of classical entropy production in terms of transition intensities, namely γ jk >

0 if and only γk j > 0.
The plan of the paper is as follows. In Sect. 2 quantum detailed balance conditions are

reviewed and the key result on the structure of generators is recalled. The forward and
backward two-point are introduced in Sect. 3, starting from quantum detailed balance
conditions, and their densities are computed. Entropy production is defined in Sect. 4
and the explicit formula is proved in Sect. 5. Three examples illustrating how entropy
production indicates deviation from detailed balance are presented in Sect. 7.

Finally, we discuss some features of our results and possible directions for further
investigation.

2. Quantum Detailed Balance Conditions

Let A be a von Neumann algebra with a faithful normal stateω and identity 1l. A quantum
Markov semigroup (QMS) on A is a weakly∗-continuous semigroup T = (Tt )t≥0 of
normal, unital, completely positive maps on A. The predual semigroup on A∗ will be
denoted by T∗ = (T∗t )t≥0.

The state ω is invariant if ω(Tt (a)) = ω(a) for all a ∈ A and t ≥ 0. A number of
conditions called quantum detailed balance (QDB) conditions have been proposed in the
literature to distinguish, among invariant states, those enjoying reversibility properties.

The first one, to the best of our knowledge, appeared in the work of Agarwal [3]
in 1973. Later extended and studied in detail by Majewski [25], it involves a revers-
ing operation Θ : A → A, namely a linear ∗-map (Θ(a∗) = Θ(a)∗ for all a ∈ A),
that is also an antihomomorphism (Θ(ab) = Θ(b)Θ(a) ) and satisfies Θ2 = I , where
I denotes the identity map on A. A QMS satisfies the Agarwal-Majewski QDB con-
dition if ω (aTt (b)) = ω (Θ(b)Tt (Θ(a))), for all a, b ∈ A. If the state ω is invari-
ant under the reversing operation, i.e. ω(Θ(a)) = ω(a) for all a ∈ A, as we shall
assume throughout the paper, this condition can be written in the equivalent form
ω (aTt (b)) = ω ((Θ ◦ Tt ◦Θ)(a)b) for all a, b ∈ A. Therefore the Agarwal-Majewski
QDB condition means that maps Tt admit dual maps coinciding with Θ ◦ Tt ◦Θ for all
t ≥ 0; in particular dual maps must be positive since Θ is obviously positivity preserv-
ing. The map Θ often appears in the physical literature (see e.g. Talkner [31] and the
references therein) as a parity map; a self-adjoint a is an even (resp. odd) observable if
Θ(a) = a (resp. Θ(a) = −a).

When A = B(h), the von Neumann algebra of all bounded operators on a complex
separable Hilbert space h, as it is often the case for open quantum systems, the typicalΘ
is given byΘ(a) = θa∗θ where θ is the conjugation with respect to a fixed orthonormal
basis (en)n≥0 of h acting as

θ

( ∑
n≥0

unen

)
=

∑
n≥0

ūnen . (1)
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The operator θ , however, can be any antiunitary (〈θv,  θu〉 = 〈u, v〉 for all u, v  ∈ h) 
such that θ2 = 1l. Moreover, from ω(θa∗θ)  = ω(a), letting ρ denote the density of 
ω and denoting by tr (·) the trace on h, the linear operator θρθ being self-adjoint by 
〈v, θρθu〉 = 〈ρθu, θv〉 = 〈θu, ρθv〉 = 〈θρθv, u〉, we have

tr (ρa) = tr
(
ρθa∗θ

) =∑
n

〈
en, ρθa∗θen

〉 =∑
n

〈
θρθa∗(θen), (θen)

〉 = tr (θρθa)

for all a ∈ A, thus ρ = θρθ , i.e. θ commutes with ρ. This assumption is reasonable
because ρ is often a function of energy which is an even observable, therefore it applies
throughout the paper.

The best known QDB notion, however, is due to Alicki [5,6] and Kossakowski et al.
[23]. According to these authors, the QDB holds if there exists a dual QMS T̃ = (

T̃t
)

t≥0

on A such that ω (aTt (b)) = ω
(
T̃t (a)b

)
and the difference of generators L and L̃ is a

derivation.
Both the above QDB conditions depend in a crucial way from the bilinear form

(a, b)→ ω(ab). Indeed, when they hold true, all positive maps Tt admit positive dual
maps; as a consequence, all the maps Tt must commute with the modular group (σωt )t∈R
associated with the pair (A, ω) (see [23] Prop. 2.1, [26] Prop. 5). This algebraic restriction
is unnecessary if we consider the bilinear form (a, b) → ω

(
σi/2(a)b

)
introduced by

Petz [29] in the study of Accardi-Cecchini conditional expectations. In this way, as noted
by Goldstein and Lindsay (see [11,19]), one can define dual QMS, also when maps Tt
do not commute with the modular group. Dual QMS defined in this way are called
KMS-duals in contrast with GNS-duals defined via the bilinear form (a, b)→ ω (ab).

QDB conditions arising when we consider KMS-duals instead of GNS-duals are
called standard (see e.g. [13,17]); we could not find them in the literature, but it seems
that they belong to the folklore of the subject. In particular, they were considered by R.
Alicki and A. Majewski (private communication).

Definition 1. Let T be a QMS with a dual QMS T ′ satisfying ω
(
σi/2(a)Tt (b)

) =
ω

(
σi/2

(
T ′t (a)

)
b
)

for all a, b ∈ A, t ≥ 0. The semigroup T satisfies:

1. the standard quantum detailed balance condition with respect to the reversing oper-
ation Θ (SQBD-Θ) if T ′t = Θ ◦ Tt ◦Θ for all t ≥ 0,

2. the standard quantum detailed balance condition (SQDB) if the difference of gener-
ators L− L′ of T and T ′ is a densely defined derivation.

It is worth noticing here that the above standard QDB conditions coincide with the
Agarwal-Majewski and Alicki-Gorini-Kossakowski-Frigerio-Verri respectively when
the QMS T commutes with the modular group (σt )t∈R associated with the pair (A, ω)
(see, e.g., [11,26] and [16,17] for A = B(h)).

In the present paper we concentrate on QMS on B(h) which are the most frequent
for open quantum systems. All states will be assumed to be normal and identified with
their densities. In particular, ω(x) = tr (ρ x), σt (x) = ρit xρ−it and the KMS duality
reads

tr
(
ρ1/2 a ρ1/2 Tt (b)

)
= tr

(
ρ1/2 T ′t (a) ρ1/2b

)
. (2)

The map Θ will be the reversing operation Θ(x) = θx∗θ where θ is the antiunitary
conjugation (1) with respect to some basis and the T -invariant state ρ will be assumed
to commute with θ . A Gram-Schmidt process shows that it is always possible to find



such an orthonormal basis (e j ) j≥1 of h of eigenvectors of ρ that are also θ -invariant
(see Proposition 7 here).

First we recall the well-known result ([28] Theorem 30.16).

Theorem 1. Let L be the generator of a norm-continuous QMS on B(h) and let ρ be
a normal state on B(h). There exists a bounded self-adjoint operator H and a finite or
infinite sequence (L�)�≥1 of elements of B(h) such that:

(i) tr(ρL�) = 0 for all � ≥ 1,
(ii)

∑
�≥1 L∗�L� is a strongly convergent sum,

(iii) if (c�)�≥0 is a square-summable sequence of complex scalars and c01l+
∑
�≥1 c�L� =

0 then c� = 0 for all � ≥ 0,
(iv) the following representation of L holds

L(x) = i[H, x] − 1

2

∑
�≥1

(
L∗�L�x − 2L∗�x L� + x L∗�L�

)
(3)

If H ′, (L ′�)�≥1 is another family of bounded operators in B(h) with H ′ self-adjoint
and the sequence (L ′�)�≥1 is finite or infinite, then the conditions (i)–(iv) are fulfilled
with H, (L�)�≥1 replaced by H ′, (L ′�)�≥1 respectively if and only if the lengths of the
sequences (L�)�≥1, (L ′�)�≥1 are equal and for some scalar c ∈ R and a unitary matrix
(u�j )�j we have

H ′ = H + c, L ′� =
∑

j

u�j L j .

