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Blood flow dynamics in a stenosed, subject-specific carotid
bifurcation is numerically simulated using Direct Numeri-
cal Simulation (DNS) and Reynolds-averaged Navier–Stokes
(RANS) equations closed with turbulence models. DNS is
meant to provide a term of comparison for the RANS calcu-
lations, which include classic two-equations models (k− ε

and k−ω) as well as a transitional three-equations eddy-
viscosity model (kT − kL − ω). Pulsatile inlet conditions
based on in-vivo ultrasound measurements of blood velocity
are used. The blood is modelled as a Newtonian fluid, and
the vessel walls are rigid. The main purpose of this work is
to highlight the problems related to the use of classic RANS
models in the numerical simulation of such flows.

The time-averaged DNS results, interpreted in view of
their finite-time averaging error, are used to demonstrate the
superiority of the transitional RANS model, which is found
to provide results closer to DNS than those of conventional
models. The transitional model shows better predictive capa-
bilities in terms of turbulence intensity, temporal evolution of
the pressure along the cardiac cycle, and the oscillatory shear
index (OSI). Indeed, DNS brings to light the locally tran-
sitional or weakly turbulent state of the blood flow, which
presents velocity and pressure fluctuations only in the post-

stenotic region of the internal carotid artery during systole,
while the flow is laminar during diastole.

1 Introduction
Atherosclerosis is a common inflammatory disease char-

acterized by the development of lesions, or plaques, in the in-
ner coat of arteries [1]. Atherosclerotic plaques develop and
change over decades, leading to the narrowing of the artery
cross-section. This phenomenon, called stenosis, changes
the hemodynamic conditions within the vessel and prevents
a normal blood flow. Stenoses may be dangerous when the
hemodynamic conditions lead to the rupture of the plaque,
or facilitate the formation of thrombi, obstructing the artery
and thus precluding proper blood supply to organs.

One of the most common areas for the formation of
atherosclerotic plaques is the carotid sinus, which is the part
of the internal carotid artery (ICA) next to the carotid bifur-
cation. Since the ICA supplies blood to the brain, its ob-
struction may be responsible for an ischemic stroke, which
is the second cause of death after coronary artery disease [2]
and the leading cause of long-term disability [3], obviously
affecting the health budget for a significant amount, 38.6 bil-
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lion dollars in 2009 in the U.S. according to [4].
Over the years, several hemodynamic factors have been

suggested to influence the formation, development and even-
tual rupture of atherosclerotic plaques. Regions with low
wall-shear stresses (WSS) have been associated to high
probability of plaque formation [5–9]. On the other hand,
high and temporally oscillating WSS are related to plaque’s
destabilization and rupture [10–12]. Moreover, as reported
by [13], [14] and [15], high WSS within the stenosis may
activate platelets which, in recirculation areas downstream
of the stenosis, could form thrombi and occlude the vessel.
For these reasons, it is important to properly characterize the
hemodynamic behavior of a stenotic vessel.

To date, the severity of a stenosis and the related need
for surgical intervention are often assessed only via the per-
centage of occlusion of the arterial lumen, neglecting the ge-
ometrical details of the plaque. However, such details play
a fundamental role as they influence the hemodynamic pa-
rameters and therefore stenoses with equal extensions might
imply different degrees of danger [16]. The same authors
also noted that in case of severe stenosis the pressure drop
in correspondence of the vessel narrowing could lead to a
collapse of the artery.

Thanks to the current advances in computational fluid
dynamics (CFD), numerical simulations are nowadays con-
sidered a useful tool to investigate the characteristics of such
flows, providing a level of detail which is not attainable by
in vivo experimental techniques. The latter, such as phase-
contrast magnetic resonance imaging or ultrasound, can pro-
vide velocity measurements, but suffer from low spatial res-
olution [17–19]. The characterization of the blood flow
through stenosed vessels has been approached in various
ways over the years. In the brief review that follows, our
focus is only on CFD-oriented studies, which are grouped
according to the complexity of the geometrical model.

