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The paper investigates the stability and passivity analysis problems for a class of uncertain neural networks with time-delay via
delta operator approach. Both the parameter uncertainty and the generalized activation functions are considered in this paper. By
constructing an appropriate Lyapunov-Krasovskii functional, some new stability and passivity conditions are obtained in terms of
linear matrix inequalities (LMIs). The main characteristic of this paper is to obtain novel stability and passivity analysis criteria
for uncertain neural networks with time-delay in the delta operator system framework. A numerical example is presented to
demonstrate the effectiveness of the proposed results.

1. Introduction

Recently, neural networks have attracted considerable atten-
tion due to their applications in wide areas such as associative
memory [1, 2], pattern recognition [1, 3], and optimization
problems [4–7]. Recently, some stability conditions [8–12]
and passivity analysis for neural networks [13–15] have been
reported in the literature. The effect of time-delays [16–25]
cannot be ignored in the real systems due to the facts that the
delays can lead to instability [26–29], oscillation, or chaos.
Recently, the stability results of time-delay neural networks
have been presented in [30–36]. In addition, many results
on passivity of neural networks with time-delay have been
proposed [37–41].

It is well known that the discrete systems are oftenused for
computer realization and continuous systems are frequently
applied to theoretical analysis, respectively. Sampling contin-
uous systems can lead to considerable discrete systems.When
the sampling is fast using the traditional shift operator, the
poles are located in the stable boundary. Then, the discrete
systems will lose stability in finite word length computer.
Goodwin proposed delta operator approach in [42] which
is used to replace the aforementioned operator with sample
continuous systems, which can unify some previous related

results of the continuous and discrete systems into the
framework of the delta operator systems. The delta operator
is defined by

𝛿𝑥 (𝑡) =

{{{

{{{

{

𝑑𝑥 (𝑡)

𝑑𝑡
, 𝑇 = 0;

𝑥 (𝑡 + 𝑇) − 𝑥 (𝑡)

𝑇
, 𝑇 ̸= 0,

(1)

where 𝑇 is a sampling period. More recently, much attention
has been focused on the stability and stabilization problems
for some delta operator systems [43–47]. However, it should
bementioned that there are few achievements about passivity
analysis for uncertain discrete neural networks with time-
varying delay via delta operator approach; instability exists in
the applications of neural networks when the sampling rate is
high, which motivates this research.

In this paper, the stability and passivity problems are
investigated for uncertain neural networks with time-varying
delay via delta operator approach. Both the parameter uncer-
tainty and the generalized activation functions are considered
in this paper. By choosing a new type of Lyapunov functional
in delta domain and employing some novel methods to
handle the delays, some stability and passivity criteria are
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proposed. The proposed conditions are expressed in terms
of linear matrix inequalities (LMIs), which are dependent on
the sampling period. The main characteristic of this paper
is to obtain some stability and passivity analysis criteria
for uncertain neural networks with time-varying delay in
the delta operator system framework. Finally, a numerical
example is given to demonstrate the effectiveness of the
developed results.

Notation.Throughout this paper, for the sake of convenience,
we use 𝑡𝑘 to denote 𝑘𝑇, where 𝑇 is the sampling period. R𝑛
denotes the 𝑛-dimensional Euclidean space. The superscript
𝑇 stands for matrix transposition. The notation diag{⋅ ⋅ ⋅ }
denotes a block-diagonalmatrix. For real symmetricmatrices
𝑋 and 𝑌, the notation 𝑋 ≥ 𝑌 (resp., 𝑋 > 𝑌) means that the
𝑋 − 𝑌 is positive semidefinite (resp., positive-definite). 𝐼 is
the identity matrix with appropriate dimensions.The symbol
“∗” stands for the symmetric term in a matrix. Matrices, if
their dimensions are not explicitly stated, are assumed to have
compatible dimensions.

2. Problem Formulation

Consider the following uncertain neural network with time-
varying delay:

𝛿𝑥 (𝑡𝑘) = − (𝑊1 + Δ𝑊1 (𝑡𝑘)) 𝑥 (𝑡𝑘)

+ (𝑊2 + Δ𝑊2 (𝑡𝑘)) 𝑓 (𝑥 (𝑡𝑘))

+ (𝑊3 + Δ𝑊3 (𝑡𝑘)) 𝑓 (𝑥 (𝑡𝑘 − 𝑑𝑘))

+ 𝑢 (𝑡𝑘) ,

(2)

𝑦 (𝑡𝑘) = 𝑓 (𝑥 (𝑡𝑘)) , (3)

where 𝑥(𝑡𝑘) ∈ R𝑛 stands for the network state at time 𝑡𝑘;
𝑓(𝑥(𝑡𝑘)) ∈ R𝑛 denotes the activation at time 𝑡𝑘; 𝑢(𝑡𝑘) ∈ R𝑛

is the external input at time 𝑡𝑘; 𝑦(𝑡𝑘) is the output vector;𝑊1
is a positive diagonal matrix; Δ𝑊1(𝑡𝑘), Δ𝑊2(𝑡𝑘), and Δ𝑊3(𝑡𝑘)
are unknown matrices; 𝑑𝑘 is a time-varying delay 0 ≤ 𝑑𝑚 ≤

𝑑𝑘 ≤ 𝑑𝑀, with 𝑑𝑚 = 𝑛𝑚𝑇 and 𝑑𝑀 = 𝑛𝑀𝑇; 𝑛𝑚 and 𝑛𝑀 are two
known positive and finite integers; 𝑇 is the sampling period.
The time-varying parameter uncertainties Δ𝑊1(𝑡𝑘), Δ𝑊2(𝑡𝑘),
and Δ𝑊3(𝑡𝑘) are assumed to be in the following form:

[Δ𝑊1 (𝑡𝑘) Δ𝑊2 (𝑡𝑘) Δ𝑊3 (𝑡𝑘)]

= 𝐻𝐹 (𝑡𝑘) [𝐸1 𝐸2 𝐸3] ,

(4)

where 𝐻, 𝐸1, 𝐸2, and 𝐸3 are known constant matrices; 𝐹(𝑡𝑘)
is an unknown time-varying matrix satisfying

𝐹
𝑇
(𝑡𝑘) 𝐹 (𝑡𝑘) ≤ 𝐼. (5)

The activation function 𝑓(𝑥(𝑡𝑘)) satisfies the following con-
dition:

𝐾
−

𝑖
≤
𝑓𝑖 (𝛼1) − 𝑓𝑖 (𝛼2)

𝛼1 − 𝛼2

≤ 𝐾
+

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (6)

with 𝛼1 ̸= 𝛼2,

𝐾
−
= diag [𝐾−

1
𝐾
−

2
⋅ ⋅ ⋅ 𝐾

−

𝑛
] ,

𝐾
+
= diag [𝐾+

1
𝐾
+

2
⋅ ⋅ ⋅ 𝐾

+

𝑛
] .

(7)

Before ending this section, some preliminaries are
recalled which are used to prove the main results in the next
section.