Formula (3) with operators L� satisfying (ii) and H self-adjoint gives a GKSL (Gorini-
Kossakowski-Sudarshan-Lindblad) representation of L. A GKSL representation of L by
means of operators L�, H satisfying also conditions (i) and (iii) will be called special.

As an immediate consequence of uniqueness (up to a scalar) of the Hamiltonian
H , the decomposition of L as the sum of the derivation i[H, ·] and a dissipative part
L0 = L−i[H, · ] determined by special GKSL representations of L is unique. Moreover,
since (u�j ) is unitary, we have

∑
�≥1

(
L ′�

)∗
L ′� =

∑
�,k, j≥1

ū�ku�j L∗k L j =
∑

k, j≥1

⎛
⎝∑
�≥1

ū�ku�j

⎞
⎠ L∗k L j =

∑
k≥1

L∗k Lk .

Therefore, putting G = − 1
2

∑
�≥1 L∗�L� − i H , we can write L in the form

L(x) = G∗x +
∑
�≥1

L∗�x L� + xG (4)

where G is uniquely determined by L up to a purely imaginary multiple of the identity
operator.

The unitary matrix (u�j )�j can obviously be realised as a unitary operator on a Hilbert
space k, called the multiplicity space with Hilbertian dimension equal to the length of the
sequence (L�)�≥1 which is also uniquely determined by L by the minimality condition
(iii).

In [17] (Theorems 5, 8 and Remark 4) we proved the following characterisations of
QMS satisfying a standard QDB condition.



Theorem 2. A QMS  T satisfies the SQDB if and only if for any special GKSL represen-
tation of the generator L by means of operators G, L� there exists a unitary (um�)m� on 
k which is also symmetric (i.e. um� = u�m for all m, �) such that, for all k ≥ 1,

ρ1/2 L∗k =
∑
�

uk�L�ρ
1/2. (5)

Theorem 3. A QMS T satisfies the SQBD-Θ condition if and only if for any special
GKSL representation of L by means of operators G, L�, there exists a self-adjoint unitary
(ukj )k j on k such that:

1. ρ1/2θG∗θ = Gρ1/2,
2. ρ1/2θL∗kθ =

∑
j uk j L jρ

1/2 for all k ≥ 1.

The SQBD-Θ condition is more restrictive than the SQDB condition because it
involves also the identity ρ1/2θG∗θ = Gρ1/2 (see Example 7.3). However, this does not
happen if θG∗θ = G and ρ commutes with G. This is a reasonable physical assumption
satisfied by many QMS as, for instance, those arising from the stochastic limit (e.g.
[2,13]).

The following result shows that, condition 2 alone, only implies that the difference
L′−Θ◦L◦Θ is a derivation (as in Alicki et al. QDB conditions) and clarifies differences
between Theorems 2 and 3.

Theorem 4. Let T be a QMS with generator L in a special GKSL form by means of
operators G, L�. Assume that ρ1/2θL∗kθ =

∑
j uk j L jρ

1/2, for all k ≥ 1, for a self-
adjoint unitary (ukj )k j on k. Then

L′(x)− (Θ ◦ L ◦Θ) (x) = i [K , x] (6)

with K self-adjoint commuting with ρ.

Proof. Let T ′ be the dual QMS of T as in (2). Since

L′(x) = ρ−1/2L∗
(
ρ1/2xρ1/2

)
ρ−1/2,

comparing special GKSL of L and L′ (as in [17] Theorem 4), given a special GKSL
representation of L we can find a special GKSL representation of L′ by means of G ′,
L ′� such that

G ′ = ρ1/2G∗ρ−1/2, L ′� = ρ1/2 L∗�ρ−1/2. (7)

By condition (2.) of Theorem 3 and unitarity of (u�k)�k we have∑
�

L ′∗� x L ′� =
∑
�

ρ−1/2 L�ρ
1/2xρ1/2 L∗�ρ−1/2

=
∑
�, j,k

ū�j u�kθL∗kθxθL jθ

=
∑

k

θL∗kθxθLkθ.

It follows that L′ admits the special GKSL representation

L′(x) = G ′∗x +
∑
�

θL∗�θxθL�θ + xG ′ (8)

by means of G ′ and the operators θLkθ .



We now check that G ′ − θGθ is anti-selfadjoint. Clearly, by the first identity (7), it
suffices to check that ρ1/2

(
G ′ − θGθ

)
ρ1/2 = ρG∗ − ρ1/2θGθρ1/2 is anti-selfadjoint.

The state ρ is an invariant state for T∗, thus L∗(ρ) = 0. The duality (2) with b = 1l
shows that ρ is also invariant for T ′∗ , then L′∗(ρ) = 0, and we find from (8)

ρG∗ + Gρ = θL′∗(ρ)θ −
∑
�

L�ρL∗� = ρθG ′∗θ + θG ′θρ.

Taking into account the identity G ′ρ = ρ1/2G∗ρ1/2 we find that

ρG∗ + Gρ = ρ1/2θGθρ1/2 + ρ1/2θG∗θρ1/2,

namely

ρG∗ − ρ1/2θGθρ1/2 = ρ1/2θG∗θρ1/2 − Gρ = −
(
ρG∗ − ρ1/2θGθρ1/2

)∗
.

It follows that L′ − (Θ ◦ L ◦Θ) = i[K , ·] with K selfadjoint commuting with ρ
since L∗(ρ) = L′∗(ρ) = 0. 
�

The SQDB condition without reversing operation (Definition 1) might be paralleled
with reversing operation, requiring (6), however, we could not find this QDB condition
in the literature.

3. Forward and Backward Two-Point States

We now introduce the two-point forward and backward states.

Definition 2. The forward two-point state is the normal state on B(h)⊗ B(h) given by

−→
Ω t (a ⊗ b) = tr

(
ρ1/2θa∗θρ1/2Tt (b)

)
, a, b ∈ B(h); (9)

the backward two-point state is the normal state on on B(h)⊗ B(h) given by

←−
Ω t (a ⊗ b) = tr

(
ρ1/2θTt (a

∗)θρ1/2b
)
, a, b ∈ B(h). (10)

It is clear that both
−→
Ω t and

←−
Ω t are normalised linear functionals on B(h) ⊗ B(h)

since θ(za)∗θ = θ z̄a∗θ = zθa∗θ , for all z ∈ C and all a ∈ B(h). They are positive and
normal by the following proposition also giving their densities.

Proposition 1. Let ρ = ∑
j ρ j

∣∣e j
〉 〈

e j
∣∣ be a spectral decomposition of ρ. The density

of states
−→
Ω 0 =←−Ω 0 is the rank one projection

D = |r〉 〈r | , r =
∑

j

ρ
1/2
j θe j ⊗ e j (11)

The densities of the forward and backward states are respectively

−→
D t = (I ⊗ T∗t )(D),

←−
D t = (T∗t ⊗ I )(D). (12)



Proof. For all a, b ∈ B(h) we have

〈r, (a ⊗ b)r〉 =
∑
j,k

(
ρ jρk

)1/2 〈
θe j ⊗ e j , (a ⊗ b)θek ⊗ ek

〉

=
∑
j,k

(
ρ jρk

)1/2 〈
θe j , aθek

〉 〈
e j , bek

〉

=
∑
j,k

(
ρ jρk

)1/2 〈
θaθek, e j

〉 〈
e j , bek

〉

=
∑

k

ρ
1/2
k

〈
θaθek, ρ

1/2bek

〉

=
∑

k

〈
θaθρ1/2ek, ρ

1/2bek

〉

= tr
(
ρ1/2θa∗θρ1/2b

)
.

Formulae (12) follow immediately from

−→
Ω t (a ⊗ b) = −→Ω 0 (a ⊗ Tt (b)) ,

←−
Ω t (a ⊗ b) =←−Ω 0 (Tt (a)⊗ b).

The entropy production will be defined in the next section by means of the relative
entropy of the forward and backward two-point states.