1.1 Idealized geometries
Early studies employed idealized vessel geometries

modified by geometrically simple narrowings [15, 20–24].
All considered a plane channel flow with a semicircular
stenosis [20, 23, 24] or cosine-shaped stenosis [15, 21] on a
single wall, or a semicircular stenosis on both walls [22]. The
first three studies investigated the potential of large eddy sim-
ulation (LES), while the last two performed a direct numer-
ical simulation (DNS). Both techniques solve for the three-
dimensional unsteady velocity and pressure fields: the for-
mer models the small-scale turbulent motions to some ex-
tent, while the latter is a no-model, more computationally
demanding approach that solves the flow down to the small-
est dissipative scales relevant for the flow dynamics.

Other studies considered a cylindrical geometry, i.e.
pipe flow. For example, [25, 26] performed a DNS with ax-
isymmetric and non-axisymmetric stenosis with pulsatile in-
let, and highlighted that the laminar flow at the inlet section
experiences transition to turbulence when a slight asymmetry
is present in the geometry of the stenosis. This study clearly
revealed the complex nature of the flow, which is laminar

upstream of the model stenosis, and becomes transitional
and/or turbulent just downstream, with possible relaminar-
ization further downstream the narrowing at certain phases
of the cardiac cycle.

It was henceforth natural to explore the potential of
transitional models in the context of the Reynolds-Averaged
Navier–Stokes (RANS) equations, which are computation-
ally less expensive than the DNS or LES approach. Transi-
tional RANS models were assessed in [27], where various
RANS and LES models were compared on the same, ide-
alized geometry; [28] compared the performance of a tran-
sitional version of the k−ω turbulence model on the same
idealized geometry introduced by [25]. All these studies
suggested that, in the present context, any model capable of
“seeing” the laminar-turbulent transition should be more ap-
propriate.

1.2 Parametric idealized geometries
A further category of studies involving simplified ge-

ometries concerns simulations carried out on parametric ge-
ometries. This approach aims at reproducing the real form
of the carotid bifurcation by using simple parametric shapes
created by computer aided design (CAD) software. The ad-
vantage of this strategy is that the shape and degree of the
stenosis can be easily modified by changing a few parame-
ters, allowing one to investigate how they affect the flow. [29]
and [30] assessed the reliability of the transitional version of
the k−ω model in this situation. The first study demon-
strated that the transitional model agrees better with exper-
imental data on the same geometry when compared to the
classic k−ω model. The second one lacks a comparison
with DNS or experimental data, but clearly demonstrates the
capability of the transitional model to predict transition to
turbulence above a certain degree of stenosis.

1.3 Patient-specific geometries
A number of CFD studies were carried out on patient-

specific geometries obtained with medical imaging tech-
niques, such as magnetic resonance imaging (MRI) or com-
puted tomography (CT). Obviously, this approach is compu-
tationally more expensive, but provides the most clinically
useful information. In this context, [31] and [32] neglected
both transition and turbulence, and carried out a laminar sim-
ulation using commercial software (Fluent, ADINA). In the
second paper a non-Newtonian rheological model is used to
account for the shear’s dependence of the viscosity. [33] tried
two variants of the k− ε model on a 2D geometry with non-
Newtonian fluid, and verified their inadequacy to represent
the transitional nature of the flow. [8] used an high-Re k− ε

model, usually adopted for fully turbulent flows, and failed to
correctly describe the transitional and laminar behavior. [34]
and [35] explored the transitional RANS models (in particu-
lar the SST-transition model), suggesting that the latter might
be more accurate than the classic two-equation models. Also
the LES technique was investigated by [36], who compared it
with the k− ε model (the Chien variant) in a steady case. As
expected, the LES analysis better captured the transitional
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nature of the flow, at the expense of an increased compu-
tational cost. In all these studies, the validation of the fluid
dynamics model, when present, is not performed on the same
patient-specific geometry, but on the simpler ones mentioned
before (pipe or channel flow).

Perhaps the most accurate description of the flow to date
through a patient-specific stenosed carotid bifurcation was
provided by [37], who performed a DNS on a geometry re-
constructed by MRI. They used a pulsatile, fully developed
inlet boundary condition, with blood considered as a New-
tonian fluid and the vessel considered as a rigid wall. The
authors used a spectral-element solver, with no turbulence
modelling, on a mesh with approximately 1,854,000 grid
points and a time step of ∆t = 10−5s, such that all the scales
of motion are resolved. Even if this approach is the only one
that provides an accurate description of the flow, its compu-
tational cost is large (in this case, each simulated cardiac cy-
cle took 20 hours using 256 computing processors), and thus
DNS is not a suitable method to produce clinically relevant
information within a short time.