Definition 1 (see [48]). A delta operator system is asymptoti-
cally stable, if the following conditions hold:

(i) 𝑉(𝑥(𝑡)) ≥ 0 with equality if and only if 𝑥(𝑡) = 0;
(ii) 𝛿𝑉(𝑥(𝑡)) = [𝑉(𝑥(𝑡 + 𝑇)) − 𝑉(𝑥(𝑡))]/𝑇 < 0,

where 𝑉(𝑥(𝑡)) is a Lyapunov function in the delta domain.

Definition 2. The neural network (2) and (3) is called passive
if there exists a scalar 𝛾 ≥ 0 such that

∞

∑

𝑘=0

[−𝛾𝑢
𝑇
(𝑡𝑘) 𝑢 (𝑡𝑘) − 2𝑦

𝑇
(𝑡𝑘) 𝑢 (𝑡𝑘)] ≤ 0. (8)

Lemma 3 (see [49]). The property of delta operator for any
time function 𝑥(𝑡) and 𝑦(𝑡) can be represented as

𝛿 (𝑥 (𝑡) 𝑦 (𝑡))=𝛿 (𝑥 (𝑡)) 𝑦 (𝑡) + 𝑥 (𝑡) 𝛿𝑦 (𝑡) + 𝑇𝛿 (𝑥 (𝑡)) 𝛿𝑦 (𝑡) ,

(9)

where 𝑇 is a sampling period.

Lemma 4 (see [50]). For any constant positive semidefinite
symmetric matrix 𝑊, two positive integers 𝑟 and 𝑟0 satisfy
𝑟 ≥ 𝑟0 ≥ 1; the following inequality holds:

(

𝑟

∑

𝑖=𝑟0

𝑥 (𝑖))

𝑇

𝑊(

𝑟

∑

𝑖=𝑟0

𝑥 (𝑖))

≤ (𝑟 − 𝑟0 + 1)

𝑟

∑

𝑖=𝑟0

𝑥
𝑇
(𝑖)𝑊𝑥 (𝑖) .

(10)

Lemma 5 (see [51]). Let 𝑈, 𝑉,𝑊, and𝑀 be real matrices of
appropriate dimensions with𝑀 satisfying𝑀 = 𝑀

𝑇; then𝑀+

𝑈𝑉𝑊 + 𝑊
𝑇
𝑉
𝑇
𝑈
𝑇
< 0 for all 𝑉𝑇𝑉 ≤ 𝐼, if and only if there

exists a scalar 𝜀 > 0 such that𝑀+ 𝜀
−1
𝑈𝑈
𝑇
+ 𝜀𝑊
𝑇
𝑊 < 0.

Lemma 6 (see [52] Schur complement). Given constant
matrices Ω1, Ω2, and Ω3 with appropriate dimensions, where
Ω
𝑇

1
= Ω1, and Ω𝑇2 = Ω2 > 0, then Ω1 + Ω

𝑇

3
Ω
−1

2
Ω3 < 0, if and

only if

[
Ω1 Ω

𝑇

3

∗ −Ω2
] < 0 or [

−Ω2 Ω3
∗ Ω1

] < 0. (11)

3. Main Results

In this section, the stability and the passivity results for
discrete-time uncertain neural network with time-varying
delay via delta operator are given. Firstly, the stability con-
ditions are given in the following part.
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3.1. Stability Analysis. In order to consider the stability
condition for uncertain neural networks with time-delay (2),
we define Δ𝑊𝑖(𝑡𝑘) = 0 (𝑖 = 1, 2, 3) and 𝑢(𝑡𝑘) = 0 in (2). Then,
we can have the following neural networks with time-delay:

𝛿𝑥 (𝑡𝑘) = −𝑊1𝑥 (𝑡𝑘) + 𝑊2𝑓 (𝑥 (𝑡𝑘))

+ 𝑊3𝑓 (𝑥 (𝑡𝑘 − 𝑑𝑘)) .

(12)

For neural networks with time-delay in (12), the stability
criterion is obtained in the following theorem.

Theorem 7. For given scalars 0 ≤ 𝑑𝑚 ≤ 𝑑𝑘 ≤ 𝑑𝑀, neural
network (12) with (6) is asymptotically stable, if there exist 𝑃 >
0, 𝑄𝑖 > 0 (𝑖 = 1, 2, 3), 𝑅 > 0, and 𝑆 > 0, positive definite
diagonal matrices 𝐿1, 𝐿2, 𝑋1, and 𝑋2, such that the following
LMI holds:

Ξ = [
Θ11 Θ12
∗ Θ22

] < 0, (13)

where

Θ11 =
[

[

Ψ11 −𝑆𝑊1 0

∗ Ψ22 0

∗ ∗ −𝑄2

]

]

,

Θ12 =
[
[
[

[

0 𝑆𝑊2 𝑆𝑊3
1

𝑛𝑀𝑇
𝑅 𝑃𝑊2 Ψ25

0 0 𝑋2𝐾
+

]
]
]

]

,

Θ22 =
[
[
[

[

−𝑄1 −
1

𝑛𝑀𝑇
𝑅 0 0

∗ Ψ55 0

∗ ∗ Ψ66

]
]
]

]

,

Ψ11 = 𝑇𝑃 + 𝑇𝑛𝑀𝑅 − 𝑆 − 𝑆
𝑇
,

Ψ22 = − 2𝐿1𝐾
−
+ 2𝐿2𝐾

+
+ 𝑄1 + 𝑄2

+ 𝑇 (𝑑 + 1)𝑄2 −
1

𝑛𝑀𝑇
𝑅

− 𝑃𝑊1 −𝑊
𝑇

1
𝑃,

Ψ25 = 𝐿1 − 𝐿2 + 𝑋1𝐾
+
+ 𝑃𝑊2,

Ψ55 = − 2𝑋1 + 𝑄3,

Ψ66 = − 2𝑋2 − 𝑄3,

𝐿1 = diag {𝑙11 𝑙12 ⋅ ⋅ ⋅ 𝑙1𝑛} ,

𝐿2 = diag {𝑙21 𝑙22 ⋅ ⋅ ⋅ 𝑙2𝑛} ,

𝑋1 = diag {𝜆11 𝜆12 ⋅ ⋅ ⋅ 𝜆1𝑛} ,

𝑋2 = diag {𝜆21 𝜆22 ⋅ ⋅ ⋅ 𝜆2𝑛} .