Remark 1. Note that, when h = C
d and θe j = e j for all j , we have

|r〉 〈r | =
(
ρ1/2 ⊗ 1l

) ⎛
⎝ d∑

j,k=1

∣∣e j ⊗ e j
〉 〈ek ⊗ ek |

⎞
⎠ (

ρ1/2 ⊗ 1l
)

(and the same formula replacing ρ1/2⊗1l by 1l⊗ρ1/2). Therefore |r〉 〈r |may be viewed
as a ρ deformation of a maximally entangled state and

−→
D t ,
←−
D t are the image of I ⊗T∗t ,

T∗t ⊗ I under the Choi-Jamiołkowski isomorphism.

Remark 2. Operators θx∗θ can be thought of as elements of the opposite algebra B(h)o
of B(h). Indeed, recall that B(h)o is in one-to-one correspondence with B(h) as a set
via the trivial identification x → xo, has the same vector space structure, involution
and norm but the product � is given by xo � yo = (yx)o. Therefore, the linear map
Θ : B(h)→ B(h)o defined by x → θx∗θ is a ∗-isomorphism of B(h) onto B(h)o since

Θ(x)�Θ(y) = θx∗θ � θy∗θ = θy∗θθx∗θ = θ(xy)∗θ = Θ(xy).

ClearlyΘ⊗ I : B(h)⊗B(h)→ B(h)o⊗B(h) is a ∗-isomorphism. This remark is useful
for defining entropy production as an index measuring deviation from standard detailed
balance without time reversal in a similar way. One can define the state

−→
Ω ′0 =

←−
Ω ′0 on

B(h)o ⊗ B(h) by

−→
Ω ′0(x ⊗ y) = tr

(
ρ1/2xρ1/2 y

)



Note that element Z of B(h)o⊗B(h) is “positive” if and only if (Θ ⊗ I )(Z) is positive
in B(h)⊗ B(h) because Θ ⊗ I is a ∗-isomorphism and (Θ ⊗ I )2 is the identity map.

We can define the entropy production again considering the relative entropy of
−→
D t

and
←−
D t but now viewed as densities of states on B(h)o ⊗ B(h).

We finish this section with a couple of useful properties of r .

Proposition 2. The vector r is cyclic and separating for subalgebras 1l ⊗ B(h) and
B(h)⊗ 1l.

Proof. Let X ∈ B(h) and let ρ = ∑
j ρ j

∣∣e j
〉 〈

e j
∣∣ be a spectral decomposition of ρ.

Then (1l⊗ X)r = 0 if and only if
∑

j ρ
1/2
j θe j ⊗ (Xe j ) = 0, i.e. Xe j = 0 for all j since

ρ j > 0 and vectors θe j are linearly independent. It follows that X = 0.
The same argument shows that r is also separating for B(h) ⊗ 1l. Therefore it is

cyclic for 1l⊗B(h) and B(h)⊗ 1l because these subalgebras of B(h)⊗B(h) are mutual
commutants. 
�
Proposition 3. An operator X ∈ B(h) satisfies tr (ρX) = 0 if and only if (1l⊗ X)r and
(X ⊗ 1l)r are orthogonal to r in h⊗ h.

Proof. Immediate from 〈r, (1l⊗ X)r〉 = 〈r, (X ⊗ 1l)r〉 = tr (ρX). 
�

4. Entropy Production for a QMS

In the sequel Tr (·) denotes the trace on h⊗ h.
The relative entropy of

−→
Ω t with respect to

←−
Ω t is given by

S
(−→
Ω t ,
←−
Ω t

)
= Tr

(−→
D t

(
log
−→
D t − log

←−
D t

))
,

if the support of
−→
Ω t is included in that of

←−
Ω t and +∞ otherwise.

Definition 3. The entropy production rate of a QMS T and invariant state ρ is defined
by

ep(T , ρ) = lim sup
t→0+

S
(−→
Ω t ,
←−
Ω t

)
t

(13)

Remark 3. The entropy production rate (entropy production for short) ep(T , ρ) is clearly

non-negative. It coincides with the right derivative of S
(−→
Ω t ,
←−
Ω t

)
at t = 0, if the limit

exists, since S
(−→
Ω 0,
←−
Ω 0

)
= 0. Moreover, ep(T , ρ) vanishes if the SQBD-Θ (or the

SQDB viewing
−→
Ω t and

←−
Ω t as states on B(h)o ⊗ B(h)) holds.

Under the assumptions of Theorem 5, the entropy production formula (16) we are
going to prove, shows that, if ep(T , ρ) = 0, then the SQDB condition holds as well
as the SQBD-Θ condition if θG∗θ = G and ρθ = θρ. A counterexample in Sect. 7.3
shows that SQBD-Θ may fail without these commutation assumptions even if ep(T , ρ)
is zero.

Our definition gives a true non-commutative analogue of entropy production for clas-
sical Markov semigroups [12]. We refer to [15] subsection 2.2 for a detailed discussion.



Besides this, we have chosen the quantum relative entropy because it is a natural
measure of distinguishability between the two quantum states

−→
Ω t ,
←−
Ω t . Moreover, it

has been extensively used in the physical literature in the study of non-equilibrium (see
e.g. [8,9,21,24] and the references therein). Deviation from detailed balance can be
measured also by some distance of the above quantum states. In [4] a distance extending
the classical Wasserstein distance to a non-commutative algebra was used instead of
quantum relative entropy.

Proposition 4. Let
−→
D t and

←−
D t be the densities of the forward and backward two-point

states as in (12). The following are equivalent:

(a)
−→
D t =←−D t , for all t ≥ 0,

(b) (I ⊗ L∗)(D) = (L∗ ⊗ I )(D).

Proof. Clearly (a) implies (b) by differentiation at time t = 0.
Conversely, if (b) holds, since I ⊗ L∗ and L∗ ⊗ I commute, we have

(I ⊗ L∗)2(D) = (I ⊗ L∗)(L∗ ⊗ I )(D) = (L∗ ⊗ I )(I ⊗ L∗)(D) = (L∗ ⊗ I )2(D).

Thus, by induction, we find (I ⊗ L∗)n(D) = (L∗ ⊗ I )n(D), for all n ≥ 1, so that

−→
D t =

∑
n≥0

tn

n! (I ⊗ L∗)n(D) =
∑
n≥0

tn

n! (L∗ ⊗ I )n(D) =←−D t ,

for all t ≥ 0 and (a) is proved.

The following proposition shows, in particular, that the relative entropy of the forward
and backward two-point state is symmetric.

Proposition 5. The relative entropy of
−→
Ω t with respect to

←−
Ω t satisfies

S
(−→
Ω t ,
←−
Ω t

)
= 1

2
Tr

((−→
D t −←−D t

) (
log
−→
D t − log

←−
D t

))
. (14)

In particular, if S
(−→
Ω t ,
←−
Ω t

)
is finite, then the densities

−→
D t ,
←−
D t have the same support.

Proof. Let F be the unitary flip operator on h ⊗ h defined by Fe j ⊗ ek = ek ⊗ e j .

Noting that F
−→
D t F =←−D t and then F log

(−→
D t

)
F = log

(←−
D t

)
, we have

S
(−→
Ω t ,
←−
Ω t

)
= Tr

(
F
−→
D t

(
log
−→
D t − log

←−
D t

)
F

)

= Tr
(
−←−D t

(
log
−→
D t − log

←−
D t

))

Therefore

2S
(−→
Ω t ,
←−
Ω t

)
= Tr

(−→
D t

(
log
−→
D t − log

←−
D t

))
+ Tr

(
−←−D t

(
log
−→
D t − log

←−
D t

))

and (14) follows.

If S
(−→
Ω t ,
←−
Ω t

)
is finite, then the support supp(

−→
D t ) of

−→
D t is contained in the support

supp(
←−
D t ) of

←−
D t . By the identity F

−→
D t F =←−D t , we have then

supp(
←−
D t ) = F supp(

−→
D t )F ⊆ F supp(

←−
D t )F = supp(

−→
D t ),

and the proof is complete. 
�



Proposition 5 shows that the first step towards the computation of the entropy pro-
duction is to check if

−→
D t and

←−
D t have the same support for t in a right neighbourhood

of 0. This is a somewhat technical point (as in the classical case [12]) if both
−→
D t and←−

D t do not have full support. In Sect. 6 we develop a simple method for solving this
problem.