1.4 Goal of the present work
From the summary presented above, it emerges that tur-

bulence RANS modelling for the blood flow in a stenotic
carotid bifurcation is not an entirely settled topic. Although
there seems to be consensus about the superiority of transi-
tional RANS models, to the best of our knowledge no study
is available in the literature to document and quantify the
improvement of the results when moving from classical two-
equations turbulence models to transitional models in a re-
alistic, patient-specific geometry. To this purpose, a DNS
carried out on the same anatomy is necessary to provide the
reference solution upon which the critical evaluation of the
turbulence models will be based.

It is the main goal of the present work to provide such
quantification, by critically comparing a set of DNS results
with those of various RANS models, all applied to the same
realistic anatomy of a carotid artery bifurcation affected by a
stenosis. The focus will be on the improvements made pos-
sible by a transitional model.

2 The geometrical model
With approval by the internal Technical Scientific Com-

mittee of the ICS Maugeri IRCCS Tradate, a standard com-
puter tomography-angiography (CTA) of an adult male pa-
tient is used to build a 3-dimensional model of the carotid
vessel. Figure 1 shows a sagittal section of the CTA: the
presence of the contrast medium increases the radiodensity
of blood and allows to easily distinguish the vessels from the
surrounding tissues.

The segmentation process is carried out with the open-
source software 3D Slicer [38]. The carotid artery is first
separated from the rest of the CTA. Minor vessels (interested
by a small fraction of the flow rate) are then removed, and
the geometry is eventually exported in the STL format. The
final result is shown on the right of Fig. 1, where the com-

Fig. 1: Left: sagittal section of the CTA, with the carotid
artery highlighted in white by the contrast medium. Right:
the vessel geometry employed in the present work, showing
the stenosed section A–A.

Fig. 2: Inlet section of the volume mesh at the CCA, for DNS
(left) and RANS (right).

mon carotid artery (CCA) is visible in the lower part, the
external carotid artery (ECA) on the upper left and the in-
ternal carotid artery (ICA) with an evident stenosis on the
upper right. Although simplified to some extent, this patient-
specific geometry is used in the rest of the work as a realistic
testbed to assess the blood flow dynamics.

2.1 Mesh generation
Two different meshes are produced, one suitable for the

DNS and one for the RANS simulations.
A uniform background mesh is created first by defining a

parallelepiped containing the STL file, and then subdividing
it into an appropriate number of cubic cells. Although very
simple, the construction of the background mesh is important
because it affects quality and quantity of the cells obtained at
the end of the meshing procedure. The three-dimensional
mesh that approximates, according to suitably specified pa-
rameters, the STL surface is then created by adding a number
of layers near the solid boundaries, a step particularly impor-
tant for the (coarser) RANS mesh, owing to the nature of the
RANS models employed, which demand the first computa-
tional cell being well embedded within the viscous layer.

Figure 2 shows the inlet section of the CCA for both
meshes, and vividly shows how the DNS mesh is much finer.
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Table 1 summarizes some information about the quality of
the two meshes obtained: the RANS mesh has approximately
1.35 million cells, whereas the DNS mesh has more than 30
million cells. Table 1 reports quantitative information about
the two meshes, including the maximum values of parame-
ters related to the quality of the mesh. The RANS mesh is de-
signed to yield a problem of reasonable computational size,
whereas the rationale behind the design of the DNS mesh is
discussed below.

3 The numerical approach
In this work four numerical simulations are carried out

on the same anatomy. The first one is a DNS, used for
reference, while the remaining three are RANS simulations
employing eddy-viscosity-type turbulence models to account
for the effects of turbulence on the mean velocity and pres-
sure fields. Two models are classic two-equations models,
and the third is a transitional model, that is supposed to deal
better with flows where turbulence is localized, either spa-
tially or temporally. The rheological model of the fluid, the
treatment of the wall and the boundary conditions are identi-
cal. All the simulations are performed with the open-source
finite-volume solver OpenFOAM, version 2.3.0.