(14)

Proof. Choose a Lyapunov-Krasovskii functional in delta
domain as follows:

𝑉 (𝑡𝑘) =

5

∑

𝑖=1

𝑉𝑖 (𝑡𝑘) , (15)

with

𝑉1 (𝑡𝑘) = 𝑥
𝑇
(𝑡𝑘) 𝑃𝑥 (𝑡𝑘) ,

𝑉2 (𝑡𝑘) = 2𝑇

𝑛

∑

𝑗=1

𝑙1𝑗 ∫

𝑥𝑗(𝑡𝑘−𝑇)

0

(𝑓𝑗 (𝑠) − 𝐾
−

𝑗
𝑠) 𝑑𝑠

+ 2𝑇

𝑛

∑

𝑗=1

𝑙2𝑗 ∫

𝑥𝑗(𝑡𝑘−𝑇)

0

(𝐾
+

𝑗
𝑠 − 𝑓𝑗 (𝑠)) 𝑑𝑠,

𝑉3 (𝑡𝑘) = 𝑇

𝑛𝑀

∑

𝑖=1

𝑥
𝑇
(𝑡𝑘 − 𝑖𝑇)𝑄1𝑥 (𝑡𝑘 − 𝑖𝑇)

+ 𝑇

𝑛𝑘

∑

𝑖=1

𝑥
𝑇
(𝑡𝑘 − 𝑖𝑇)𝑄2𝑥 (𝑡𝑘 − 𝑖𝑇)

+ 𝑇

𝑛𝑘

∑

𝑖=1

𝑓
𝑇
(𝑥 (𝑡𝑘 − 𝑖𝑇))𝑄3𝑓 (𝑥 (𝑡𝑘 − 𝑖𝑇)) ,

𝑉4 (𝑡𝑘) = 𝑇
2

𝑛𝑀

∑

𝑖=𝑛𝑚

𝑖

∑

𝑗=1

𝑥
𝑇
(𝑡𝑘 − 𝑗𝑇)𝑄3𝑥 (𝑡𝑘 − 𝑗𝑇) ,

𝑉5 (𝑡𝑘) =

𝑛𝑀

∑

𝑖=1

𝑖

∑

𝑗=1

𝑒
𝑇
(𝑡𝑘 − 𝑗𝑇)Re (𝑡𝑘 − 𝑗𝑇) ,

(16)

where

𝑒 (𝑡𝑘) = 𝑥 (𝑡𝑘) − 𝑥 (𝑡𝑘 + 𝑇) = −𝑇𝛿𝑥 (𝑡𝑘) . (17)

Applying Lemma 3, the delta-domain form of 𝑉1(𝑡𝑘) can be
obtained as

𝛿𝑉1 (𝑡𝑘) = 𝛿
𝑇
𝑥 (𝑡𝑘) 𝑃𝑥 (𝑡𝑘) + 𝑥

𝑇
(𝑡𝑘) 𝑃𝛿𝑥 (𝑡𝑘)

+ 𝑇𝛿
𝑇
𝑥 (𝑡𝑘) 𝑃𝛿𝑥 (𝑡𝑘)

= −𝑥
𝑇
(𝑡𝑘)𝑊

𝑇

1
𝑃𝑥 (𝑡𝑘) + 𝑥

𝑇
(𝑡𝑘)𝑊

𝑇

2
𝑃𝑓 (𝑥 (𝑡𝑘))

+ 𝑥
𝑇
(𝑡𝑘)𝑊

𝑇

3
𝑃𝑓 (𝑥 (𝑡𝑘 − 𝑑𝑘))

− 𝑥
𝑇
(𝑡𝑘) 𝑃𝑊1𝑥 (𝑡𝑘) + 𝑥

𝑇
(𝑡𝑘) 𝑃𝑊2𝑓 (𝑥 (𝑡𝑘))

+ 𝑥
𝑇
(𝑡𝑘) 𝑃𝑊3𝑓 (𝑥 (𝑡𝑘 − 𝑑𝑘))

+ 𝑇𝛿
𝑇
𝑥 (𝑡𝑘) 𝑃𝛿𝑥 (𝑡𝑘) .

(18)

From (6), for the scalars 𝜆1𝑖 ≥ 0, 𝜆2𝑖 ≥ 0, one can have

2

𝑛

∑

𝑖=1

𝜆1𝑖𝑓𝑖 (𝑥𝑖 (𝑡𝑘)) [𝑓𝑖 (𝑥𝑖 (𝑡𝑘)) − 𝐾
+

𝑖
𝑥𝑖 (𝑡𝑘) ≤ 0] ,

2

𝑛

∑

𝑖=1

𝜆2𝑖𝑓𝑖𝑥𝑖 (𝑡𝑘 − 𝑛𝑘𝑇)

× [𝑓𝑖 (𝑥𝑖 (𝑡𝑘 − 𝑛𝑘𝑇)) − 𝐾
+

𝑖
𝑥𝑖 (𝑡𝑘 − 𝑛𝑘𝑇)] ≤ 0,

(19)
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which can be equivalently denoted as

2𝑓
𝑇
(𝑥 (𝑡𝑘))𝑋1𝑓 (𝑥 (𝑡𝑘))

− 2𝑓
𝑇
(𝑥 (𝑡𝑘))𝐾

+
𝑋1𝑥 (𝑡𝑘) ≤ 0,

2𝑓
𝑇
(𝑥 (𝑡𝑘 − 𝑛𝑘𝑇))𝑋2𝑓 (𝑥 (𝑡𝑘 − 𝑛𝑘𝑇))

− 2𝑓
𝑇
(𝑥 (𝑡𝑘 − 𝑛𝑘𝑇))𝐾

+
𝑋2𝑥 (𝑡𝑘 − 𝑛𝑘𝑇) ≤ 0.

(20)

Then, we obtain the following inequality:

𝛿𝑉2 (𝑡𝑘) = 2

𝑛

∑

𝑗=1

𝑙1𝑗 [∫

𝑥𝑗(𝑡𝑘)

0

(𝑓𝑗 (𝑠) − 𝐾
−

𝑗
𝑠) 𝑑𝑠

−∫

𝑥𝑗(𝑡𝑘−𝑇)

0

(𝑓𝑗 (𝑠) − 𝐾
−

𝑗
𝑠) 𝑑𝑠]

+ 2

𝑛

∑

𝑗=1

𝑙2𝑗 [∫

𝑥𝑗(𝑡𝑘)

0

(𝐾
+

𝑗
𝑠 − 𝑓𝑗 (𝑠)) 𝑑𝑠

−∫

𝑥𝑗(𝑡𝑘−𝑇)

0

(𝐾
+

𝑗
𝑠 − 𝑓𝑗 (𝑠)) 𝑑𝑠]

≤ 2

𝑛

∑

𝑗=1

𝑙1𝑗𝑥𝑗 (𝑡𝑘) [𝑓𝑗 (𝑥𝑗 (𝑡𝑘)) − 𝐾
−

𝑗
𝑥 (𝑡𝑘)]

+ 2

𝑛

∑

𝑗=1

𝑙2𝑗𝑥𝑗 (𝑡𝑘) [𝐾
+

𝑗
𝑥 (𝑡𝑘) − 𝑓𝑗 (𝑥𝑗 (𝑡𝑘))]

≤ 2𝑥
𝑇
(𝑡𝑘) 𝐿1 [𝑓 (𝑥 (𝑡𝑘)) − 𝐾

−
𝑥 (𝑡𝑘)]

+ 2𝑥
𝑇
(𝑡𝑘) 𝐿2 [𝐾

+
𝑥 (𝑡𝑘) − 𝑓 (𝑥 (𝑡𝑘))]

− 2𝑓
𝑇
(𝑥 (𝑡𝑘))𝑋1𝑓 (𝑥 (𝑡𝑘))

+ 2𝑓
𝑇
(𝑥 (𝑡𝑘))𝐾

+
𝑋1𝑥 (𝑡𝑘)

− 2𝑓
𝑇
(𝑥 (𝑡𝑘 − 𝑛𝑘𝑇))𝑋2𝑓 (𝑥 (𝑡𝑘 − 𝑛𝑘𝑇))

+ 2𝑓
𝑇
(𝑥 (𝑡𝑘 − 𝑛𝑘𝑇))𝐾

+
𝑋2𝑥 (𝑡𝑘 − 𝑛𝑘𝑇) .