5. Entropy Production Formula

In this section we establish our entropy production formula under the following assump-
tion on supports of the forward and backward state.

(FBS) Supports of
−→
D t and

←−
D t coincide and are finite dimensional.

By the definition of relative entropy and Proposition 5, this condition is necessary
and sufficient for the relative entropy S(

−→
D t ,
←−
D t ) to be finite for t > 0 when h is finite

dimensional. In this case, if (FBS) does not hold, then S(
−→
D t ,
←−
D t ) = +∞ for all t > 0

and S(
−→
D 0,
←−
D 0) = 0 and the entropy production rate (13) obviously is infinite. This

difficulty does not arise for the classical entropy production rate as defined in [12].
Indeed, if the invariant state ρ is faithful, then the initial density

−→
D 0 =←−D 0 is also, and

the forward and backward state are faithful for t ≥ 0. This assumption is too restrictive
in our non-commutative framework because the initial densities, here, are pure.

If h is infinite dimensional, condition (FBS) ensures that the relative entropy S(
−→
D t ,←−

D t ) is finite for all t > 0, a preliminary step in the attempt to compute its right derivative
at t = 0. Indeed, in this case, even if the supports of

−→
D t and

←−
D t coincide, but are not finite

dimensional, it is not clear whether the relative entropy is finite and, apparently, another
condition is needed to ensure finiteness of S(

−→
D t ,
←−
D t ) for t in a right neighbourhood

of 0.
Finite dimensionality turns out to be extremely useful for the application of results in

perturbation theory because supports of
−→
D t and

←−
D t may vary with t even if they coincide

and are finite dimensional. A simple example arises when we consider a semigroup
(Tt )t≥0 of automorphisms of B(h) with L� = 0 for all � and a non-zero self-adjoint
operator H . Any faithful density ρ commuting with H provides a faithful invariant
state.

Let
−→
Φ ∗ and

←−
Φ ∗ be the linear maps on trace class operators on h⊗ h

−→
Φ ∗(X) =

∑
�

(1l⊗ L�) X
(
1l⊗ L∗�

)
,
←−
Φ ∗(X) =

∑
�

(L� ⊗ 1l) X
(
L∗� ⊗ 1l

)
(15)

where L� are the operators of a special GKSL representation of L. Recall that, by
Proposition 3, (1l⊗ L�) r and (L� ⊗ 1l) r are orthogonal to r .

Theorem 5. Let T be a norm continuous QMS on B(h)with a faithful, normal invariant
state ρ. Under the assumption (FBS) the entropy production is

ep(T , ρ) = 1

2
Tr

((−→
Φ ∗(D)−←−Φ ∗(D)

) (
log

(−→
Φ ∗(D)

)
− log

(←−
Φ ∗(D)

)))
. (16)



The rest of this section is devoted to proving (16).
Let St denote this common finite dimensional (k + 1 dimensional, say) support of

−→
D t

and
←−
D t . Since

←−
D t = F

−→
D t F , for all t , we can write spectral decompositions

−→
D t =

k∑
�=0

λ�(t)
−→
E �(t),

←−
D t =

k∑
�=0

λ�(t)
←−
E �(t), (17)

where λ�(t) are common eigenvalues and all spectral projections satisfy

←−
E �(t) = F

−→
E �(t) F

for all t ≥ 0. Moreover, since St is (k + 1)-dimensional for all t > 0, we have λ�(t) > 0
for all t > 0 and � = 0, 1, . . . , k.

It is well known that, by deep results in finite-dimensional perturbation theory, Rel-
lich’s theorem and its consequences (see e.g. Kato[22], Theorem 6.1 p. 120, Reed and
Simon[30] Theorems XII.3 p. 4, XII.4 p. 8 and concluding remark), that we can choose

t → λ�(t), t →−→E �(t)

as single-valued analytic functions of t for t in a neighbourhood of 0. Moreover, noting
that both

−→
D t and

←−
D t converge in trace norm to D as t tends to 0 and 1 is a simple

eigenvalue of D, we can suppose, relabeling indexes if necessary, that

lim
t→0

λ0(t) = 1, lim
t→0

−→
E 0(t) = lim

t→0

←−
E 0(t) = D. (18)

The difference log
(−→

D t

)
− log

(←−
D t

)
is a bounded operator on St and we can de-

fine it as 0 on the orthogonal complement of St . Moreover, denoting log
(−→

D t

) ∣∣
St

and

log
(←−

D t

) ∣∣
St

restrictions to St , we can prove the following

Lemma 1. There exists constants c > 0, t+ > 0 and m ∈ N such that∥∥∥log
(−→

D t

) ∣∣
St

∥∥∥ ≤ c − m log(t),
∥∥∥log

(←−
D t

) ∣∣
St

∥∥∥ ≤ c − m log(t)

for all t ∈ ]0, t+].
Proof. Recall that functions t → λ�(t) are analytic and strictly positive in a right
neighbourhood of 0. For each �, let m� be the order of the first non-zero (hence strictly
positive) derivative of t → λ�(t) at t = 0. There exists ε� ∈]0, 1[ and t� > 0 such that
λ�(t) ≥ ε�tm� for all t ∈]0, t�]. Putting

ε = min
0≤�≤k

ε�, m = max
0≤�≤k

m�, t+ = min
0≤�≤k

t�

we find then the inequality λ�(t) ≥ ε�tm� ≥ ε tm for all � and t ∈]0, t+]. Therefore we
have

−→
D t

∣∣
St
≥ εtm1lSt

where 1lSt is the orthogonal projection onto St , and the norm estimate follows.

The proof for
←−
D t is identical. 
�



We now start computing the limit of

t−1Tr
((−→

D t −←−D t

) (
log
−→
D t − log

←−
D t

))
(19)

for t → 0+. As a first step note that

lim
t→0+

t−1
(−→

D t −←−D t

)
= (I ⊗ L∗)(D)− (L∗ ⊗ I )(D)

in trace norm. Moreover, denoting ‖·‖1 the trace norm
∥∥∥t−1

(−→
D t −←−D t

)
− ((I ⊗ L∗)(D)− (L∗ ⊗ I )(D))

∥∥∥
1

is infinitesimal of order at most t for t tending to 0, therefore the modulus of the difference
of (19) and

Tr
(
((I ⊗ L∗)(D)− (L∗ ⊗ I )(D))

(
log
−→
D t − log

←−
D t

))
, (20)

by Lemma 1 is not bigger than a constant times (c − m log(t))t and goes to 0 for t
tending to 0+.

It suffices then to compute the limit of (20) for t tending to 0+.
We first analyse the behaviour of the 0-th term of (17).

Lemma 2. The following limits hold:

lim
t→0+

t−1
(
λ0(t)
−→
E 0(t)− D

)
= |(1l⊗ G)r〉 〈r | + |r〉 〈(1l⊗ G)r | (21)

lim
t→0+

t−1
(
λ0(t)
←−
E 0(t)− D

)
= |(G ⊗ 1l)r〉 〈r | + |r〉 〈(G ⊗ 1l)r | (22)

Proof. The proof is the same for
−→
E 0(t) and

←−
E 0(t), therefore we consider

−→
E 0(t) drop-

ping the arrows and writing L∗(D) instead of (I ⊗ L∗)(D) for notational convenience.
Let t0 > 0 be sufficiently small such that Dt has only the simple eigenvalue λ0(t) in

[3/4, 1] and all other eigenvalues in [0, 1/4] for all t ∈ [0, t0[. By well known formulae
(see e.g. [22] Ch. I) for spectral projections, for t small enough we have

E0(t) = 1

2π i

∫
C
(ζ − Dt )

−1 dζ, D = 1

2π i

∫
C
ζ (ζ − D)−1 dζ,

λ0(t)E0(t) = 1

2π i

∫
C
ζ (ζ − Dt )

−1 dζ

where C is the circle {z ∈ C | |z − 1| = 1/2 }. Therefore we can write

λ0(t)E0(t)− D

t
= 1

2π i

∫
C

(ζ − Dt )
−1 − (ζ − D)−1

t
ζ dζ (23)

Note that, for all t ∈]0, t0[

t−1
(
(ζ − Dt )

−1 − (ζ − D)−1
)
= t−1 (ζ − Dt )

−1 (Dt − D) (ζ − D)−1



implying the norm estimate

t−1
∥∥∥(ζ − Dt )

−1 − (ζ − D)−1
∥∥∥

1
≤

∥∥∥t−1 (Dt − D)
∥∥∥

1
·
∥∥∥(ζ − Dt )

−1
∥∥∥ · ∥∥∥(ζ − D)−1

∥∥∥ .
Now, since the operators (ζ − Dt )

−1 and (ζ − D)−1 are normal with discrete spectrum,
contained in the union of the intervals [0, 1/4] and [3/4, 1] of the real axis, their norm
is smaller than

sup
ζ∈C, x∈[0,1/4]∪[3/4,1]

|ζ − x |−1 ≤ 4.

