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This work presents how the analytical sensitivity of Lya-
punov Characteristic Exponents can be used in the de-
sign of nonlinear dampers, which are frequently utilized
to stabilize the response of mechanical systems. The ki-
netic energy dissipated in the form of heat often induces
non-linearities, therefore reducing the reliability of stan-
dard stability evaluation methods. Owing to the difficulty
of estimating the stability properties of equilibrium so-
lution of the resulting nonlinear time-dependent systems,
engineers usually tend to linearize and time-average the
governing equations. However, the solutions of nonlin-
ear and time-dependent dynamical systems may exhibit
unique properties, which are lost when they are simpli-
fied. When a damper is designed based on a simplified
model, the cost associated with neglecting nonlinearities
can be significantly high, in terms of safety margins that
are needed as a safeguard with respect to model uncer-
tainties. Therefore, in those cases, a generalized stability
measure, with its parametric sensitivity, can replace usual
model simplifications in engineering design, especially
when a system is dominated by specific, non-negligible
nonlinearities and time-dependencies. The estimation of
the characteristic exponents and their sensitivity is illus-
trated. A practical application of the proposed methodol-
ogy is presented, considering the problem of helicopter
ground resonance and landing gear shimmy vibration
with nonlinear dampers are implemented instead of lin-
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ear ones. Exploiting the analytical sensitivity of the Lya-
punov Exponents within a continuation approach, the ge-
ometric parameters of the damper are determined. The
mass of the damper and the largest characteristic expo-
nent of the system are used as the objective function and
the inequality or equality constraint in the design of the
viscous dampers.

1 Introduction
Stability is defined as the study of the nearby solu-

tions of an equilibrium under the presence of a perturba-
tion [1]. The stability characteristics of a system strongly
depend on the level of nonlinearity and time dependence
of the governing equations. If the nonlinear terms can
be neglected, a dynamical system either converges, di-
verges or becomes marginally stable and follows a non-
isolated orbit. However, nonlinear systems are more com-
plicated and require deeper understanding for several rea-
sons. First of all, there can exist more than one equi-
librium solution, and the trivial solution, i.e. a stationary
one, may or may not be one of them [2]. Therefore, stabil-
ity is not a global property and likely depends on the state
of the system. Moreover, there are more complex behav-
iors in addition to that of linear systems. A typical ex-
ample is that of limit cycle oscillations (LCO), which are
defined as isolated, closed trajectories of non-linear dy-
namical systems. When an LCO develops, the system os-



cillates in a self-sustained manner without the need of an
external input [3]. The amplitude of an LCO depends on
the structure of the system, regardless of the initial con-
ditions, as opposed to non-isolated orbits of marginally
stable linear systems. Chaos is another strange behavior,
defined as an unpredictable, unstable but bounded mo-
tion [2]. Indeed, unlike linear systems, there is no correla-
tion between boundedness and stability of a solution [4].
These phenomena, whose occurrence may have signifi-
cant effects on the performance of the design, can be de-
tected only if the nonlinearities of the system are not ne-
glected [5, 6].

Stability qualities of a dynamical system can be as-
sessed using different approaches. Examples are experi-
menting with a physical system or running a simulation
in a virtual environment. In both cases, the system is per-
turbed using an input channel and measuring the decay-
ing characteristics of an output channel. However, sta-
bility assessment through experiments and simulation is
somewhat limited, since not all the input and output chan-
nels can be practically tested or simulated. However, a
complete and quantitative understanding of the stability
characteristics is possible using spectral methods. The
practical, quantitative way of measuring spectra depends
on whether a system is autonomous — i.e. non time-
dependent — and linear. Linear Time Invariant (LTI)
and Linear Time Periodic (LTP) problems typically re-
sult from the linearization of nonlinear, non-autonomous
problems about a steady (both LTI and LTP) or a periodic
(LTP only) reference solution. They rely on eigenanalysis
of special matrices and require the existence of such so-
lutions, and the capability to identify and compute them.
Obtaining a steady or periodic solution by numerical in-
tegration in time requires that solution to be stable; its
computation must start from within its region of attrac-
tion.

A method that does not require a special reference so-
lution (i.e. a stable point or a stable orbit) but, on the con-
trary, provides indications about the existence of an at-
tractor, being it a point, a periodic orbit or a higher-order
solution (e.g. a multidimensional torus), while computing
the evolution of the system towards it, would give valu-
able insight into the system properties and, at the same
time, provide a viable and practical means for its analy-
sis. Lyapunov Characteristic Exponents (LCE), or Lya-
punov Exponents in short, are indicators of the nature
and of the stability properties of solutions of differential
equations (see for example [4, 7] and references therein).
They define the spectrum of the related Cauchy (initial
value) problem. Lyapunov’s theory can be applied to
nonlinear, time-dependent systems of differential equa-
tions. The stability of trajectories in state space can be es-
timated while computing their evolution. The possibility
to extend the approach to systems of differential-algebraic

equations, as outlined for example in [8–10], represents a
promising development, in view of their use in the formu-
lation of modern multibody dynamics.

In a dynamical system, especially when it is used for
design , the rate of change of stability indicators estimates
with respect to a parameter plays a significant role when
the value of the parameter is expected to change or is
uncertain, needs to be modified in later design phases,
or is determined by means of an optimization process.
Therefore, such sensitivity is useful to gain insight into
the dependence of stability indicators on system parame-
ters, or can be integrated into gradient-based (or gradient-
aware) optimization procedures [11] and continuation al-
gorithms [12], or into uncertainty evaluation problems.
Methods to estimate the sensitivity of stability measures
are required, either analytic or numerical. The latter re-
quire the calculation of stability measures with and with-
out perturbations in the parameter, followed by finite dif-
ferences. However, for nonlinear systems, a change in the
value of a parameter does not change only the stability
properties, but also the reference trajectory, whereas that
trajectory does not depend on the perturbation for linear
systems. Hence, the development of analytical sensitiv-
ity estimation is preferable, to avoid problems related to
sharp changes in sensitivity to parameters, and to gain the
capability to detect such topology changes of the solution
and track them using continuation algorithms.