(21)

Taking the delta operator manipulations of 𝑉3(𝑡𝑘), we can
obtain that

𝛿𝑉3 (𝑡𝑘)

=
1

𝑇
× 𝑇[

𝑛𝑀

∑

𝑖=1

𝑥
𝑇
(𝑡𝑘 − 𝑖𝑇 + 𝑇)𝑄1𝑥 (𝑡𝑘 − 𝑖𝑇 + 𝑇)

−

𝑛𝑀

∑

𝑖=1

𝑥
𝑇
(𝑡𝑘 − 𝑖𝑇)𝑄1𝑥 (𝑡𝑘 − 𝑖𝑇)]

+
1

𝑇
× 𝑇[

𝑛𝑘

∑

𝑖=1

𝑥
𝑇
(𝑡𝑘 − 𝑖𝑇 + 𝑇)𝑄2𝑥 (𝑡𝑘 − 𝑖𝑇 + 𝑇)

−

𝑛𝑘

∑

𝑖=1

𝑥
𝑇
(𝑡𝑘 − 𝑖𝑇)𝑄2𝑥 (𝑡𝑘 − 𝑖𝑇)]

+
1

𝑇
× 𝑇[

𝑛𝑘

∑

𝑖=1

𝑓
𝑇
(𝑥 (𝑡𝑘 − 𝑖𝑇 + 𝑇))

× 𝑄3𝑓 (𝑥 (𝑡𝑘 − 𝑖𝑇 + 𝑇))

−

𝑛𝑘

∑

𝑖=1

𝑓
𝑇
(𝑥 (𝑡𝑘 − 𝑖𝑇))𝑄3𝑓 (𝑥 (𝑡𝑘 − 𝑖𝑇))]

≤ 𝑥
𝑇
(𝑡𝑘) 𝑄1𝑥 (𝑡𝑘) − 𝑥

𝑇
(𝑡𝑘 − 𝑛𝑀𝑇)𝑄1𝑥 (𝑡𝑘 − 𝑛𝑀𝑇)

+ 𝑥
𝑇
(𝑡𝑘) 𝑄2𝑥 (𝑡𝑘) − 𝑥

𝑇
(𝑡𝑘 − 𝑛𝑘𝑇)𝑄2𝑥 (𝑡𝑘 − 𝑛𝑘𝑇)

+ 𝑇

𝑛𝑀

∑

𝑖=𝑛𝑚

𝑥
𝑇
(𝑡𝑘 − 𝑖𝑇)𝑄2𝑥 (𝑡𝑘 − 𝑖𝑇)

+ 𝑓
𝑇
(𝑥 (𝑡𝑘)) 𝑄3𝑓 (𝑥 (𝑡𝑘)) − 𝑓

𝑇
(𝑥 (𝑡𝑘 − 𝑛𝑘𝑇))

× 𝑄3𝑓 (𝑥 (𝑡𝑘 − 𝑛𝑘𝑇)) . (22)

Taking the delta operatormanipulations of𝑉4(𝑡𝑘), the follow-
ing results can be obtained:

𝛿𝑉4 (𝑡𝑘)

=
1

𝑇
× 𝑇
2 [

[

𝑛𝑀

∑

𝑖=𝑛𝑚

𝑖

∑

𝑗=1

𝑥
𝑇
(𝑡𝑘 − 𝑗𝑇 + 𝑇)

× 𝑄3𝑥 (𝑡𝑘 − 𝑗𝑇 + 𝑇)

−

𝑛𝑀

∑

𝑖=𝑛𝑚

𝑖

∑

𝑗=1

𝑥
𝑇
(𝑡𝑘 − 𝑗𝑇)𝑄3𝑥 (𝑡𝑘 − 𝑗𝑇)

]

]

(23)

= 𝑇[

𝑛𝑀

∑

𝑖=𝑛𝑚

𝑥
𝑇
(𝑡𝑘) 𝑄3𝑥 (𝑡𝑘)

×

𝑛𝑀

∑

𝑖=𝑛𝑚

− 𝑥
𝑇
(𝑡𝑘 − 𝑖𝑇)𝑄3𝑥 (𝑡𝑘 − 𝑖𝑇)]

= 𝑇 (𝑑 + 1) 𝑥
𝑇
(𝑡𝑘) 𝑄3𝑥 (𝑡𝑘)

− 𝑇

𝑛𝑀

∑

𝑖=𝑛𝑚

𝑥
𝑇
(𝑡𝑘 − 𝑖𝑇)𝑄3𝑥 (𝑡𝑘 − 𝑖𝑇) ,

(24)

where 𝑑 = 𝑛𝑀 − 𝑛𝑚.
Taking the delta operator manipulations of 𝑉5(𝑡𝑘) and

using Lemma 4, it can be found that

𝛿𝑉5 (𝑡𝑘)

=
1

𝑇

[

[

𝑛𝑀

∑

𝑖=1

𝑖

∑

𝑗=1

𝑒
𝑇
(𝑡𝑘 − 𝑗𝑇 + 𝑇)

× Re (𝑡𝑘 − 𝑗𝑇 + 𝑇)

−

𝑛𝑀

∑

𝑖=1

𝑖

∑

𝑗=1

𝑒
𝑇
(𝑡𝑘 − 𝑗𝑇)Re (𝑡𝑘 − 𝑗𝑇)]

]

=
𝑛𝑀

𝑇
𝑒
𝑇
(𝑡𝑘)Re (𝑡𝑘)

−
1

𝑇

𝑛𝑀

∑

𝑖=1

𝑒
𝑇
(𝑡𝑘 − 𝑖𝑇)Re (𝑡𝑘 − 𝑖𝑇)
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≤ 𝑇𝑛𝑀𝛿
𝑇
𝑥 (𝑡𝑘) 𝑅𝛿𝑥 (𝑡𝑘)

−
1

𝑛𝑀𝑇
[𝑥 (𝑡𝑘 − 𝑛𝑀𝑇) − 𝑥 (𝑡𝑘)]

𝑇

× 𝑅 [𝑥 (𝑡𝑘 − 𝑛𝑀𝑇) − 𝑥 (𝑡𝑘)] .

(25)

For a given positive definite matrix 𝑃1 with appropriately
dimensions, one has that

𝑟1 (𝑡𝑘) = 2𝛿
𝑇
𝑥 (𝑡𝑘) 𝑆 [−𝑊1𝑥 (𝑡𝑘) + 𝑊2𝑓 (𝑥 (𝑡𝑘))

+ 𝑊3𝑓 (𝑥 (𝑡𝑘 − 𝑑𝑘)) − 𝛿𝑥 (𝑡𝑘)] = 0.