Moreover∥∥∥∥ Dt − D

t

∥∥∥∥
1
= 1

t

∥∥∥∥
∫ t

0
T∗s(L∗(D))ds

∥∥∥∥
1
≤ 1

t

∫ t

0
‖L∗(D)‖1 ds = ‖L∗(D)‖1 ,

thus we have

t−1
∥∥∥(ζ − Dt )

−1 − (ζ − D)−1
∥∥∥ ≤ 16 ‖L∗(D)‖1 .

The integrand of (23) converges to ζ (ζ − D)−1 L∗(D) (ζ − D)−1 for t going to 0 thus,
by the dominated convergence theorem, we find

lim
t→0+

λ0(t)E0(t)− D

t
= 1

2π i

∫
C
ζ (ζ − D)−1 L∗(D) (ζ − D)−1 dζ. (24)

The proof of Lemma 2 ends computing the right-hand side. First note that

1

2π i

∫
C
ζ

〈
r, (ζ − D)−1 L∗(D) (ζ − D)−1 r

〉
dζ = 1

2π i

∫
C
〈r,L∗(D)r〉 ζ dζ

(ζ − 1)2

with 〈r,L∗(D)r〉 = 2�〈r,Gr〉 and

1

2π i

∫
C

ζ dζ

(ζ − 1)2
= 1

2π i

∫
C

(ζ − 1) dζ

(ζ − 1)2
+

1

2π i

∫
C

dζ

(ζ − 1)2
= 1

2π i

∫
C

dζ

ζ − 1
= 1

so that

lim
t→0+

1

2π i

∫
C

〈
r, (ζ − D)−1 L∗(D) (ζ − D)−1 r

〉
dζ = 2�〈r,Gr〉. (25)

Second, for all vector v orthogonal to r we have

1

2π i

∫
C
ζ

〈
r, (ζ − D)−1 L∗(D) (ζ − D)−1 v

〉
dζ = 1

2π i

∫
C
〈r,L∗(D)v〉 dζ

ζ − 1
= 〈r,L∗(D)v〉 = 〈Gr, v〉

since r is orthogonal to all (1l⊗ L�)r and (L� ⊗ 1l)r , and, in a similar way,

1

2π i

∫
C

〈
v, (ζ − D)−1 L∗(D) (ζ − D)−1 r

〉
dζ = 〈v,Gr〉 .

Third, for all v, u orthogonal to r

1

2π i

∫
C

〈
v, (ζ − D)−1 L∗(D) (ζ − D)−1 u

〉
dζ = 1

2π i

∫
C
〈v,L∗(D)u〉 dζ

ζ
= 0

because ζ → ζ−1 is holomorphic on the half plane containing C .
This completes the proof. 
�



Lemma 3. The following limits hold:

lim
t→0+

k∑
�=1

t−1λ�(t)
−→
E �(t) = −→Φ ∗(D), lim

t→0+

k∑
�=1

t−1λ�(t)
←−
E �(t) =←−Φ ∗(D)

Moreover there exists a special GKSL representation of L such that λ′�(0) =
∥∥∥−→L �r

∥∥∥2 =∥∥∥←−L �r
∥∥∥2

for � = 1, . . . , d and

lim
t→0+

−→
E �(t) =

∣∣∣−→L � r
〉 〈−→

L � r
∣∣∣∥∥∥−→L � r

∥∥∥2 , lim
t→0+

←−
E �(t) =

∣∣∣←−L � r
〉 〈←−

L � r
∣∣∣∥∥∥←−L � r

∥∥∥2

for all � = 1, . . . , d.

Proof. The first identities follow immediately from Lemma 2 writing

k∑
�=1

t−1λ�(t)
−→
E �(t) = t−1

(−→
D t − D

)
− t−1

(−→
E 0(t)− D

)

and recalling that t−1
(−→

D t − D
)

converges to (I ⊗ L∗)(D). Moreover, note that the

d × d matrix C with c jk =
〈−→

L jr,
−→
L kr

〉
= tr

(
ρL∗j Lk

)
=

〈←−
L jr,
←−
L kr

〉
is self-adjoint.

Let U = (u jk)1≤ j,k≤d be a d × d unitary matrix such that U∗CU is diagonal and
consider the new special GKSL representation of L obtained replacing the operators L�
by

∑
h uh�Lh . Now we have

〈−→
L jr,
−→
L kr

〉
=

〈←−
L jr,
←−
L kr

〉
=

∑
1≤h,m≤d

ūh j chmumk = (U∗CU ) jk

and vectors
−→
L jr,
−→
L kr are ortogonal.

For all j with 1 ≤ j ≤ d , denote v j the normalised vector
−→
L jr/

∥∥∥−→L jr
∥∥∥2

, orthogonal

to r . Clearly we have

lim
t→0+

k∑
�=1

t−1λ�(t)
〈
v j ,
−→
E �(t)vk

〉
=

k∑
�=1

λ′�(0)
〈
v j ,
−→
E �(0)vk

〉

=
〈
v j ,
−→
Φ ∗(D)vk

〉

=
d∑
�=1

〈
v j ,

∣∣∣−→L �r
〉 〈−→

L �r
∣∣∣ vk

〉

for all j, k. Therefore λ′�(0) = 0 for all � = d + 1, . . . , k, λ′�(0) =
∥∥∥−→L �r

∥∥∥2
for all � =

1, . . . , d and E�(t) converges to the orthogonal projection onto v� for all � = 1, . . . , d.



Lemma 4. The following limits hold:

lim
t→0+

Tr
(
|(1l⊗ G)r〉 〈r |

(
log
−→
D t − log

←−
D t

))
= 0

lim
t→0+

Tr
(
|r〉 〈(1l⊗ G)r |

(
log
−→
D t − log

←−
D t

))
= 0

lim
t→0+

Tr
(
|(G ⊗ 1l)r〉 〈r |

(
log
−→
D t − log

←−
D t

))
= 0

lim
t→0+

Tr
(
|r〉 〈(G ⊗ 1l)r |

(
log
−→
D t − log

←−
D t

))
= 0

Proof. Clearly

Tr
(
|(1l⊗ G)r〉 〈r |

(
log
−→
D t − log

←−
D t

))
=

〈(
log
−→
D t − log

←−
D t

)
r, (1l⊗ G)r

〉
.

Writing
(

log
−→
D t − log

←−
D t

)
r as

log(λ0(t))
(−→

E 0(t)r −←−E 0(t)r
)

+
k∑
�=1

log(λ�(t))
(−→

E �(t)r −←−E �(t)r
)

we start noting that, for t → 0+, the first term vanishes because λ0(t) converges to 1.
The other terms also vanish because

−→
E �(t)r and

←−
E �(t)r converge to 0 for all � ≥ 1 by

(18) and are infinitesimal in norm of order t or higher by analyticity. Therefore, since
λ�(t) goes to 0 polynomially, as tm� with m� ≥ 1, say, we have∥∥∥log(λ�(t))

−→
E �(t)r

∥∥∥ ≤ c t |log(λ�(t))| ,
∥∥∥log(λ�(t))

←−
E �(t)r

∥∥∥ ≤ c t |log(λ�(t))|
for some constant c and t small enough. This proves the first identity.