3.1 Numerical schemes
The mathematical modelling of the blood flow is based

on the incompressible Navier–Stokes equations which, for a
Newtonian fluid without body forces, read:

∇ ·V = 0 (1a)
∂V
∂t

+(V ·∇)V+
1
ρ

∇p = ν∇
2V (1b)

where V and p are velocity and pressure, ν= µ/ρ is the kine-
matic viscosity (ratio of dynamic viscosity and density). A
second-order linear scheme is employed for the discretiza-
tion of the gradient operator and a Gauss linear corrected
scheme for the Laplacian term in the momentum equation.
The discretization of the non-linear terms of the momentum
equation is carried out with a Gauss linear scheme for the
DNS, while a Gauss upwind scheme is used for the RANS
simulations to achieve convergence. All the simulations use
a second-order backward difference formula for the temporal
discretization.

3.2 Rheological model and treatment of the vessel walls
It is well known that blood in oscillatory flow may ex-

hibit non-Newtonian characteristics, such as shear thinning,
tixotropy and viscoelasticity [39–41]. However, the assump-
tion of Newtonian fluid is generally accepted [42] when deal-
ing with large arteries. This is corroborated also by [43],
who evaluated the effects of different rheological models on
the results of CFD simulations on a patient-specific (non
stenotic) geometry, and concluded that the uncertainties re-
lated to the constitutive relation of the fluid are smaller than

Fig. 3: Patient-specific temporal waveform of the blood flow
velocity at the center of CCA, as obtained from in-vivo ultra-
sound measurements.

those deriving from the reconstruction of the geometry. The
same conclusion was obtained in [17] with a laminar simu-
lation. Hence, in our simulations blood is considered a New-
tonian fluid with kinematic viscosity ν = 3.8 ·10−6m2/s.

In [42] as well as in [44], it is also mentioned that the
compliance of the vessel walls only marginally affects the re-
sults, in comparison with the uncertainty on geometry. Fur-
thermore, the presence of an atherosclerotic plaque causes
a hardening of the vessel walls (the meaning of the term
atherosclerosis is precisely ”hardening” or ”loss of elastic-
ity”), such that in a stenosed vessel the assumption of rigid
walls is even more reasonable. Hence, in our simulations the
vessel walls are considered rigid.

3.3 Boundary conditions
Boundary conditions must be specified at four different

portions of the computational domain: the inlet (CCA), the
two outlets (ECA and ICA) and the vessel walls.

For the inlet section, in vivo velocity measurements at
the CCA of the patient, acquired by means of ultrasound
technique, are available during one cardiac cycle, lasting
T = 0.9s, as shown in Fig. 3 where the systolic peak is at
t = 0.1s, and the diastolic minimum at t = 0s and t = 0.9s.

Although the inlet flow is laminar, assuming a parabolic
shape for the inlet velocity profile, as taken from the Hagen-
Poiseuille solution valid for an infinite cylindrical pipe, may
be an oversimplification, owing to the flow unsteadiness. The
relative importance of the unsteady forces with respect to
the viscous forces in cylindrical pipe flow is expressed by
the Womersley number α. When α is small, viscous forces
dominate, the velocity profile is parabolic, and the centerline
velocity oscillates in phase with the driving pressure gradi-
ent [45]. At the inlet section the Womersley number com-
puted for a cylindrical pipe whose diameter D equates the
hydraulic diameter of the CCA is:

α =
1
2

D

√
2π

νT
= 5.04. (2)

Since α = 5.04 is not necessarily small, the CCA inlet pro-
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Max. Max. Average Max.

Nodes Faces Cells Aspect Ratio non orthogonality non orthogonality skewness

DNS 32108376 92401932 30252836 19.9 64.9 5.5 2.1

RANS 1447647 4120075 1344073 13.6 39.9 6.6 2.2

Table 1: Parameters of the finer mesh used for the DNS simulation, and the coarser one used for the RANS simulations.

inlet outlet walls

Pressure zeroGrad zero zeroGrad

Velocity Womersley zeroGrad zero

k k = 3
2 (0.015 ·u)2 zeroGrad zero

kL zero zeroGrad zero

ε ε =C3/2
k /`m zeroGrad zeroGrad

ω ω =C1/2
k /`m zeroGrad zeroGrad

Table 2: Boundary conditions employed in the present work
for pressure and velocity; turbulence variables are only used
in the RANS calculations.