(26)

Combining (18) and (21)–(26), the following inequality
holds:

𝛿𝑉 (𝑡𝑘) =

5

∑

𝑖=1

𝛿𝑉𝑖 (𝑡𝑘)

≤ 𝜂
𝑇
(𝑥 (𝑡𝑘)) Ξ𝜂 (𝑥 (𝑡𝑘)) ,

(27)

where

𝜂
𝑇
(𝑥 (𝑡𝑘)) = [𝛿

𝑇
𝑥 (𝑡𝑘) , 𝑥

𝑇
(𝑡𝑘) , 𝑥

𝑇
(𝑡𝑘 − 𝑛𝑘𝑇) ,

𝑥
𝑇
(𝑡𝑘 − 𝑛𝑀𝑇) , 𝑓

𝑇
(𝑥 (𝑡𝑘)) ,

𝑓
𝑇
(𝑥 (𝑡𝑘 − 𝑛𝑘𝑇))] .

(28)

It can be seen from Theorem 7 that Ξ < 0, which means
that 𝛿𝑉(𝑡𝑘) < 0. Then, based on Definition 1, neural network
(12) is asymptotically stable. The proof is completed.

In the subsection, we continue to consider the robust
stability problem of neural network (2) without inputs 𝑢(𝑡𝑘);
equivalently, we have

𝛿𝑥 (𝑡𝑘) = − (𝑊1 + Δ𝑊1 (𝑡𝑘)) 𝑥 (𝑡𝑘)

+ (𝑊2 + Δ𝑊2 (𝑡𝑘)) 𝑓 (𝑥 (𝑡𝑘))

+ (𝑊3 + Δ𝑊3 (𝑡𝑘)) 𝑓 (𝑥 (𝑡𝑘 − 𝑑𝑘)) .

(29)

For neural network (29), the robust stability criterion is given
in the following theorem

Theorem 8. For given scalars 0 ≤ 𝑑𝑚 ≤ 𝑑𝑘 ≤ 𝑑𝑀,
neural network (29) under the conditions (4)–(6) is robustly
asymptotically stable, if there exist 𝑃 > 0, 𝑄𝑖 > 0 (𝑖 = 1, 2, 3),
𝑅 > 0, 𝑆 > 0 positive definite diagonal matrices 𝐿1, 𝐿2𝑋1, and
𝑋2, such that the following LMI holds:

Ξ̂ = [
Θ̂11 Θ̂12

∗ Θ̂22
] < 0, (30)

where

Θ̂11 =

[
[
[
[
[
[

[

Ψ11 𝑆𝑊1 0 0

∗ Ψ22 0
1

𝑛𝑀𝑇
𝑅

∗ ∗ −𝑄2 0

∗ ∗ ∗ −𝑄1 −
1

𝑛𝑀𝑇
𝑅

]
]
]
]
]
]

]

,

Θ̂12 =
[
[
[

[

𝑆𝑊2 𝑆𝑊3 𝑆𝐻 0

Ψ25 𝑃𝑊3 𝑃𝐻 −𝜀𝐸
𝑇

1

0 𝑋2𝐾
+

0 0

0 0 0 0

]
]
]

]

,

Θ̂22 =
[
[
[

[

Ψ55 0 0 𝜀𝐸
𝑇

2

∗ Ψ66 0 𝜀𝐸
𝑇

3

∗ ∗ −𝜀𝐼 0

∗ ∗ ∗ −𝜀𝐼

]
]
]

]

,

(31)

with Ψ11, Ψ22, Ψ25, Ψ55, Ψ66, 𝐿1, 𝐿2, 𝑋1, and 𝑋2 defined in
Theorem 7.

Proof. We choose the same Lyapunov-Krasovskii functional
as Theorem 7. According to neural network (2), we have the
following equation:

𝑟2 (𝑡𝑘) = 2𝛿
𝑇
𝑥 (𝑡𝑘)

× 𝑆 [− (𝑊1 + Δ𝑊1 (𝑡𝑘)) 𝑥 (𝑡𝑘)

+ (𝑊2 + Δ𝑊2 (𝑡𝑘)) 𝑓 (𝑥 (𝑡𝑘))

+ (𝑊3 + Δ𝑊3 (𝑡𝑘)) 𝑓 (𝑥 (𝑡𝑘 − 𝑑𝑘))

− 𝛿𝑥 (𝑡𝑘) ] = 0.

(32)

Similar to the proof of Theorem 7, we can have that

𝛿𝑉 (𝑡𝑘) =

5

∑

𝑖=1

𝛿𝑉𝑖 (𝑡𝑘)

=

5

∑

𝑖=1

𝛿𝑉𝑖 (𝑡𝑘) + 𝑟2 (𝑡𝑘)

≤ 𝜂
𝑇
(𝑥 (𝑡𝑘)) Ξ̆𝜂 (𝑥 (𝑡𝑘))

= 𝜂
𝑇
(𝑥 (𝑡𝑘))

× (Ξ + 𝜑𝐹 (𝑡𝑘) 𝜓 + 𝜓
𝑇
𝐹
𝑇
(𝑡𝑘) 𝜑

𝑇
) 𝜂 (𝑥 (𝑡𝑘)) ,

(33)
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where

Ξ̆ = [
Θ̆11 Θ̆12

∗ Θ̆22

] ,

Θ̆11 =
[

[

Ψ11 −𝑆𝑊1𝑘 (𝑡𝑘) 0

∗ Ψ̆22 0

∗ ∗ −𝑄2

]

]

,

Θ̆12 =
[
[
[

[

0 𝑆𝑊2𝑘 (𝑡𝑘) 𝑆𝑊3𝑘 (𝑡𝑘)

1

𝑛𝑀𝑇
𝑅2 𝑃𝑊2𝑘 (𝑡𝑘) Ψ̆25

0 0 𝑋2𝐾
+

]
]
]

]

,

Θ̆22 =
[
[
[

[

−𝑄1 −
1

𝑛𝑀𝑇
𝑅 0 0

∗ Ψ55 0

∗ ∗ Ψ66

]
]
]

]

,

𝜑
𝑇
= [𝐻

𝑇
𝑆
𝑇
𝐻
𝑇
𝑃
𝑇
0 0 0 0] ,

𝜓 = [0 −𝐸1 0 0 𝐸2 𝐸3] ,

Ψ̆22 = − 2𝐿1𝐾
−
+ 2𝐿2𝐾

+
+ 𝑄1 + 𝑄2

+ 𝑇 (𝑑 + 1)𝑄2 −
1

𝑛𝑀𝑇
𝑅

− 𝑃𝑊1𝑘 (𝑡𝑘) − 𝑊
𝑇

1𝑘
(𝑡𝑘) 𝑃,

Ψ̆25 = 𝐿1 − 𝐿2 + 𝑋1𝐾
+
+ 𝑃𝑊2𝑘 (𝑡𝑘) ,

(34)

with 𝑊1𝑘(𝑡𝑘) = 𝑊1 + Δ𝑊1(𝑡𝑘), 𝑊2𝑘(𝑡𝑘) = 𝑊2 + Δ𝑊2(𝑡𝑘),
𝑊3𝑘(𝑡𝑘) = 𝑊3 + Δ𝑊3(𝑡𝑘), and Ξ, Ψ11, Ψ55, Ψ66, 𝐿1, 𝐿2, 𝑋1,
and𝑋2 have been defined inTheorem 7.