The estimation of analytical sensitivity of stability in-
dicators has been studied in the literature based on linear-
ity and periodicity assumption (for example, Adrianova
in Ref. [4] studied the sensitivity of the spectrum of linear
systems to parameter uncertainty; Shih et al. in Ref. [13]
discussed parametric sensitivity of nonlinear and peri-
odic systems). An original contribution, introduced by
the authors, utilizes the analytical sensitivity of LCE es-
timates to changes in system parameters for nonlinear,
non-autonomous problems [14]. The analytical sensitiv-
ity problem is based on the Discrete QR method, which
exploits the QR decomposition of the state transition ma-
trix Y(t, t0) of a differential problem using the tangent
manifold of the so-called fiducial trajectory.

In a design problem, several parameters and compo-
nents that might affect stability may require close atten-
tion. Among them, dampers are specifically aimed at im-
proving the convergent characteristics of the system re-
sponse, therefore being a rather critical subsystem with
respect to stability. The energy dissipation characteris-
tic of dampers often depends on friction, which is intrin-
sically non-linear and time-dependent. Therefore, even
though the rest of the system can be analyzed for stabil-
ity using a linearized model with acceptable error mar-
gins, the addition of dampers can turn an otherwise lin-
ear time invariant system into a nonlinear time-dependent
one. Therefore, the optimal design of dampers can benefit



from the sensitivity of stability indicators obtained with-
out undue linearity assumptions. This work demonstrates
the use of the LCE sensitivity estimation, based on the ap-
proach formulated in Ref. [14], in design optimization of
nonlinear problems, with specific reference to dampers.
Section 2 introduces LCEs, their estimation, and that of
their sensitivity. Section 3 describes an example prob-
lem and an optimization strategy that exploits sensitivity
of LCEs. Section 4 presents the validation and optimiza-
tion results achieved using the proposed method. Finally,
some conclusions are drawn.

2 Spectrum of Non-Autonomous Problems and Its
Sensitivity
This section briefly recalls the definition of non-

autonomous problems and of LCEs as a measure of their
spectrum, along with numerical procedures for their es-
timation, and the procedure for the estimation of their
sensitivity to system parameters. Readers may refer
to [14] and [15] for more details.

2.1 Non-Autonomous Problems
In engineering practice, initial value, or Cauchy, dif-

ferential problems of the form

ẋ = f(x, t) , x(t0) = x0 (1)

often arise. Special cases occur when the problem is lin-
ear, i.e. f(x, t) = A(t)x(t), and in particular periodic, i.e.
linear with A(t +T ) = A(t) for a given constant T , called
the period, ∀t. Autonomous problems arise when f(x)
does not explicitly depend on time t; a special case oc-
curs when the problem is linear, i.e. f(x) = Ax, with A
constant, leading to a LTI problem. Stability indicators
are the real part of the eigenvalues of matrix A for LTI
systems, the logarithm of the real part of the eigenvalues
of the monodromy matrix divided by the period for LTP
problems and, as discussed in this work, LCEs for nonlin-
ear, non-autonomous problems, a definition that includes
LTI and LTP ones as special cases.

2.2 Lyapunov Characteristic Exponents
Given the problem of Eq. (1), with the state x ∈ Rn,

the time t ∈R, and the nonlinear function f∈Rn+1→Rn,
and a solution x(t) for given initial conditions x(t0) = x0,
its Lyapunov Characteristic Exponents λi are defined as:

λi = lim
t→∞

1
t

log‖ix(t)‖ , (2)

where ix(t) is the solution that describes the exponential
evolution of the i-th axis of the ellipsoid that grows from

an initially infinitesimal n-sphere according to the map
f/x tangent to f along the fiducial trajectory x(t), i.e. the
solution of the linear, non-autonomous problem iẋ(t) =
f/x(x(t), t) ix(t), with ix(t0) = ix0. The definition involves
the limit for t → ∞; hence, in practice LCEs can only be
numerically estimated for a sufficiently large value of t. In
this study, unless explicitly stated, with the term “LCEs”
we refer to their estimation using a large enough value of
t.

LCEs represent a measure of the rate of growth of
perturbed solutions. Consider infinitesimal, independent
perturbations of the states with respect to a solution x(t)
of Eq. (2), the fiducial trajectory. Formally, the perturbed
solution can be written in terms of the state transition ma-
trix Y(t, t0), since it is linear, considering A(x, t) = f/x, as
the solution of the problem

Ẏ(t, t0) = A(x, t)Y(t, t0), Y(t0, t0) = I. (3)

2.3 The Discrete QR Method
The definition of Eq. (2) is not practical, because the

determinant of the state transition matrix usually either
contracts to zero or expands to infinity, depending on the
(lack of) stability of the solution, thus either under- or
overflowing. Numerical methods have been devised for
this purpose. A quite popular one is the so-called Dis-
crete QR method, which is based on incrementally up-
dating the LCE estimates with the contribution of the di-
agonal elements of the matrix R resulting from the QR
decomposition of the state transition matrix between two
consecutive time steps.

Given the state transition matrix Y(t, t j−1) from time
t j−1 to an arbitrary time t as the solution of the prob-
lem Ẏ = f/x(x(t), t)Y with Y(t j−1, t j−1) = I, set Y j =
Y(t j, t j−1). Consider the QR decomposition of Y jQ j−1,
which implies Q jR j = Y jQ j−1. After defining RΠ j =

Π
j
k=0R j−k, one can show that

Y jQ j−1RΠ j−1 = Q jR jRΠ j−1 = Q jRΠ j = Y(t j, t0) (4)

This way, QT
j Y jQ j−1RΠ j−1 can be used to construct RΠ j

by only considering incremental QR decompositions over
Y jQ j−1, i.e. with limited contraction/expansion.