file is taken to be the Womersley profile, corresponding to the
analytical solution of fully developed pulsatile laminar flow
in a circular pipe [45]. Moreover, the profile is tilted to align
with the local orientation of the CCA axis. The remaining
boundary conditions are quite standard, and they are sum-
marized in table 2. The near-wall region is resolved without
resorting to wall functions, as the mesh is designed to have
the first cell well within the buffer layer (y+ < 1). A special
remark is in order for the outlet condition. Although more
detailed approaches are possible, we have decided to employ
the simple outflow condition that is very popular in CFD ap-
plications. In fact, in several previous studies even simpler
approaches were used, see for example the DNS study in
Ref. [37], where a predetermined 59:41 partitioning of the
flow rate between ECA and ICA is enforced. In our DNS
and RANS simulations the flow rate partition is allowed to
change during the beat, and indeed assumes slightly varying
values of 58%−61% in the ECA and 39%−42% in the ICA.

3.4 Computational details
The simulations are carried out on the cluster GALILEO

of the CINECA Italian Supercomputing Center. The un-
steady PIMPLE solver is used to simulate 8 cardiac cycles.
The 3 RANS cases are initialized with the result of a steady
RANS simulation carried out with the SIMPLE solver. To
remove any influence from the initial conditions, the first
simulated cycle (either RANS and DNS) is discarded when
evaluating statistics.

The RANS cases took 25h and 35h on 36 cores for
the classic and transitional RANS respectively. Hence clas-

sic RANS models are computationally cheaper by approxi-
mately 30% for a given mesh size. The DNS required 250h
on 144 cores to simulate one cardiac cycle. The number
of simulated cycles in DNS is 8 (including the initial one),
which is similar to [37], where 6 cardiac cycles were em-
ployed.

4 Turbulence models
The dynamics of an incompressible flow of a Newtonian

fluid is fully described by the Navier–Stokes equations (1).
The presence of turbulence in the blood flow is accounted
for in the present work via two alternative approaches: ei-
ther the whole range of dynamically relevant spatio-temporal
scales of motion is solved with DNS, or the RANS equations
in conjunction with turbulence modelling are solved at a re-
duced computational cost.

In the present study the DNS simulation is used as a
reference to evaluate the modelling error introduced by the
various turbulence models. The following sections briefly
describe the main characteristics of the two approaches.

4.1 DNS
The DNS performed in this work may be defined as a

quasi-DNS (q-DNS). The notion of q-DNS is intended as
in [46], which assessed the capabilities of this approach for
arbitrary polyhedral meshes. In a flow as complex as the
present one, it is not trivial to rigorously establish the ad-
equacy of a mesh to resolve all the spatial scales, short of
carrying out costly mesh-refinement studies. Our approach
is that of adopting a fine enough mesh to yield a DNS-like
resolution, while at the same time employing (and bearing
the cost of) a subgrid-scale LES turbulence model. The LES
model is expected to affect the simulation only marginally,
through very small values of the subgrid-scale turbulent vis-
cosity, provided the mesh is sufficiently fine. The advantage
of the present approach is two-fold: it provides a backup
should the resolution become marginal in some regions of
the computational domain and at some phases of the cycle,
and it lends itself to a straightforward a posteriori verifica-
tion of the adequacy of the spatial resolution.

The q-DNS mesh is designed on the basis of the follow-
ing considerations. The most convenient Reynolds number
to describe transition in pipe flow [47] is based on the bulk
velocity, i.e. the mean volumetric flow rate divided by the
cross-sectional of the vessel, and the hydraulic diameter. The
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cycle maximum value of Reb at the inlet is Remax
b,in = 1040 at

t = 0.1s. The largest value of Reb in the whole domain takes
place at the section B–B of fig.1, where Dh = 3.23mm, and
is Remax

b,A−A = 1136.
The q-DNS mesh used in this work consists of about 130

cells over the diameter at the section A−A. In order to get a
qualitative feeling for the adequacy of the spatial resolution,
we mention that the DNS of a turbulent flow in a cylindrical
straight pipe at Reb = 4600 requires 96 mesh points over the
radius of the pipe section [48, 49] to properly resolve all the
scales of motion. In other words, with a 4-times larger Re
and a fully turbulent regime only 50% more points were used
in the radial direction (which is the most demanding one in
terms of spatial resolution), which suggests that the present
mesh is sufficiently refined. It is worth mentioning again
that the quantitative analysis of the subgrid-scale viscosity
introduced by the LES model in the whole domain will make
it possible to verify these estimates a posteriori (see fig.4
and related discussion below), thus confirming the adequacy
of the present mesh.