Applying Schur complement to (30), we have

Ξ + 𝜀
−1
𝜑𝜑
𝑇
+ 𝜀𝜓
𝑇
𝜓 < 0. (35)

By Lemma 5, from the inequality (35), we can easily obtain

Ξ + 𝜑𝐹 (𝑡𝑘) 𝜓 + 𝜓
𝑇
𝐹
𝑇
(𝑡𝑘) 𝜑

𝑇
< 0. (36)

Consequently, 𝛿𝑉(𝑡𝑘) < 0; from Definition 1, neural network
in (29) is robustly asymptotically stable. The proof is com-
pleted.

3.2. Passivity Analysis. In this subsection, the passivity analy-
sis results are given in the following part.We first consider (2)
and (3) without the parameter uncertaintiesΔ𝑊𝑖(𝑡𝑘) = 0, (𝑖 =
1, 2, 3). Then, the following neural network can be obtained:

𝛿𝑥 (𝑡𝑘) = −𝑊1𝑥 (𝑡𝑘) + 𝑊2𝑓 (𝑥 (𝑡𝑘))

+ 𝑊3𝑓 (𝑥 (𝑡𝑘 − 𝑑𝑘)) + 𝑢 (𝑡𝑘) ,

𝑦 (𝑡𝑘) = 𝑓 (𝑥 (𝑡𝑘)) .

(37)

Theorem 9. For given scalars 0 ≤ 𝑑𝑚 ≤ 𝑑𝑘 ≤ 𝑑𝑀,
neural network is passive in (37), if there exist 𝑃 > 0,

𝑄𝑖 > 0 (𝑖 = 1, 2, 3), 𝑅 > 0, 𝑆 > 0 positive definite diagonal
matrices 𝐿1, 𝐿2,𝑋1, and𝑋2, such that the following LMI holds:

Ξ̃ < 0, (38)

where

Ξ̃ = [
Θ̃11 Θ̃12

∗ Θ̃22
] ,

Θ̃12 =
[
[
[

[

0 𝑆𝑊2 𝑆𝑊3 𝑆

1

𝑛𝑀𝑇
𝑅 Ψ25 𝑃𝑊3 𝑃

0 0 𝑋2𝐾
+
0

]
]
]

]

,

Θ̃22 =

[
[
[
[

[

−𝑄1 −
1

𝑛𝑀𝑇
𝑅 0 0 0

∗ Ψ55 0 −𝐼

∗ ∗ Ψ66 0

∗ ∗ ∗ −𝛾𝐼

]
]
]
]

]

,

(39)

and Θ̃11 = Θ11, Ψ25, Ψ55, and Ψ66 have been defined in
Theorem 7.

Proof. In order to present the passivity condition for neural
network (37), we choose the same Lyapunov-Krasovskii
functional as Theorem 7. By following the same line of proof
of Theorem 7 and considering the following inequality:

∞

∑

𝑘=0

[−𝛾𝑢
𝑇
(𝑡𝑘) 𝑢 (𝑡𝑘) − 2𝑦

𝑇
(𝑡𝑘) 𝑢 (𝑡𝑘)]

=

∞

∑

𝑘=0

[−𝛾𝑢
𝑇
(𝑡𝑘) 𝑢 (𝑡𝑘) − 2𝑦

𝑇
(𝑡𝑘) 𝑢 (𝑡𝑘) + 𝛿𝑉 (𝑡𝑘)]

− 𝑉 (∞) + 𝑉 (0)

≤

∞

∑

𝑘=0

[−𝛾𝑢
𝑇
(𝑡𝑘) 𝑢 (𝑡𝑘) − 2𝑦

𝑇
(𝑡𝑘) 𝑢 (𝑡𝑘) + 𝛿𝑉 (𝑡𝑘)] ,

(40)

it can be seen from the LMI condition (40) that
∞

∑

𝑘=0

[−𝛾𝑢
𝑇
(𝑡𝑘) 𝑢 (𝑡𝑘) − 2𝑦

𝑇
(𝑡𝑘) 𝑢 (𝑡𝑘)] ≤ 0, (41)

which means that neural network in (37) is passive. This
finishes the proof.

In the following theorem, the passivity condition for
uncertain neural network with time-varying delay in (2) and
(3) is presented.

Theorem 10. For given scalars 0 ≤ 𝑑𝑚 ≤ 𝑑𝑘 ≤ 𝑑𝑀, neural
network in (2) and (3) is passive, if there exist 𝑃 > 0, 𝑄𝑖 >
0 (𝑖 = 1, 2, 3), 𝑅 > 0, 𝑆 > 0 positive definite diagonal matrices
𝐿1, 𝐿2,𝑋1, and 𝑋2, such that the following LMI holds:

[
Θ11 Θ12

∗ Θ22
] < 0, (42)
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where

Θ12 =
[
[
[

[

𝑆𝑊2 𝑆𝑊3 𝑆 𝑆𝐻 0

Ψ25 𝑃𝑊3 𝑃 𝑃𝐻 −𝜀𝐸
𝑇

1

0 0 0 0 0

0 𝑋2𝐾
+
0 0 0

]
]
]

]

,

Θ22 =

[
[
[
[
[

[

Ψ55 0 −𝐼 0 𝜀𝐸
𝑇

2

∗ Ψ66 0 0 𝜀𝐸
𝑇

3

∗ ∗ −𝛾𝐼 0 0

∗ ∗ ∗ −𝜀𝐼 0

∗ ∗ ∗ ∗ −𝜀𝐼

]
]
]
]
]

]

.

(43)

and Θ11 = Θ̂11, Ψ25, Ψ55, and Ψ66 have been defined in
Theorem 8.

Proof. In order to present the passivity condition for neural
network in (2) and (3), we choose the same Lyapunov-
Krasovskii functional as Theorem 7. By following the same
line of proof of Theorems 8 and 9, Theorem 10 can be
proved.

4. A Numerical Example

In this section, the following numerical example is presented
to demonstrate the effectiveness of the proposed results.

Example 1. Consider discrete-time neural networks (2) and
(3) with the following parameters:

𝑊1 = [
2 0

0 2
] , 𝑊2 = [

1 1

−1 −1
] ,

𝑊3 = [
0.88 1

1 1
] ,

𝐻 = 0.1 × 𝐼, 𝐸1 = 0.1 × 𝐼,

𝐸2 = 0.2 × 𝐼, 𝐸3 = 0.3 × 𝐼,

𝐾
−
= diag {−1, −1} ,

𝐾
+
= diag {0.9, 0.9} .