The LCEs are then estimated from RΠ j as:

λi = lim
j→∞

1
t j

logrii(t j) = lim
j→∞

1
t j

j

∑
k=0

log(rkii), (5)

where rii(t j) are the diagonal elements of matrix R(t j) =
RΠ j .



To calculate LCEs using the QR method, the state
transition matrix Y(t, t j) is necessary. Usually, analyti-
cal integration is not possible; therefore, a numerical ap-
proach is needed, which can be obtained by considering
a time step small enough to make the assumption of con-
stant Jacobian matrix of the problem, Â, acceptable. In
this case, the state transition matrix can be written as

Y(t, t j)≈ eÂ(t−t j)Y(t j,0), (6)

where Y(t j,0) results from integration starting from t = 0,
with Y(0) = I, thus it is available at the current time step
t j. The matrix exponential can be calculated using matrix
power series,

eAt = I+At +
1
2

A2t2 +
1
6

A3t3 + ...=
+∞

∑
k=0

1
k!

Aktk (7)

which can be approximated by truncation at some order
of k, depending on the size of the time step.

It is worth stressing that estimating LCEs can be
a rather computationally expensive and time consuming
process, whose cost is by far not commensurable with
computing the eigenvalues of the system matrix, as for
LTI problems, nor with computing the monodromy ma-
trix and extracting its eigenvalues, as for LTP ones.

2.4 Sensitivity of Lyapunov Exponents Estimates
Consider a set of bounded parameters p ∈ P , and as-

sume that the problem ẋ = f(x, t,p) depends on the pa-
rameters in p. The sensitivity of the LCEs with respect to
a generic parameter p ⊂ p, using the summation form of
Eq. 5, can be expressed as

λi/p = lim
j→∞

1
t j

j

∑
k=1

rkii/p

rkii

. (8)

In this case, only the sensitivity of each of the R j matri-
ces is needed, which is obtained in the next section by
computing the sensitivity of the QR decomposition.

2.5 Sensitivity of QR Decomposition
The sensitivity of the QR decomposition can be ob-

tained along the lines of the state transition matrix QR
decomposition differentiation that is used to formulate the
continuous QR method for LCE estimation (see for exam-
ple [7, 16]).

Consider the QR decomposition of an arbitrary ma-
trix M ∈ Rn×n:

M = QR (9)

with QT Q= I, and R upper triangular, with positive diag-
onal elements. Consider the derivative of M with respect
to a scalar parameter p,

M/p = Q/pR+QR/p, (10)

and the corresponding derivative of the orthogonality con-
dition QT Q = I,

(
QT )

/p Q+QT Q/p = 0, (11)

i.e.

(
QT Q/p

)T
+QT Q/p = 0. (12)

The latter condition states that QT Q/p must be skew-
symmetric; thus, only n(n− 1)/2 coefficients are inde-
pendent (for example, those in the strictly lower triangu-
lar portion, i.e. the lower triangular part, excluding the
diagonal).

Finally, premultiply M/p by QT :

R/p = QT M/p−QT Q/pR (13)

Since matrix R/p is upper triangular, the whole problem
can be re-cast in the form1 :

compute W = QT Q/p (14a)

such that stril
(
QT M/p−WR

)
= stril(0) (14b)

subjected to WT +W = 0 (14c)

compute R/p (14d)

such that triu
(
R/p
)
= triu

(
QT M/p−WR

)
(14e)

and stril
(
R/p
)
= stril(0) . (14f)

The last statement is redundant since W computed ac-
cording to Eqs. (14a–c) already yields R/p with the
strictly lower triangular part set to zero.

It is worth noticing that, since R is upper triangular,
W is computed as

WL = stril
(
QT M/pR−1) W = WL−WT

L (15)

1Operator triu(·) extracts the upper triangular part of the argument;
operator stril(·) extracts the strictly lower triangular part of the argu-
ment.



where R−1 does not require any factorization, but only
back-substitution. In fact, after setting B = QT M/p, the
generic coefficient of stril(W) is

wi j =
1

r j j

(
bi j−

j−1

∑
k=1

wikrk j

)
j = 1,n−1 i = j+1,n.

(16)

Then

Q/p = QW. (17)

2.6 Sensitivity of Lyapunov Exponents Estimated by
the Discrete QR Method

The discrete QR method requires the decomposition
of Y jQ j−1; thus, the sensitivity of Y jQ j−1 = Q jR j is ac-
tually required, i.e.

Q j/pR j +Q jR j/p = Y j/pQ j−1 +Y jQ( j−1)/p, (18)

where Q j−1 and Q( j−1)/p are available from the previous
step.

First of all, Eq. (18) is premultiplied by QT
j to obtain

QT
j Q j/pR j +R j/p = QT

j Y j/pQ j−1 +QT
j Y jQ( j−1)/p.

(19)

Then the strictly lower triangular part of the equation is
evaluated to compute WL,

WL = stril
((

QT
j Y j/pQ j−1 +QT

j Y jQ( j−1)/p
)

R−1
j

)
= stril

((
QT

j Y j/pQ j−1 +R jW j−1
)

R−1
j

)
, (20)

the strictly lower triangular part of W j = QT
j Q j/p =

WL−WT
L . See Eq. (16) for details about the computa-

tion of WL.
Finally, the upper triangular part of Eq. (19) is evalu-

ated to obtain R j/p,

R j/p = QT
j
(
Y j/pQ j−1 +Y jQ( j−1)/p

)
−W jR j

= QT
j Y j/pQ j−1 +R jW j−1−W jR j (21)

The sensitivity of Y j, i.e. the state transition matrix from
t j−1 to t j, is needed.