Although the LES turbulence model employed in this
simulation will be shown to have little to no effect on the
results, its main characteristics are briefly reported below.
The LES modeling starts from a decomposition between the
resolved large scales and the modelled small (or sub-grid)
scales:

u(x, t) = ũ(x, t)+u′(x, t)

where the operator ·̃ is a low-pass filter.
In the filtered incompressible Navier–Stokes equations,

the residual stress tensor τr
i j appears, which is expressed after

the model introduced by Smagorinsky [50]:

τ
r
i j =−2νsgs(x, t)S̃i j. (3)

S̃i j is the filtered shear field, and the subgrid-scale viscosity
νsgs(x, t) is defined as:

νsgs(x, t) = (Cs∆)
2
√

2S̃i jS̃i j (4)

where ∆ is the mesh length scale, and Cs = 0.17 is a model
constant.

The local and instantaneous value of the subgrid-scale
viscosity νsgs(x, t), proportional to the square of the mesh
length scale, determines the magnitude of the residual
stresses, and provides a proxy to assessing how much the
LES model affects the results. During the cardiac cy-
cle, the maximum value of νsgs(x, t) is found to be 1.032 ·
10−6m2s−1, while an average over the cycle and the spa-
tial domain gives νsgs(x, t) = 2.1 · 10−8m2s−1. The mean
maximum value over the whole cycle is 5.322 · 10−7m2s−1.
These values are respectively 27.2%,0.57% and 14.03% of
the blood molecular viscosity ν, confirming that the mesh
is sufficiently refined, and that the present simulation can

Fig. 4: Ratio νsgs(x, t)/ν at t = 0.1s of a generic cardiac
cycle. Non-negligible values are visible only in the post-
stenotic region and in the final part of the ECA, but these
values are smaller than 1. The visible step changes (e.g. near
the outlet sections) are due to mesh density changes.

be rightfully considered a q-DNS. Figure 4 shows the ratio
νsgs(x, t)/ν at t = 0.1s of a generic cardiac cycle, i.e. at the
most demanding phase, and confirms that even at this phase
the value of the ratio is always significantly smaller than 1.

4.2 RANS models
The RANS approach avoids the solution of the time-

dependent Navier–Stokes equations, and resorts to the so-
called Reynolds’ decomposition of the velocity (and pres-
sure) field:

u(x, t) = u(x)+u′(x, t)

where u(x) is the mean velocity field obtained by applying
the time averaging operator to u(x, t):

u(x) = lim
T→+∞

1
T

∫ T

0
u(x, t)dt.

The flow of interest (the cardiac cycle) is clearly
time-dependent; as such, it requires the solution of
the unsteady Reynolds-averaged Navier–Stokes equations
(URANS), where the mean velocity field retains a residual
dependence upon time. In this case, one assumes that two
well separated time scales T1 and T2 � T1 exist in the flow.
The Reynolds’ averaging operator can be thus redefined as:

u(x, t) =
1
T

∫ T/2

−T/2
u(x, t + t ′)dt ′ T1� T � T2
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The URANS equations are obtained by using this aver-
aging operator:

∇ ·u = 0 (5a)

ρ
∂u
∂t

+ρ∇ · (uu)+∇p+∇ ·Jd
Q = 0 (5b)

where Jd
Q is the dissipative part of the stress tensor which for

Newtonian fluids can be written as:

Jd
Q,i j =−µ

(
∂ui

∂x j
+

∂u j

∂xi

)
.

The non-linear term uu in eq. (5b) can be rewritten as:

uu = u u+u′u′.