The other follow by repeating the above argument. 
�
Proof. (of Theorem 5) The above Lemma 4 and (20) show that it suffices to compute
the limit for t → 0+ of

Tr
((−→
Φ ∗(D)−←−Φ ∗(D)

) (
log
−→
D t − log

←−
D t

))
, (26)

Note that, since supports of
−→
D t and

←−
D t are equal, we have

k∑
�=0

−→
E �(t) =

k∑
�=0

←−
E �(t)

therefore

k∑
�=0

Tr
((−→
Φ ∗(D)−←−Φ ∗(D)

)
log(t)

(−→
E �(t)−←−E �(t)

))
= 0.

Subtracting this from (26), we can write (26) as

k∑
�=0

Tr

((−→
Φ ∗(D)−←−Φ ∗(D)

)
log

(
λ�(t)

t

) (−→
E �(t)−←−E �(t)

))
.



Now, the term with � = 0 vanishes for t going to 0 since the logarithm diverges as log(t)
but

Tr
((−→
Φ ∗(D)−←−Φ ∗(D)

) (−→
E 0(t)−←−E 0(t)

))

goes to 0 (both
−→
E 0(t)−←−E 0(t) converge to D, a one-dimensional projection orthogonal

to the support of
−→
Φ ∗(D) and

←−
Φ ∗(D) ) and the order of infinitesimal is at least t by

analyticity.

By Lemma 3, log(λ�(t)/t) converges to log
∥∥∥−→L � r

∥∥∥2 = log
∥∥∥−→L � r

∥∥∥2
and each

−→
E �(t)

(resp.
←−
E �(t)) also converges to a spectral projection of

−→
Φ ∗(D) (resp.

←−
Φ ∗(D)). This

completes the proof of Theorem 5. 
�

6. Supports of Forward and Backward States

In this section we prove a couple of characterisations of the support projection of a pure
state evolving under the action of a QMS that turn out to be helpful for determining the
supports of forward and backward densities.

Theorem 6. Let (Tt )t≥0 be a norm continuous QMS on B(h) with generator L as in (3)
and let Pt = etG . For all unit vector u ∈ h and all t ≥ 0, the support projection of the
state T∗t (|u〉 〈u|) is the closed linear span of Pt u and vectors

Ps1 L�1 Ps2−s1 L�2 Ps3−s2 . . . Psn−sn−1 L�n Pt−sn u (27)

for all n ≥ 1, 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn ≤ t and �1, . . . , �n ≥ 1.

Proof. For all t > 0, differentiating with respect to s we have

d

ds
T∗s

(
Pt−s |u〉 〈u| P∗t−s

) =∑
�≥1

T∗s (|Pt−s L�u〉 〈Pt−s L�u|) .

Integrating on [0, t] we find

T∗t (|u〉 〈u|) = |Pt u〉 〈Pt u| +
∑
�≥1

∫ t

0
T∗s (|L�Pt−su〉 〈L�Pt−su|) ds.

Iterating yields

T∗t (|u〉 〈u|) = |Pt u〉 〈Pt u|
+

∑
n≥1

∑
�1,...�n≥1

∫ t

0
dsn . . .

∫ s2

0
ds1

∣∣ut,sn ,...,s1,�1,...,�n

〉 〈
ut,sn ,...,s1,�1,...,�n

∣∣ (28)

where ut,sn ,...,s1,�1,...,�n is the vector given by (27).
Anyv∈h, orthogonal to the support of the stateT∗t (|u〉 〈u|) satisfies 〈v, T∗t (|u〉 〈u|) v〉

= 0. Therefore, since all the terms in (28) are positive operators, it turns out that v must
be orthogonal to all vectors Pt u and all the iterated integrals∫ t

0
dsn . . .

∫ s2

0
ds1

∣∣〈v, Ps1 L�1 Ps2−s1 L�2 Ps3−s2 . . . Psn−sn−1 L�n Pt−sn u
〉∣∣2

vanish. It follows then, from the time continuity of the integrands, that v must be or-
thogonal also to all the vectors of the form (27) and the proof is complete. 
�



We now give another characterisation of the support of T∗t (|u〉 〈u|) in terms of Pt , 
non-commutative polynomials in L� and their multiple commutators with G. Denote
δ0

G (L�) = L�, δG (L�) = [G, L�] , δ2
G (L�) = [G, [G, L�] ] , ...

Theorem 7. Let (Tt )t≥0 be a norm continuous QMS on B(h) with generator L as in (3) 
and let Pt = etG  . For all unit vector u ∈ h and all t > 0, the support projection of the 
state T∗t (|u〉 〈u|) is the linear manifold Pt S(u) where S(u) is the closure of linear span 
of u and

δ
m1
G (L�1)δ

m2
G (L�2) · · · δmn

G (L�n )u (29)

for all n ≥ 1, m1, . . . ,mn ≥ 0 and �1, . . . , �n ≥ 1.

Proof. Let v be a vector orthogonal to the suport of T∗t (|u〉 〈u|). Differentiating

〈
v, Ps1 L�1 Ps2−s1 L�2 Ps3−s2 . . . Psn−sn−1 L�n Pt−sn u

〉 = 0

mk times with respect to sk for all k, we find that v is also orthogonal to Pt S(u).
Conversely, if v ∈ h is orthogonal to Pt S(u), then the analytic function

(s1, . . . , sn)→
〈
v, Ps1 L�1 Ps2−s1 L�2 Ps3−s2 . . . Psn−sn−1 L�n Pt−sn u

〉
,

as well as its extension to C
n

(z1, . . . , zn)→
〈
v, Pz1 L�1 Pz2−z1 L�2 Pz3−z2 . . . Pzn−zn−1 L�n Pt−zn u

〉
,

has all partial derivatives at z1 = · · · = zn = t equal to 0. Thus it is identically equal to
0 and v is orthogonal to the support of T∗t (|u〉 〈u|). 
�

Corollary 1. Let (Tt )t≥0 be a norm continuous QMS on B(h) with generator L as in (3)
and let Pt = etG . For all unit vector u ∈ h the support projection of the state T∗t (|u〉 〈u|)
is independent of t , for t > 0, if and only if the linear manifold S(u) is G-invariant.

Proof. For all u ∈ h, S(u) is L�-invariant for all � ≥ 1 because δ0
G(L�) = L�. If it is

also G-invariant, then it is also Pt -invariant for all t ≥ 0 since Pt =∑
n≥0 tnGn/n! and

supports of states T∗t (|u〉 〈u|) coincide with S(u) for all t > 0 by Theorem 7.
Conversely, if the support projection ofT∗t (|u〉 〈u|) is independent of t , then PtS(u) =

S(u) for all t ≥ 0, by continuity of Pt at t = 0. Differentiating at t = 0 we find then
GS(u) ⊆ S(u). 
�

The above results have been recently extended by Hachicha [20] to non pure states
proving a quantum analogue of the classical Lévy–Austin–Ornstein theorem.

Theorem 8. Let T be a QMS with generator L as in Theorem 1 and suppose that
ρ1/2θG∗θ = Gρ1/2. The following conditions are equivalent:

(a) the closed linear spans of
{

L�ρ1/2 | � ≥ 1
}

and
{
ρ1/2θL∗�θ | � ≥ 1

}
in the Hilbert

space of Hilbert-Schmidt operators on h coincide,

(b) the forward and backward states
−→
D t and

←−
D t have the same support.



Proof. Putting
−→T t = I ⊗ Tt and

←−T t = Tt ⊗ I , we define the forward and backward

QMS
−→T and

←−T on B(h) ⊗ B(h). Their generators can be written in a special GKSL
representation, with respect to the faithful normal invariant state ρ ⊗ ρ by means of
operators

−→
G = 1l⊗G,

−→
L � = 1l⊗ L� and

←−
G = G⊗ 1l,

←−
L � = L�⊗ 1l. Denote (

−→
P t )t≥0

and (
←−
P t )t≥0 the semigroups on h⊗ h generated by

−→
G and

←−
G respectively.

By Theorem 6, it suffices to show that condition (a) holds if and only if the closed
linear spans in h⊗ h of the sets

−→
P tr,

−→
P s1

−→
L �1

−→
P s2−s1

−→
L �2

−→
P s3−s2 . . .