2.7 Sensitivity of the State Transition Matrix
The sensitivity of Y at time t j, namely Y/p(t j), is

needed to compute the sensitivity of the LCEs. In prin-
ciple, this is obtained by integrating the sensitivity of the
problem Ẏ = AY. Then

Ẏ/p = AY/p +
(
A/xx/p +A/p

)
Y

= AY/p +
dA
dp

Y, (22)

i.e. a problem with the same matrix A of the original one,
forced by a term (dA/dp)Y that depends on the reference
solution, as also noted in Ref. [13] in the context of pa-
rameter sensitivity of nonlinear periodic problems. The
term A/x is the second-order derivative of function f with
respect to the state x. It vanishes for linear problems. The
sensitivity of the state to the parameter p is obtained by
perturbing the problem ẋ = f(x, t),

ẋ/p = f/xx/p + f/p, (23)

and integrating it in time accordingly. A similar problem
needs to be solved for each parameter.

The sensitivity of the state transition matrix,
Y/p(t, t j), can be calculated using an approach similar to
the one that was used to calculate the state transition ma-
trix. The derivative of Eq. (6) yields

Y/p(t, t j)≈
(

eÂ(t−t j)
)
/p

Y(t j)+ eÂ(t−t j)Y/p(t j,0),

(24)

where the state transition matrix Y(t j) and its sensitiv-
ity Y/p(t j,0) are known, since they are integrated starting
from t = 0 with Y(0) = I and Y/p(0) = 0. The derivative
of the matrix exponential function can be calculated using
the matrix power series formula of Eq. (7),

(
eÂ(t−t j)

)
/p

= A/pt +
1
2
(A/pA+AA/p)t

2

+
1
6
(A/pA2 +AA/pA+A2A/p)t

3 + ...

=
+∞

∑
k=0

1
k!

k

∑
i=0

AiA/pAk−itk+1, (25)

which again can be approximated by truncation, e.g. for
kmax = 1, considering a small enough time step. Alter-
natively, more accurate estimates of the sensitivity of the
state transition matrix can be computed by solving the re-
lated differential equation.



3 Example Problem Set-up
This section describes how the proposed methodol-

ogy is applied to the practical case of damper design.
Two aerospace problems are selected. The first one is
the helicopter ground resonance, which requires dampers
between the rotor hub and the blades to contrast blade
motion that would displace the rotor center of mass, pre-
venting divergent oscillations of the airframe. The second
one is shimmy vibration of landing gears, which is cured
by adding dampers to contrast the yaw oscillations of the
tire. For both problems, a viscous damper is considered,
whose damping coefficients are related to the nonlinear
fluid flow. The optimization method is based on continu-
ation, which uses the LCE estimates and their sensitivity
to find the desired performance and mass values for the
dampers.

3.1 Baseline Linear Models
3.1.1 Ground Resonance Model

A common, yet dangerous dynamic problem of he-
licopters is Ground Resonance (GR). It is a mechanical
instability associated with the degrees of freedom that de-
scribe the lead-lag motion of the rotor blades [17] when
the helicopter is in contact with the ground. The com-
bination of the in-plane motion of the blades causes an
overall in-plane motion of the rotor center of mass, which
couples with the fixed frame pitch and roll dynamics of
the airframe and undercarriage system. For this reason,
the damping of the in-plane motion of the blades can
be critical in articulated and soft-inplane rotor designs.
In those cases, damping is usually provided by lead-lag
dampers. Since these dampers are added to each blade,
the cost, weight and maintenance penalty is multiplied by
the number of blades, therefore a trade-off is sought be-
tween the stability margin and the mass and complexity
of the damper.

Owing to its simplicity, Hammond’s model [18] has
been extensively used to study GR. A sketch of the model
is presented in Fig. 1; the corresponding numerical val-
ues are listed in Table 1. Hammond’s ground resonance
model is a linear differential equation:

Mẍ+Cẋ+Kx = 0 (26)

which can be written in state space form as

{
ẋ
ẍ

}
=

[
0 I

−M−1K M−1C

]{
x
ẋ

}
(27)

where the degrees of freedom vector is

x =
{

ζ1 ζ2 ζ3 ζ4 Xh Yh
}T (28)

generalized forces on the cyclic lead-lag equations. So, the required

feedback structure is obtained. Only the cyclic rotations are needed,

because the collective and reactionless lag motions do not couple

with the in-plane hub displacement for a linear isotropic rotor model.

As a result, the portion of the plant model of Eq. (3), which is relevant

for the analysis, namely G22 in Eq. (4), is represented by a 2 × 2
matrix, regardless of the level of detail considered in modeling the

rotorcraft. The lead-lag rotation ζ�i� of the ith blade of a b-bladed

rotor (i � 1; b) in the rotating reference frame can be computed from

the corresponding collective ζ0, first-order cyclic ζ1c, ζ1s, and higher-

order multiblade coordinates, according to

ζ�i� � ζ0 �
X

�b−1�∕2

n�1

�ζnc cos nψ i � ζns sin nψ i� (22)

when b is odd, or

ζ�i� � ζ0 �
X

b∕2−1

n�1

�ζnc cos nψ i � ζns sin nψ i� � ζb∕2�−1�
i (23)

otherwise, where ψ i � Ωt� i2π∕b and Ω is the angular velocity of

the rotor. It is well known that only the first-order cyclic coordinates

ζ1c and ζ1s are needed in linearized air/ground resonance analysis

because only these terms couple with the pitch/roll motion of the

airframe, corresponding to an in-planemotion of the rotor center. As a

consequence, the lead-lag rotation ζ�i� and angular velocity _ζ�i� in the
rotating reference frame can be expressed as

ζ�i� ≅ ζ1s sin ψ i � ξ1c cos ψ i (24)

_ζ�i� ≅ �_ζ1s −Ωζ1c� sin ψ i � �_ζ1c �Ωζ1s� cos ψ i (25)

Assuming linear viscoelastic behavior, the ith blade damper

generates a moment

f�i��ζ�i�; _ζ�i�� � �Kd � δKd�ζ
�i� � �Cd � δCd�_ζ

�i� (26)

Regardless of the type of constitutive law, all dampermoments can be

projected back onto the cyclic lead-lag equations by

f1s �
2

b

X

b

i�1

f�i� sinψ i (27)

f1c �
2

b

X

b

i�1

f�i� cos ψ i (28)

When identical dampers are assumed for all blades, the resulting
uncertainty operator is

Δ�jω� � Δ0�jω� � δΔ�jω�

Δ0�jω� �

"

Kd0 � jωCd0 ΩCd0

−ΩCd0 Kd0 � jωCd0

#

(29)

δΔ�jω� �

�

δKd � jωδCd ΩδCd

−ΩδCd δKd � jωδCd

�

(30)

After substituting the expression of Eq. (30) in Eqs. (19) and (20), or
in Eq. (21), the allowed uncertainty in the parameter space can be
inferred.