(44)

In order to illustrate the effectiveness of the obtained
results, we choose 𝑇 = 0.05, 𝑛𝑚 = 10, and 𝑛𝑀 = 20. Then,
using the Matlab LMI toolbox to solve the LMI in (42), we
obtain a solution as follows:

𝑃 = [
5.2080 2.0984

2.0984 9.7576
] ,

𝑆 = [
1.2475 0.1776

0.1776 2.9572
] ,

𝑄1 = [
0.2133 −0.0219

−0.0219 1.2999
] ,

𝑄2 = [
0.4684 0.2752

0.2752 1.7084
] ,

𝑄3 = [
7.3290 6.0654

6.0654 12.4586
] ,

𝑅 = [
0.6211 0.0621

0.0621 1.5979
] ,

𝐿1 = [
0.0313 0

0 0.2507
] ,

𝐿2 = [
2.7406 0

0 0.7734
] ,

𝑋1 = [
9.4819 0

0 31.8737
] ,

𝑋2 = [
0.6547 0

0 3.2283
] ,

𝛾 = 48.7332, 𝜀 = 3.1900.

(45)

5. Conclusions

In this paper, the problems of stability and passivity analysis
for discrete-time neural networks with time-varying delay
have been studied via delta operator approach. This paper
has considered the parameter uncertainty and the generalized
activation functions. By constructing appropriate Lyapunov-
Krasovskii functional, some novel stability and passivity
criteria have been proposed in the delta operator system
framework. The obtained conditions have been expressed
in terms of LMI, which can be easily solved by standard
software. A numerical example has been given to illustrate the
effectiveness of the proposed results.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was partially supported by the National Natural
Science Foundation of China (nos. 61304003 and 11226138).

References

[1] G. A. Carpenter, “Neural network models for pattern recogni-
tion and associative memory,”Neural Networks, vol. 2, no. 4, pp.
243–257, 1989.

[2] A. N.Michel, J. A. Farrell, andH.-F. Sun, “Analysis and synthesis
techniques for Hopfield type synchronous discrete time neural
networks with application to associative memory,” Institute of
Electrical and Electronics Engineers. Transactions onCircuits and
Systems, vol. 37, no. 11, pp. 1356–1366, 1990.

[3] M. Galicki, H. Witte, J. Dörschel, M. Eiselt, and G. Griessbach,
“Common optimization of adaptive preprocessing units and a
neural network during the learning period. Application in EEG
pattern recognition,” Neural Networks, vol. 10, no. 6, pp. 1153–
1163, 1997.

[4] Y. Hayakawa, A. Marumoto, and Y. Sawada, “Effects of the
chaotic noise on the performance of a neural network model



8 Abstract and Applied Analysis

for optimization problems,” Physical Review E, vol. 51, no. 4, pp.
R2693–R2696, 1995.

[5] C. Peterson and B. Soderberg, “A new method for mapping
optimization problems onto neural networks,” International
Journal of Neural Systems, vol. 1, no. 01, pp. 3–22, 1989.

[6] S. Yin, H. Luo, and S. X. Ding, “Real-time implementation of
faulttolerant control systems with performance optimization,”
IEEE Transactions on Industrial Electronics, vol. 61, no. 5, pp.
2402–2411, 2013.

[7] S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang, “A
comparison study of basic data-driven fault diagnosis and
process monitoring methods on the benchmark tennessee
eastman process,” Journal of Process Control, vol. 22, no. 9, pp.
1567–1581, 2012.

[8] J. Cao, D.-S. Huang, and Y. Qu, “Global robust stability of
delayed recurrent neural networks,” Chaos, Solitons and Frac-
tals, vol. 23, no. 1, pp. 221–229, 2005.

[9] R. Yang, Z. Zhang, and P. Shi, “Exponential stability on stochas-
tic neural networks with discrete interval and distributed
delays,” IEEE Transactions on Neural Networks, vol. 21, no. 1, pp.
169–175, 2010.

[10] T. Chen and L. Rong, “Delay-independent stability analysis of
Cohen-Grossberg neural networks,” Physics Letters A, vol. 317,
no. 5-6, pp. 436–449, 2003.

[11] S. Arik, “An analysis of global asymptotic stability of delayed cel-
lular neural networks,” IEEE Transactions on Neural Networks,
vol. 13, no. 5, pp. 1239–1242, 2002.

[12] H. Li, B. Chen, Q. Zhou, and W. Qian, “Robust stability
for uncertain delayed fuzzy Hopfield neural networks with
Markovian jumping parameters,” IEEE Transactions on Systems,
Man, and Cybernetics B, vol. 39, no. 1, pp. 94–102, 2009.

[13] C. Li and X. Liao, “Passivity analysis of neural networks with
time delay,” IEEE Transactions on Circuits and Systems II, vol.
52, no. 8, pp. 471–475, 2005.

[14] S. Xu, W. X. Zheng, and Y. Zou, “Passivity analysis of neural
networks with time-varying delays,” IEEE Transactions on
Circuits and Systems II, vol. 56, no. 4, pp. 325–329, 2009.

[15] Q. Song, J. Liang, and Z. Wang, “Passivity analysis of discrete-
time stochastic neural networks with time-varying delays,”
Neurocomputing, vol. 72, no. 7–9, pp. 1782–1788, 2009.

[16] X. Li andH.Gao, “A newmodel transformation of discrete-time
systems with time-varying delay and its application to stability
analysis,” Institute of Electrical and Electronics Engineers. Trans-
actions on Automatic Control, vol. 56, no. 9, pp. 2172–2178, 2011.

[17] H. Gao and X. Li, “𝐻∞ filtering for discrete-time state-
delayed systemswith finite frequency specifications,” Institute of
Electrical and Electronics Engineers. Transactions on Automatic
Control, vol. 56, no. 12, pp. 2935–2941, 2011.

[18] H. Li, H. Liu, H. Gao, and P. Shi, “Reliable fuzzy control for
active suspension systems with actuator delay and fault,” IEEE
Transactions on Fuzzy Systems, vol. 20, no. 2, pp. 342–357, 2012.

[19] H. Li, X. Jing, and H. R. Karimi, “Output-feedback based 𝐻∞
control for active suspension systems with control delay,” IEEE
Transactions on Industrial Electronics, vol. 61, no. 1, pp. 436–446,
2014.

[20] L. Wu and W. X. Zheng, “Passivity-based sliding mode control
of uncertain singular time-delay systems,” Automatica, vol. 45,
no. 9, pp. 2120–2127, 2009.

[21] J. Qiu, G. Feng, and J. Yang, “A new design of delay-dependent
robust 𝐻∞ filtering for discrete-time T-S fuzzy systems with
time-varying delay,” IEEE Transactions on Fuzzy Systems, vol.
17, no. 5, pp. 1044–1058, 2009.

[22] L. Wu and W. X. Zheng, “Weighted 𝐻∞ model reduction for
linear switched systems with time-varying delay,” Automatica,
vol. 45, no. 1, pp. 186–193, 2009.