−→
P sn−sn−1

−→
L �n

−→
P t−sn r (30)

←−
P tr,

←−
P s1

←−
L �1

←−
P s2−s1

←−
L �2

←−
P s3−s2 . . .

←−
P sn−sn−1

←−
L �n

←−
P t−sn r (31)

for all n ≥ 1, 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn ≤ t and �1, . . . , �n ≥ 1 coincide.
Let w = ∑

α,β wβαeα ⊗ eβ be a vector in h ⊗ h. Note that ‖w‖2 = ∑
α,β

∣∣wβα∣∣2,
therefore the matrix (wβα)α,β≥1 defines a Hilbert-Schmidt operator W on h withwβα =〈
eα,W eβ

〉
. The vector w is orthogonal to (X ⊗ 1l)r if and only if

0 =
∑
j,α,β

ρ
1/2
j

〈
(X ⊗ 1l)e j ⊗ e j , eα ⊗ eβ

〉
wβα =

∑
j,α

ρ
1/2
j

〈
Xe j , eα

〉 〈
e j ,W eα

〉

i.e.

0 =
∑
j,α

ρ
1/2
j

〈
eα, θXθe j

〉 〈
e j ,W eα

〉

=
∑
j,α

〈
ρ1/2θX∗θeα, e j

〉 〈
e j ,W eα

〉

= tr
((
ρ1/2θX∗θ

)∗
W

)

namely ρ1/2θX∗θ is orthogonal to W in Hilbert-Schmidt operators on h. In a similar
way, a straightforward computation shows that w is orthogonal to (1l⊗ X)r if and only
if Xρ1/2 is orthogonal to W in Hilbert-Schmidt operators on h.

Since ρ1/2θG∗θ = Gρ1/2, by induction we have immediately ρ1/2θG∗kθ = Gkρ1/2

for all k ≥ 0 and then

Ptρ
1/2 =

∑
k≥0

tk

k!G
kρ1/2 =

∑
k≥0

tk

k!ρ
1/2θG∗kθ = ρ1/2θ P∗t θ.

Thusw is orthogonal to
−→
P tr if and only if the Hilbert-Schmidt operator W is orthogonal

to Ptρ
1/2 = ρ1/2θ P∗t θ namely w is orthogonal to

←−
P tr . Moreover, w is orthogonal to

the second vector in (30) given by(
1l⊗ (Ps1 L�1 Ps2−s1 L�2 Ps3−s2 . . . Psn−sn−1 L�n Pt−sn )

)
r

if and only if W is orthogonal to

Ps1 L�1 Ps2−s1 L�2 Ps3−s2 . . . Psn−sn−1 L�n Pt−snρ
1/2

namely W is orthogonal to

ρ1/2θ(Ps1 L�1 Ps2−s1 L�2 Ps3−s2 . . . Psn−sn−1 L�n Pt−sn )
∗θ

namely w is orthogonal to the second vector in (31). 
�



Proposition 6. The following conditions are equivalent:

(a) the closures of the linear spans of
{

L�ρ1/2 | � ≥ 1
}

and
{
ρ1/2θL∗�θ | � ≥ 1

}
in

the Hilbert space of Hilbert-Schmidt operators on h coincide,
(b) the supports of

−→
Φ ∗(D) and

←−
Φ ∗(D) coincide.

Proof. Letw =∑
α,β wβα θeα⊗eβ be a vector in h⊗h orthogonal to r and let W be the

Hilbert-Schmidt operator h⊗ h with wβα =
〈
eα,W eβ

〉
. Straightforward computations

yield

−→
Φ ∗(D)w =

∑
�,α,β

wβα
〈
(1l⊗ L�)r, θeα ⊗ eβ

〉
(1l⊗ L�)r,

←−
Φ ∗(D)w =

∑
�,α,β

wβα
〈
(L� ⊗ 1l)r, θeα ⊗ eβ

〉
(L� ⊗ 1l)r.

If
−→
Φ ∗(D)w = 0, since the vector r is separating for 1l⊗ B(h), we have

∑
�,α,β

wβα
〈
(1l⊗ L�)r, θeα ⊗ eβ

〉
(1l⊗ L�) =

∑
�,α,β

wβαρ
1/2
α

〈
L�eα, eβ

〉
(1l⊗ L�) = 0.

namely, by the linear independence of the L�,

0 =
∑
α,β

wβαρ
1/2
α

〈
L�eα, eβ

〉 =∑
α,β

wβα

〈
L�ρ

1/2eα, eβ
〉
=

∑
α

〈
L�ρ

1/2eα,W eα
〉

for all � ≥ 1. Therefore
−→
Φ ∗(D)w = 0 if and only if tr

(
(L�ρ1/2)∗W

) = 0.

We can show that
←−
Φ ∗(D)w = 0 if and only if tr

(
(ρ1/2θL∗�θ)∗W

) = 0 in the same
way. It follows that

{
L�ρ1/2 | � ≥ 1

}
and

{
ρ1/2θL∗�θ | � ≥ 1

}
in the Hilbert space of

Hilbert-Schmidt operators on h have the same orthogonal and the equivalence of (a) and
(b) is clear. 
�

7. Examples

In this section we collect three examples illustrating our entropy production formula.
The antiunitary θ will always be conjugation with respect to the chosen basis of h.

7.1. Trivial cycle on an n-level system. Consider the QMS on B(Cn) (n ≥ 3) generated
by

L(x) = λ S∗x S + μ Sx S∗ − x + i[H, x]
where S is the unitary right shift defined on the orthonormal basis (e j )0≤ j≤n−1 of C

n

by Se j = e j+1 (the sum must be understood mod n), λ,μ > 0. The Hamiltonian H is a
real matrix which is diagonal in this basis.

This QMS may arise in the stochastic (weak coupling) limit of a three-level system
dipole-type interacting with two reservoirs at different temperatures under the gener-
alised rotating wave approximation. The parameters λ,μ are related to the temperatures
of the reservoirs and λ = μ if the temperatures coincide. Its structure is clear:



1. ρ = 1l/n is a faithful invariant state, therefore the QMS commutes with the trivial
modular group,

2. d = 2, and L1 = λ1/2S, L2 = μ1/2S∗, together with G = − 1
2 1l− iH give a special

GKSL representation of L,
3. we have ρ1/2θG∗θ = ρ1/2G = Gρ1/2,
4. quantum detailed balance conditions are satisfied if and only if λ = μ since[

ρ1/2θL∗1θ
ρ1/2θL∗1θ

]
=

[
0 (μ/λ)1/2

(λ/μ)1/2 0

] [
L1ρ

1/2

L2ρ
1/2

]

and the above matrix is unitary if and only if λ = μ.
A complete study of the qualitative behaviour of this QMS can be done by applying

our methods in [14].
The assumption (FBS) is immediately checked applying Theorem 8a because the

linear spans of both set of operators coincide with the Abelian algebra generated by the
shift S, namely the algebra of n × n circulant matrices.

The entropy production is easily computed applying our formula (16). Indeed

−→
Φ ∗(D) = λ

n

n−1∑
j,k=0

∣∣e j ⊗ e j+1
〉 〈ek ⊗ ek+1| + μ

n

n−1∑
j,k=0

∣∣e j ⊗ e j−1
〉 〈ek ⊗ ek−1|

←−
Φ ∗(D) = λ

n

n−1∑
j,k=0

∣∣e j+1 ⊗ e j
〉 〈ek+1 ⊗ ek | + μ

n

n−1∑
j,k=0

∣∣e j−1 ⊗ e j
〉 〈ek−1 ⊗ ek |

where sums j ± 1, k± 1 are modulo n. A quick inspection shows that, denoting ψ+, ψ−
the unit vectors

ψ+ = 1√
n

n−1∑
j=0

e j ⊗ e j+1, ψ− = 1√
n

n−1∑
j=0

e j ⊗ e j−1,

we have 〈ψ−, ψ+〉 = 0 and
−→
Φ ∗(D) = λ |ψ+〉 〈ψ+| + μ |ψ−〉 〈ψ−| , ←−

Φ ∗(D) = λ |ψ−〉 〈ψ−| + μ |ψ+〉 〈ψ+| .
It follows that

−→
Φ ∗(D)−←−Φ ∗(D) = (λ− μ) (|ψ+〉 〈ψ+| − |ψ−〉 〈ψ−|)

log
(−→
Φ ∗(D)

)
− log

(←−
Φ ∗(D)

)
= log

(
λ

μ

)
(|ψ+〉 〈ψ+| − |ψ−〉 〈ψ−|)

and the entropy production is

λ− μ
2

log

(
λ

μ

)
.