IV. Illustrative Numerical Example: Hammond’s Rotor

The very simple ground resonance example represented by the
single main rotor helicopter proposed by Hammond in the seminal
paper [12] has been chosen from the open literature to present the
potential of the synthesis approach proposed in the preceding
sections. In this case, the simple four degrees-of-freedom model can
adequately represent the phenomenon.
Using the nominal model with the parameters presented in Table 1,

the rotor is always stable up to a rotor speed equal to 150% of
the nominal angular speed considered in this study, Ω0 � 200 rpm,
as shown in Fig. 5. However, the regressive lag mode shows a critical
interaction, first with the x hub mode around 50% rpm and then with
the y hub mode at 100% rpm.
The trend of the GSMVs ρie

jθi computed using Eq. (11) is shown
in Fig. 6, where the amplitude and the phase of the margin vectors
are shown as functions of the oscillation frequency ω. The terms
ρi�ω� and θi�ω�, respectively, represent the amplitude and phase
perturbations with respect to the nominal system that take it to the
verge of stability at frequency ω.
Themargin amplitude associatedwith the second eigenvector ρ2 is

close to one for all frequencies, and also the phase angle is almost
constant. So, the associated eigenvalue is almost constant at all
frequencies. The margin amplitude associated with the first
eigenvector ρ1 is below one only for a limited range of frequencies.
Whenever ρi is above one, the system should be considered very
safe because this is the value reached asymptotically at very high
frequency when all the eigenvalues of the nominal transfer matrix
tend to zero. Above a certain frequency close to 1∕rev, the amplitude
of the generalized margin grows well above one, and so there is no
need to analyze this region in detail. Instead, when the amplitude of
the margin approaches zero, the system must be considered
marginally stable. Thus, the plot in Fig. 6 indicates that, in this case,
the band of frequencies between 0.7∕rev and 1∕revmaybe critical for
the stability of the plant.

Table 1 Hammond’s rotor parameters (see Fig. 4)

No. of blades b 4

Lag hinge offset e 0.3048 m
Blade mass Mb 94.9 kg
Blade first inertia moment Sb 289.1 kg · m
Blade second inertia moment Ib 1,084.7 kg · m2

Lag damper nominal stiffness Kd0 0.0 N · m∕rad
Lag damper nominal damping Cd0 4,067.5 N · m · s∕rad
Hub equivalent mass x Mx 8,026.6 kg
Hub equivalent mass y My 3,283.6 kg
Hub equivalent spring x; y Kx, Ky 1,240,482.0 N∕m
Hub equivalent damping x Cx 51,079.0 N · s∕m
Hub equivalent damping y Cy 25,539.0 N · s∕m

Fig. 4 Mathematical model of rotor blades and hub.
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(a) Hammond’s Model

  

ed

(b) Offset from lag hinge

Fig. 1: Sketch of Hammond’s helicopter ground reso-
nance model with one blade is presented for clarity (a)
and typical collocation of lag damper (b).

for ζi, i = 1 : 4 is the blade lead lag angle; Xh and Yh are
hub motion. The matrices of Eq. 28 are given as:

M =



Jζ 0 0 0 0 0
0 Jζ 0 0 0 0
0 0 Jζ 0 0 0
0 0 0 Jζ 0 0
0 0 0 0 Mx 0
0 0 0 0 0 My

+Sζ


0 0 0 0 −s c
0 0 0 0 −c −s
0 0 0 0 s −c
0 0 0 0 c s
−s −c s c 0 0
c −s −c s 0 0


(29a)

C =



Cζ 0 0 0 0 0
0 Cζ 0 0 0 0
0 0 Cζ 0 0 0
0 0 0 Cζ 0 0
0 0 0 0 Cx 0
0 0 0 0 0 Cy

+2ΩSζ


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
s c −s −c 0 0
−c s c −s 0 0


(29b)

K =



Kζ 0 0 0 0 0
0 Kζ 0 0 0 0
0 0 Kζ 0 0 0
0 0 0 Kζ 0 0
0 0 0 0 Kx 0
0 0 0 0 0 Ky

+Ω
2Sζ


e 0 0 0 0 0
0 e 0 0 0 0
0 0 e 0 0 0
0 0 0 e 0 0
s −c s c 0 0
−c s c −s 0 0


(29c)



where s = sinψ, c = cosψ, being ψ = Ωt the azimuth
angle of the first blade. Note that although the equations
are time dependent, they can be written in time invariant
form using multiblade coordinates [19]. However, since
Lyapunov Exponents are estimated as the system evolves
in time, using multiblade coordinates is not necessary.
The nonlinear terms can be added to the linear state space
form as a forcing function:

{
ẋ
ẍ

}
=

[
0 I

−M−1K −M−1C

]{
x
ẋ

}
+

{
0

M−1fNL

}
(30)

Table 1: Numerical values of Hammond ground reso-
nance model parameters [18].