The quantity R = ρu′u′ is called Reynolds stress tensor, and
a total stress tensor T is introduced as:

T = Jd
Q +R

Therefore eq. (5b) becomes:

ρ
∂u
∂t

+ρ∇ · (u u)+∇p+∇ ·T = 0 (6)

The equations just obtained cannot determine the mean ve-
locity field u as the link between u and R does not exist.
Closure of the problem can be achieved with the Bousinnesq
assumption:

Ri j =−2νt S̄i j

which states that every component Ri j of the Reynolds stress
tensor is proportional to the tensor S̄ of components:

S̄i j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)

The proportionality factor νt , function of the position x, is
the eddy viscosity, and the various models differ in the way
νt is calculated.

The main features of the two well-known and commonly
used two-equations models employed in the present work
are described below, followed by the transitional kT −kL−ω

model.

4.2.1 The k− ε model
The k− ε model uses one differential transport equation

for the turbulent kinetic energy k, and another for its dis-
sipation rate ε, complemented by an algebraic constitutive
relation linking νt to k and ε. The variant employed here is
that described in [51], where the selection of the numerical
values of the various model constants is improved compared
to the original version [52].

The model equation for k is:

Dk
Dt

= Pk− ε+
∂

∂x j

[(
ν+

νt

σk

)
∂k
∂x j

]
(7)

where D/Dt(·)≡ ∂/∂t(·)+ui∂/∂xi(·) is similar to a material
derivative, σk is a model constant, and Pk is the production
rate of k, given by:

Pk = 2νt S̄i jS̄i j

The model equation for ε descends from the previous Eq.(7)
multiplied by ε/k, and is:

Dε

Dt
=C1ε

ε

k
Pk−C2ε

ε2

k
+

∂

∂x j

[(
ν+

νt

σε

)
∂ε

∂x j

]
(8)

where C1ε, C2ε and σε are model constants. Once equa-
tions (7) and (8) are solved, the eddy viscosity is obtained
via the constitutive equation:

νt =Cµ
k2

ε
. (9)

4.2.2 The k−ω model
The k−ω model developed by Wilcox in [53] utilizes

an equation for ω (interpreted as the turbulence frequency,
and linked to the other turbulence variables by the relation
ω = ε/k) instead of the equation for ε. The equation for k
has the same structure of equation (7) and is written as:

Dk
Dt

= Pk−β
∗
ωk+

∂

∂x j

[
(ν+αkνt)

∂k
∂x j

]
. (10)

The model equation for ω is:

Dω

Dt
= α

ω

k
Pk−βω

2 +
∂

∂x j

[
(ν+αωνt)

∂ω

∂x j

]
(11)

Once equations (10) and (11) are solved, the eddy viscosity
is calculated as:

νt =
k
ω

Tables 3 and 4 show the employed values of the model con-
stants for k− ε and k−ω respectively.
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C1ε C2ε Cµ σk σε

1.44 1.92 0.09 1.0 1.3

Table 3: Values of the constant in the k− ε model, after [51]

β∗ β α αk αω

0.09 0.072 0.52 0.50 0.50

Table 4: Values of the constants in the k−ω model, after [53]

4.3 The transitional kT − kL−ω model
The transitional RANS model considered in this work

is the kT − kL−ω model developed in [54], as a followup
of [55]. It is based on the idea of bypass transition, accord-
ing to which transition to turbulence is related to the am-
plification of streamwise fluctuations generated in the pre-
transitional region of a boundary layer [56]. These fluctu-
ations are not strictly turbulent, and the concept of laminar
kinetic energy kL is useful to describe their development till
transition. For this reason, a third model equation for kL is
adopted in addition to the equations for ω and the turbulent
kinetic energy kT . The fluctuations in the pre-transitional
region are subject to amplification when the dynamics of tur-
bulence production is sufficiently fast in comparison to that
of molecular diffusion. Therefore, the transition process is
started when the ratio between the temporal scales of turbu-
lence production and molecular diffusion reaches a critical
value. The 3 model equations are reported below:

DkT

Dt
= PkT +RB +RN−ωkT −DT+

+
∂

∂x j

[(
ν+

αT

αk

)
∂kT

∂x j

]
(12a)

DkL

Dt
= PkL −RB−RN−DL+

+
∂

∂x j

[
ν

∂kL

∂x j

]
(12b)