Therefore, the entropy production is non zero if and only if λ �= μ since there is a
“current” determined by different intensities in “raising” (e j → e j+1) and “lowering”
(ek → ek−1) transitions.

Note that this entropy production coincides with the entropy production of the clas-
sical QMS obtained by restriction to the commutative subalgebra of diagonal matrices.

A wider class of QMS like those considered in this example has been studied by
Bolaños and Quezada [7] computing directly the entropy production rate.



7.2. Generic QMS. Generic QMS arise in the stochastic limit of a open discrete quantum 
system with generic Hamiltonian, interacting with Gaussian fields through a dipole type 
interaction (see [2,10] and the references therein). Here, for simplicity, the system space 
is finite-dimensional h = Cn with orthonormal basis (e j )0≤ j≤n−1, the operators L�, in
this case labeled by a double index (�, m) with � �= m, are

L�m = γ 1/2
�m |em〉 〈e�|

where are γ�m ≥ 0 positive constants and the effective Hamiltonian H is a self-adjoint
operator diagonal in the given basis whose explicit form is not needed here because it
does not affect the entropy production. The generator L is

L(x) = i[H, x] + 1

2

∑
��=m

(−L∗�m L�m x + 2L∗�m x L�m − x L∗�m L�m
)
, (32)

therefore

G = −1

2

∑
��=m

L∗�m L�m − iH = −1

2

∑
�

⎛
⎝ ∑
{m |m �=� }

γ�m

⎞
⎠ |e�〉 〈e�| − iH

is diagonal in the given basis and the condition ρ1/2θG∗θ = Gρ1/2 holds. Moreover, for
any given faithful normal state (even if it is not an invariant state) ρ = ∑n

j=0

∣∣e j
〉 〈

e j
∣∣

we have

L�mρ
1/2 = ρ1/2

� γ
1/2
�m |em〉 〈e�| , ρ1/2θL∗�mθ = ρ1/2

� γ
1/2
�m |e�〉 〈em | .

It follows that the linear span of operators L�mρ1/2 coincides with the linear span of
operators ρ1/2θL∗�mθ if and only if γ�m > 0 implies γm� > 0 for all �,m. Under this
assumption (FBS) clearly holds.

The restriction of L to the algebra of diagonal matrices coincides with the generator
of a time continuous Markov chain with states 0, 1, . . . , n − 1 and jump rates γ�m . As
a consequence, if γ�m > 0 implies γm� > 0 for all �,m the classical time-continuous
Markov chain can be realised as a union of its irreducible classes each one of them admit-
ting a unique strictly positive invariant probability density. Any convex combination of
these probability densities with all non-zero coefficients yields and invariant probability
density (ρ j )0≤ j≤n−1 for the whole Markov chain with ρ j > 0 for all j . It is easy to
check that the diagonal matrix with eigenvalues (ρ j )0≤ j≤n−1 is an invariant state for the
quantum Markov semigroup generated by L.

Straightforward computations give the following formulae:

−→
Φ ∗(D) =

∑
{ (�,m) | γ�m>0 }

ρ� γ�m |e� ⊗ em〉 〈e� ⊗ em |

←−
Φ ∗(D) =

∑
{ (�,m) | γ�m>0 }

ρmγm� |e� ⊗ em〉 〈e� ⊗ em |

Therefore the entropy production is

1

2

∑
{ (�,m) | γ�m>0 }

(ρ� γ�m − ρmγm�) log

(
ρ� γ�m

ρmγm�

)
.



This formula shows immediately that the entropy production is zero if and only if the
classical detailed balance condition ρ� γ�m = ρmγm� for all �,m holds. Here again,
entropy production coincides with the entropy production of the classical QMS obtained
by restriction to the commutative subalgebra of diagonal matrices. Moreover, it is not
difficult to show that, if there is a γ�m > 0 with γm� = 0 and the classical Markov chain
is irreducible, the invariant state is faithful but the entropy production is infinite.

7.3. Two-level system. Let T be the QMS on B(C2) with generator L represented in a
GKSL form with

L1 = |e1〉 〈e2| , L2 = |e2〉 〈e1| , H = iκ (|e2〉 〈e1| − |e1〉 〈e2|) , κ ∈ R− {0}.
The normalised trace ρ = 1l/2 is a faithful invariant state and the above operator give a
special GKSL representation of L.

The semigroup T satisfies the SQDB condition by Theorem 2. Indeed

ρ1/2 L∗1 = L2 ρ
1/2, ρ1/2 L∗2 = L1 ρ

1/2

so that we can choose as self-adjoint unitary in (5) the flip ue1 = e2, ue2 = e1.
The SQBD-Θ condition, however, does not hold because

ρ1/2θG∗θ − Gρ1/2 = 2iHρ1/2 �= 0.

Computing [G, L1] = [G, L2] = κ (|e1〉 〈e1| − |e2〉 〈e2|) and noting that

(1l⊗ L1)r = e2 ⊗ e1/
√

2, (1l⊗ L2)r = e1 ⊗ e2/
√

2,

(1l⊗ [G, L1])r = κ(e1 ⊗ e1 − e2 ⊗ e2)/
√

2,

by the invertibility of 1l⊗ Pt , we find immediately that the support of
−→
D t is the whole

C
2 ⊗ C

2 by Theorem 7. The support of
←−
D t is the same since

←−
D t = F

−→
D t F where F

is the unitary flip Fe j ⊗ ek = ek ⊗ e j . Therefore the assumption (FBS) holds.
A simple computation yields

−→
Φ ∗(D) =←−Φ ∗(D) = 1

2
(|e1 ⊗ e2〉 〈e1 ⊗ e2| + |e2 ⊗ e1〉 〈e2 ⊗ e1|) ,

thus the entropy production is zero.

8. Conclusions and Outlook

We showed that strict positivity of entropy production characterises non equilibrium
invariant states of quantum Markov semigroups, irrespectively of the chosen notion
of quantum detailed balance and commutation with the modular group. The entropy
production rate only depends on the completely positive part of the generator of a QMS
that can be regarded as its truly irreversible part.

States with finite entropy production form a promising class of non equilibrium
invariant states. Indeed, they satisfy an operator version (Theorem 8) of the necessary
condition for finiteness of classical entropy production γ jk > 0 if and only if γk j > 0,
where γ jk are transition rates. Moreover, dependence of entropy production on the
completely positive part of the generator of a QMS only might allow us to extend cycle
decompositions of QMS like those obtained in [1,7,18] to QMS non commuting with
the modular group. These directions will be explored in forthcoming papers.
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Appendix

Proposition 7. If the state ρ and θ commute there exists an orthonormal basis (e j ) j≥1
of h of eigenvectors of ρ that are all invariant under θ .

Proof. Let (e j ) j≥1 of h of eigenvectors of ρ and let ρ = ∑
j≥1

∣∣e j
〉 〈

e j
∣∣ be a spectral

decomposition of ρ with ρ j > 0 for all j ≥ 1 because ρ is faithful. Since θ commutes
with ρ we have ρθe j = θρe j = ρ jθe j , and eigenspaces of ρ are θ -invariant. Now,
for each j such that θe j �= −e j , the normalised vector f j = (e j + θe j )/

∥∥e j + θe j
∥∥

is θ -invariant and is still an eigenvector of ρ as well as f j = ie j if θe j = −e j .
Noting that scalar products

〈
f j , fk

〉
are real, since

〈
f j , fk

〉 = 〈
θ fk, θ f j

〉 = 〈
fk, f j

〉
, by a

standard Gram-Schmidt orthogonalisation process we can find an orthonormal basis of
the eigenspace of ρ j of θ -invariant vectors. 
�
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