Number of blades N 4

Blade static moment Sζ 189.1 kg m

Blade inertia Jζ 1084.7 kg m2

Lag hinge offset e 0.3 m

Lag spring Kζ 0.0 N m rad−1

Lag damper Cζ 4067.5 N m rad−1s

Hub mass Mx 8026.6 kg

My 3283.6 kg

Hub damper Cx 51.0 kN s m−1

Cy 25.5 kN s m−1

Hub spring Kx 1240.4 kN m−1

Ky 1240.4 kN m−1

3.1.2 Shimmy Vibration of Landing Gears
Shimmy is a self-excited oscillation of an aircraft

landing gear as a result of dynamic forces between the
tires and the ground during high-speed taxiing, e.g. dur-
ing take-off and landing [20]. Mounting a damper with
an offset from the steering axis is a typical solution to
dissipate the oscillation energy [21]. The damper is de-
signed according to the desired stability characteristics
of the overall landing gear system. There are several
methods for the stability analysis of shimmy vibration,
one of them being the usual eigenanalysis after lineariza-
tion [22]. Although eigenvalues are effective and provide
quantitative stability indications, this type of analysis is
limited to linear models. Considering that the shimmy
dampers used in various aircraft have nonlinear damping

characteristics [23], LCEs can be used to generalize the
stability analysis of shimmy vibrations to non-linear, time
dependent models. Moreover, LCE sensitivity to design
parameters can help optimizing the design of the damper.
To illustrate this claim, a simplified yaw dynamics of a
landing gear is adopted from [24]. As presented in Fig. 2,
the model includes the yaw (ψ) and lateral motion of the
leading point of tire ground contact (y). The equations
of motion for the linear yaw dynamics with nonlinear
damper are expressed in the form ẋ = Ax with:

A =


0 1 0

−
kψ

Iz
−

cψ

Iz
− κ

V Iz

Fz (CMα− ecCFα)

Izσ

V ec−a
V
σ

 ,x =


ψ

ψ̇

y


(31)

where the variables are defined and reported in Table 2.
The nonlinear terms can be added to the linear state space
form as a forcing function:

ẋ = Ax+ fNL (32)

  

V

ed

ec

ψ

Fig. 2: Idealized yaw motion dynamics of a landing gear

3.2 Nonlinear Damper
Hammond’s ground resonance and shimmy vibration

models are linear. Both result from the linearization of
several contributions, ranging from geometrical to consti-
tutive. In this work, they are referred to as baseline, and
modified with non-linear blade lead-lag dampers. In this
work, the design optimization is performed on a viscous
damper, which is very popular and finds several applica-
tions, ranging from automotive suspensions [25] to heli-
copter rotor blades [26]. The constitutive nonlinearity of
hydraulic lead-lag dampers is considered, using a typical
viscous damper as presented in Fig. 3. The damping force
is assumed to be sum of a linear and a quadratic term:

Fd =CLẋ+CQ|ẋ|ẋ (33)



Table 2: Numerical values of shimmy vibration model
[24].

Forward Velocity V 50 m s−1

Caster length ec 0.12 m

Damper distance ed 0.30 m

Yaw damping cψ Variable N m s rad−1

Yaw stiffness kψ 380000 N m rad−1

Half contact length a 0.1 m

Relaxation length σ = 3a 0.3 m

Vertical force Fz 150 kN

Moment derivative CMα −1 m rad−1

Side force derivative CFα 0.002 rad−1

Tire damping κ 570 N m2 rad−1

Inertia Iz 100 kg m2

  

tp

tc
ld

Ap

Ao

Ab

(a) Damper Parameters

Fig. 3: Cross section of a typical viscous damper

which is added to the baseline models as a forcing contri-
bution.

In order to link the damping terms to some design
parameters, linear and quadratic damping coefficients as
functions of the geometric parameters are used, according
to [27]:

CL =
8µlπr4

p

r4
o

CQ =
3ρπr6

p

4r4
o

(34)

To contribute to the dynamics equations, the transla-
tional damper must be converted to a rotational one by

connecting it to hub and blade with an offset ed , such
that, neglecting geometric nonlinear terms, x ≈ edζ; thus
δζ ·Md = δx · Fd , which yields Md = edFd = e2

dCLζ̇ +

e3
dCQ|ζ̇|ζ̇; then:

Cζ = e2
dCL Cζ2 = e3

dCQ (35)

The linear damping term is already included in the
state space form as described above. The nonlinear term
is added as a forcing function to the baseline models. The
forcing function for the ground resonance problem is:

fNL =−Cζ2
{
|ζ̇1|ζ̇1 |ζ̇2|ζ̇2 |ζ̇3|ζ̇3 |ζ̇4|ζ̇4 0 0

}T
(36)

similarly, the forcing function for the shimmy vibration
problem is given as:

fNL =−Cζ2/Iz
{

0 |ψ̇|ψ̇ 0
}T (37)

In addition to the linear and nonlinear damping co-
efficients, which are important in stability evaluation, the
mass of the dampers is also important, since it introduces
a weight penalty. Therefore, the mass should be con-
sidered in a design optimization by either not allowing
it to increase while achieving better stability properties,
or minimizing it while preserving a satisfactory level of
energy dissipation. As such, the mass and the stability
measure are chosen as the two critical objectives and/or
constraints of the viscous damper design. The sketch in
Fig. 3 is used for the preliminary estimation of the mass
of the damper,

m = m f +mp +mc

≈ ρ f [(Ap−Ab)(ld− tp)+Aotp]

+ρp [(ld− tp)Ab + tp(Ap−Ao)]

+ρc [2rptcld +2Aptc] , (38)

where the radius of the piston is rp =
√

Ap/π. The as-
sumed numerical values are reported in Table 3.

It is worth noticing that the method can be applied
to more complex damper types and constitutive relation-
ships; their formulation can be included in the LCE esti-
mation as long as the details explained in Section 2 are
followed.