[23] J. Qiu, G. Feng, and J. Yang, “Improved delay-dependent 𝐻∞
filtering design for discrete-time polytopic linear delay systems,”
IEEE Transactions on Circuits and Systems II, vol. 55, no. 2, pp.
178–182, 2008.

[24] H. Gao, T. Chen, and J. Lam, “A new delay system approach to
network-based control,” Automatica, vol. 44, no. 1, pp. 39–52,
2008.

[25] H. Gao and T. Chen, “New results on stability of discrete-time
systems with time-varying state delay,” Institute of Electrical and
Electronics Engineers. Transactions on Automatic Control, vol.
52, no. 2, pp. 328–334, 2007.

[26] M. Liu, P. Shi, L. Zhang, and X. Zhao, “Fault-tolerant control
for nonlinear Markovian jump systems via proportional and
derivative sliding mode observer technique,” IEEE Transactions
on Circuits and Systems. I, vol. 58, no. 11, pp. 2755–2764, 2011.

[27] S. Tong and Y. Li, “Adaptive fuzzy output feedback tracking
backstepping control of strict-feedback nonlinear systems with
unknown dead zones,” IEEE Transactions on Fuzzy Systems, vol.
20, no. 1, pp. 168–180, 2012.

[28] S. Tong, Y. Li, Y. Li, and Y. Liu, “Observer-based adaptive fuzzy
backstepping control for a class of stochastic nonlinear strict-
feedback systems,” IEEE Transactions on Systems, Man, and
Cybernetics B, vol. 41, no. 6, pp. 1693–1704, 2011.

[29] S. Tong, Y. Liu, andT. Li, “Adaptive fuzzy robust output feedback
control of nonlinear systems with unknown dead zones based
on small-gain approach,” IEEE Transactions on Fuzzy Systems,
vol. 22, no. 1, pp. 164–176, 2014.

[30] S. Xu, J. Lam, D. W. C. Ho, and Y. Zou, “Delay-dependent
exponential stability for a class of neural networks with time
delays,” Journal of Computational and AppliedMathematics, vol.
183, no. 1, pp. 16–28, 2005.

[31] Z. Wang, Y. Liu, M. Li, and X. Liu, “Stability analysis for
stochastic Cohen-Grossberg neural networks with mixed time
delays,” IEEE Transactions on Neural Networks, vol. 17, no. 3, pp.
814–820, 2006.

[32] C. Hua, C. Long, and X. Guan, “New results on stability analysis
of neural networks with time-varying delays,” Physics Letters A,
vol. 352, no. 4-5, pp. 335–340, 2006.

[33] S. Xu and J. Lam, “A new approach to exponential stability
analysis of neural networks with time-varying delays,” Neural
Networks, vol. 19, no. 1, pp. 76–83, 2006.

[34] Y.He,G. P. Liu,D. Rees, andM.Wu, “Stability analysis for neural
networks with time-varying interval delay,” IEEE Transactions
on Neural Networks, vol. 18, no. 6, pp. 1850–1854, 2007.

[35] S. Arik, “Further analysis of stability of uncertain neural
networks with multiple time delays,” Advances in Difference
Equations, vol. 2014, article 41, 2014.

[36] Z. Orman and S. Arik, “An analysis of stability of a class
of neutral-type neural networks with discrete time delays,”
Abstract and Applied Analysis, vol. 2013, Article ID 143585, 9
pages, 2013.

[37] Z.-G. Wu, P. Shi, H. Su, and J. Chu, “Passivity analysis for
discrete-time stochastic markovian jump neural networks with
mixed time delays,” IEEE Transactions on Neural Networks, vol.
22, no. 10, pp. 1566–1575, 2011.

[38] H. Li, C. Wang, P. Shi, and H. Gao, “New passivity results for
uncertain discrete-time stochastic neural networks with mixed
time delays,” Neurocomputing, vol. 73, no. 16–18, pp. 3291–3299,
2010.



Abstract and Applied Analysis 9

[39] H. Li, H. Gao, and P. Shi, “New passivity analysis for neural net-
works with discrete and distributed delays,” IEEE Transactions
on Neural Networks, vol. 21, no. 11, pp. 1842–1847, 2010.

[40] D. H. Ji, J. H. Koo, S. C. Won, S. M. Lee, and J. H. Park,
“Passivity-based control for Hopfield neural networks using
convex representation,”Applied Mathematics and Computation,
vol. 217, no. 13, pp. 6168–6175, 2011.

[41] A.Wu andZ. Zeng, “Exponential passivity ofmemristive neural
networks with time delays,” Neural Networks, vol. 49, pp. 11–18,
2014.

[42] G. C. Goodwin, R. L. Leal, D. Q. Mayne, and R. H. Middleton,
“Rapprochement between continuous and discretemodel refer-
ence adaptive control,” Automatica, vol. 22, no. 2, pp. 199–207,
1986.

[43] C. B. Soh, “Robust stability of discrete-time systems using
delta operators,” Institute of Electrical and Electronics Engineers.
Transactions on Automatic Control, vol. 36, no. 3, pp. 377–380,
1991.

[44] Y. Xia,M. Fu,H.Yang, andG.-P. Liu, “Robust sliding-mode con-
trol for uncertain time-delay systems based on delta operator,”
IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp.
3646–3655, 2009.

[45] J. Qiu, Y. Xia, H. Yang, and J. Zhang, “Robust stabilisation for a
class of discrete-time systems with time-varying delays via delta
operators,” IET Control Theory & Applications, vol. 2, no. 1, pp.
87–93, 2008.

[46] S. Li, Z. Xiang, and H. R. Karimi, “Finite-time 𝐿1-gain control
for positive switched systems with time-varying delay via delta
operator approach,” Abstract and Applied Analysis, vol. 2014,
Article ID 872158, 11 pages, 2014.

[47] X. Xie, S. Yin, H. Gao, and O. Kaynak, “Asymptotic stability
and stabilisation of uncertain delta operator systems with time-
varying delays,” IET Control Theory & Applications, vol. 7, no. 8,
pp. 1071–1078, 2013.

[48] H. Yang, Y. Xia,M. Fu, andP. Shi, “Robust adaptive slidingmode
control for uncertain delta operator systems,” International
Journal of Adaptive Control and Signal Processing, vol. 24, no.
8, pp. 623–632, 2010.

[49] Z. R. Xiang, Q.W. Chen,W. L. Hu, andD. J. Zhang, “Robust sta-
bility analysis and control for fuzzy systems with uncertainties
using the delta operator,”Control and Decision, vol. 18, no. 6, pp.
720–723, 2003.

[50] X. Jiang, Q.-L. Han, and X. Yu, “Stability criteria for linear
discrete-time systems with interval-like time-varying delay,” in
Proceedings of the American Control Conference (ACC ’05), pp.
2817–2822, June 2005.

[51] M. S. Mahmoud, Resilient Control of Uncertain Dynamical
Systems, vol. 303 of Lecture Notes in Control and Information
Sciences, Springer, Berlin, Germany, 2004.

[52] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear
Matrix Inequalities in System and Control Theory, vol. 15 of
SIAMStudies in AppliedMathematics, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, Pa, USA, 1994.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