3.3 Optimization Formulation
The analytical sensitivity of the stability indicators

can be used with any gradient-based or gradient-aware
optimization technique. In order to demonstrate the use



Table 3: Assumed geometry and properties of damper

Piston Area Ap variable mm2

Orifice Area Ao variable mm2

Piston Thickness tp 30 mm

Cylinder thickness tc 5 mm

Damper Length ld 19.2 mm

Fluid Density* ρ f 850 kg m−3

Kinematic viscosity* ν 25 mm2 s−1

Metal Density ρm 7800 kg m−3

Damper offset ed 300 mm
* typical aviation hydraulic fluid values at 20o

of the proposed method, a continuation approach is con-
sidered [28, 29]. This approach has been selected to bet-
ter keep under control the number of iterations performed
in the analysis, since LCE estimation and the evaluation
of their sensitivity can be very computationally expen-
sive. Continuation starts from an initial configuration and
tracks the stability indicators in the presence of equality
constraints [30]. It can be occasionally implemented as
an optimization tool [31] and can be used in design and
bifurcation analysis (see for example [28, 32, 33]).

Suppose that a set of critical stability indicators are
being tracked, which are parametrized by a set of inde-
pendent parameters p = [∆p1, . . . ,∆pn]:

λi(∆p1, . . . ,∆pn) = 0 (39)

where i goes from 1 to the number of stability indicators
Nλ. Furthermore, differentiable functions of the parame-
ters can be added, which constrain the parameter changes:

g j(∆p1, . . . ,∆pn) = 0 (40)

where j goes from 1 to the number of constraints Ng.
The stability indicators and constraint functions are dif-
ferentiated with respect to each parameter to solve for the
required amount of parameter change ∆p in the neighbor-
hood of the parameters p at the current iteration. In matrix

form,



λ1/p1 . . . λ1/pn
...

...
...

λNλ/p1 . . . λNλ/pn

g1/p1 . . . g1/pn
...

...
...

gNg/p1 . . . gNg/pn




∆p1
...

∆pNp

=


∆b1(p)

...
∆bNλ+Ng(p)

 (41)

or, in compact form,

S∆p = b (42)

The constraint sensitivities and right-hand side vector
only include terms that are already known or calculated.
Then, the required amount of parameter change in the pa-
rameter vector ∆p is

∆pn = S−1
n bn (43)

which is defined when the number of variables is equal
to the number of equations, Np = Nλ + Ng. In case of
an underdetermined system, when Np > Nλ +Ng, a mini-
mum norm solution is obtained using the Moore-Penrose
pseudo-inverse, or the problem can be made strictly de-
termined using additional constraints. If the problem is
overdetermined, i.e. Np < Nλ +Ng, the problem can only
be solved in a least squares sense, which however may
imply a violation of the constraints. The minimum norm
solution can be influenced by appropriately weighting the
equations.

As long as the amount of change ∆pn is computed,
the parameters are iteratively updated as

pn+1 = pn +α∆pn, (44)

where an optional multiplier α (0 < α≤ 1) can be used to
limit the parameter increment and achieve smoother con-
vergence. The continuation procedure starts from an ini-
tial set of parameters. At each step n, the sensitivity of
the LCEs (λ/p) is estimated using the method described
in Section 2. Iterations continue until convergence is
achieved, for ∆p that converges to zero.

In this work we aim at minimizing the mass of the
damper with an inequality constraint on the largest LCE,
λmax ≤ λdes = −0.5 rad s−1. Not exceeding a specified
value for the largest LCE is intended as a safe requirement
in terms of stability (e.g. to achieve a desired amplitude
halving time). Although more sophisticated stability per-
formances can be defined, the present one is considered



appropriate to illustrate the use of the proposed formula-
tion for LCE sensitivity evaluation.

The strategy is to choose between two constraint vec-
tors:

∆p =

{
S−1bCM λ > λdes

S−1bMM λ≤ λdes
(45)

which force the parameters to keep the mass constant
and achieve the limiting LCE if the largest allowed LCE
constraint is violated; otherwise, the continuation is per-
formed to achieve both minimum mass and desired LCE.
Therefore, the open form of the sensitivity matrix and
right hand side vectors are:

S=
[

λ/Ap λ/Ao

m/Ap m/Ao

]
(46)

bCM=

{
λdes−λ(Ap,Ao)

0

}
(47)

bMM=

{
λdes−λ(Ap,Ao)

mmin−m(Ap,Ao)

}
(48)

where mmin is the minimum allowable damper mass, pre-
scribed to be 3.0 kg based on the structural mass repre-
sented by metal parts and a limit amount of liquid to make
the damper operate as required.

Using the described strategy and limits for the mass
and largest LCE, the damper mass is minimized using
three different initial values for the largest LCE, λmax,iv:
1) λmax,iv > λdes, 2) λmax,iv = λdes, and 3) λmax,iv < λdes.
The initial area setting that yields λmax,iv =λdes case is
referred to as “nominal”, and is used to normalize the re-
sults. The initial mass is set to the same value for the three
cases. For each case, the optimization using continuation
is summarized in a top-down fashion as follows:

1) start from an initial set of design parameters: p0 =
[Ao Ap]

T ;
2) estimate sensitivity of LCEs (λ/Ao ,λ/Ap ) and damper

mass (m/Ao ,m/Ap ) to each design parameter;
3) form the sensitivity matrix (Eq. 46) and constraint ma-

trices (Eqs. 47 and 48);
4) solve for the required amount of parameter change ∆p

based on the prescribed LCE constraint (Eq. 45);
5) calculate the new set of nominal values of the param-

eters pn+1 (Eq. 44);
6) if |pn+1 − pn| < ε for a small enough ε, terminate;

otherwise repeat steps 2 to 5 until convergence is
achieved.

4 Results and Discussion
This section presents the results of design optimiza-

tion of nonlinear dampers to achieve a desired perfor-
mance for the problems described in Section 3, using
the analytical sensitivity computed as described in Sec-
tion 2. The validation of the analytical sensitivity of LCEs
is presented first. Then, the results are presented for the
two demonstration cases, which aim at minimization of
damper mass while guaranteeing an acceptable level of
damper performance.

4.1 Validation
The analytical sensitivity of LCEs was verified in a

previous work, [14], using several models, including a
variant of the current one. The LCEs estimated as func-
tions of the linear damping coefficient CL are first shown
in Fig. 4(a). Then, for the same range of linear damp-
ing coefficient, the analytical LCE sensitivity estimation
is compared in Fig. 4(b) with the values obtained apply-
ing finite differences to those of Fig. 4(a). The plots of
Figure 4 show the two largest LCEs of the problem. For
values of the linear damper coefficient from 0 to about 30
% of the nominal value, the largest one is about zero, in-
dicating that the fiducial trajectory is a limit cycle. For
values greater than 30 % of the nominal value, the two
LCEs take the same value (i.e. the corresponding LCE
has multiplicity equal to 2), and decrease along a nearly
straight line. The sensitivity values obtained with the pro-
posed procedure are in reasonably good agreement with
the corresponding valued obtained through finite differ-
ences.

4.2 Case I: Ground Resonance
For the ground resonance problem, we aim at min-

imizing the mass of the damper with an inequality con-
straint on the largest LCE, λdes ≤−0.5 rad s−1. The min-
imum allowable damper mass is prescribed to be mmin =
3.0 kg based on the structural mass induced by metal parts
and a limit amount of liquid to make the damper operate
as required.

Using the described strategy and limits for the mass
and largest LCE, the damper mass is minimized using
three different initial values for the largest LCE, λmax,iv:
1) λmax,iv > −0.5 rad s−1, 2) λmax,iv = −0.5 rad s−1, and
3) λmax,iv < −0.5 rad s−1. The initial area setting that
yields λmax,iv =−0.5 rad s−1 case is referred to as “nom-
inal”, and is used to normalize the results. The initial
damper mass is set to m0 = 10.0 kg for all three cases.

Fig. 5 presents the continuation of these three cases.
It can be observed that all three cases converge to the
same area settings, largest LCE at λmax = −0.5 rad s−1,
and minimum mass of approximately 3 kg. The two
cases which start from equal or smaller maximum LCE
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Fig. 4: The analytical sensitivity of LCEs to linear damp-
ing coefficient is compared and validated using discrete
derivative of previously calculated LCEs

converge with a similar smooth trend; convergence is
achieved within 5 iterations. On the contrary, the case
with an initial value of λ greater than the limit value be-
haves differently, since in that case the largest LCE first
aims at satisfying the constraint while keeping the initial
mass constant, and then converges to the same results of
the other two cases within about 10 iterations. During this
process, almost 100% of the computer resources are spent
on the estimation of LCE and its sensitivity. Although the
code is not optimized for speed, 700 s average wall clock
time is observed for one iteration.
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Fig. 5: Ground resonance: Design of blade damper for a
minimum mass while ensuring the value of largest LCE
estimate at a given value. Initial and desired values are:
m0 = 10 kg, mmin = 3 kg, λmax =−0.5 rad s−1.

4.3 Case II: Shimmy Vibration
Similar to the ground resonance problem, we aim at

minimizing the mass of the damper attached to a land-
ing gear to damp shimmy vibrations. The chosen in-
equality constraint on the largest LCE value is λmax ≤
λdes = −1.0 rad s−1. The minimum allowable damper
mass is set again to mmin = 3.0 kg. Using the pre-
viously described strategy and limits for the mass and
largest LCE, the damper mass is minimized using three
different initial values for the largest LCE, λmax,iv: 1)
λmax,iv > −1.0 rad s−1, 2) λmax,iv = −1.0 rad s−1, and 3)
λmax,iv <−1.0 rad s−1. The initial area setting that yields
λmax,iv = −1.0 rad s−1 case is referred to as “nominal”,
and is used to normalize the results. The initial mass of
the damper is set to m0 = 6.0 kg for all three cases.

Fig. 6 presents the continuation of the three cases for
the shimmy vibration problem. It can be observed that
all three cases converge to the same area settings, largest
LCE at λmax = −1.0 rad s−1, and minimum mass of ap-
proximately 3 kg. The two cases which start from maxi-



mum LCE equal to or smaller than the desired value con-
verge with a smooth trend similar to the results of Fig. 5.
During this process, almost 100% of the computer re-
sources are spent on the estimation of LCE and its sensi-
tivity. Although the code is not optimized for speed, 200
s average wall clock time is observed for one iteration.
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Fig. 6: Shimmy Vibration: Design of a shimmy damper
for minimum mass while ensuring the value of the largest
LCE estimate at a given value. Initial and desired values
are: m0 = 6 kg, mmin = 3 kg, λmax =−1.0 rad s−1.

5 Conclusions
The use of the analytical sensitivity of Lyapunov

Characteristic Exponents in design optimization of non-
linear dynamical systems is presented. The LCE estima-
tion and its analytical sensitivity formulation is based on
the discrete QR method. Both the LCE and their sensi-
tivity are evaluated while the nonlinear problem evolves.
This eliminates the necessity of calculating LCE values
with different parameter values to estimate their sensi-
tivity by finite differences, therefore achieving more ac-

curate sensitivity estimations within a shorter time and
reduced or comparable computational cost. The design
optimization is demonstrated using a continuation tech-
nique, although it is worth stressing that any gradient-
based algorithm can benefit from the proposed formula-
tion. Ground Resonance of helicopters and shimmy vi-
bration of landing gears are selected as the reference nu-
merical examples, using well known linear models mod-
ified by adding nonlinear viscous blade dampers. The
tracking of parameters with mass and stability constraints
are presented. It is shown that the analytical sensitivity
of LCEs makes it possible to consider the nonlinearities
and time-dependencies during design optimization with-
out simplifying the problem as linear, time-invariant.
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