Dω

Dt
=Cω1

ω

kT
PkT +

(
CωR

fW
−1
)

ω

kT
(RB +RN)−

−Cω2ω
2 +Cω3 fωαT f 2

W

√
kT

d3 +

+
∂

∂x j

[(
ν+

αT

αω

)
∂ω

∂x j

]
. (12c)

In the equation for ω the production, dissipation and dif-
fusion terms (respectively the first, third and fifth term on the

Fig. 5: Phase-averaged magnitude of the velocity vector
(left) and its temporal variance (center) at τ = 0.1s. The en-
semble average is performed over 7 cycles, and the temporal
variance gives an hint of the statistical error associated to the
estimate of the expected value of the mean. On the right,
difference between the mean velocity field |〈u〉(7)| obtained
averaging over 7 cycles, and the same quantity obtained over
6 cycles.

right side of eq. (12c)) are in parallel with the analogous
terms of the equation for kT and kL. The turbulent kinetic
energy is now:

k = kT + kL (13)

The transition process is modeled through a transfer of en-
ergy from kL to kT . The terms RB and RN have oppo-
site sign in the equations (12a) and (12b) and represent the
bypass transition and natural transition phenomena respec-
tively. Further information about the terms in equations (12)
and values of the constants can be found in the above men-
tioned paper [54].

5 DNS results
The results of the q-DNS need to be interpreted in a sta-

tistical sense if a comparison with time-averaged RANS re-
sults has to be made. Hence, the phase-averaging operator is
introduced to carry out an ensemble average over the avail-
able cardiac cycles; it is defined for the generic quantity φ at
a point x in the computational domain as follows:

〈φ〉(x,τ) = 1
N

N−1

∑
n=0

φ(x,τ+nT )

where N = 7 is the number of cycles used for estimating the
mean, T = 0.9s is the period of the cycle, and 0≤ τ≤ 0.9s.

The standard deviation of φ at each point in space x is
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defined as:

σ(x,τ) =

√
1
N

N−1

∑
n=0

[φ(x,τ+nT )−〈φ〉(x,τ)]2

Fig. 5 plots the fields of the phase-averaged velocity
magnitude at τ = 0.1s (corresponding to the systolic peak,
see Fig. 3) and its variance σ2, on the mid-plane of the carotid
bifurcation. On the right panel, the difference in the phase-
averaged mean field is plotted when computed with N = 7
cycles and with N = 6; this difference is instrumental to ap-
preciating the level of convergence of the estimate of the
mean, when only 7 samples are available.

The mean field (Fig. 5 left) emphasizes the strong jet
exiting the stenotic section, with a magnitude of the local ve-
locity up to 2.8 m/s. The jet impacts the vessel wall shortly
downstream of the stenosis, where a vast low-momentum re-
gion can be appreciated. The region where the mean velocity
shows irregular features is limited to the portion of the ICA
downstream of the stenosis, pointing at the presence of a tur-
bulent and highly fluctuating flow, together with a possible
residual statistical error in the estimate of the mean due to
the small number of samples.

The statistical error associated with the averaging pro-
cedure is hinted at by the examination of the variance field,
which will be used later on to assess the validity of the com-
parison between the DNS and the RANS simulations dis-
cussed in the next section. The variance of the magnitude of
the mean velocity vector is shown in Fig. 5 (center), and al-
lows us to compute the standard error (SE) of our estimate of
the mean value. The SE of the mean is the standard deviation
of the sample mean, which is an estimate of the population
mean. The standard error is usually estimated by the sample
estimate of the population standard deviation (sample stan-
dard deviation) divided by the square root of the sample size
(for further information see [57]). At τ = 0.1s the largest
variance is σ2

max = 0.5746 m2/s2, and the largest SE associ-
ated to the mean velocity can be estimated as

SE =
σmax√

N
= 0.286

m
s
, (14)

where N = 7 is the number of samples.
It is interesting to observe that this numerical value is

quite close to the value of the largest difference in the mean
velocity field that is obtained by removing the last sample. In
fact, fig. 5 (right) plots the spatial distribution of the differ-
ence between the magnitude of the phase-averaged velocity
field at τ = 0.1s obtained averaging over seven cardiac cy-
cles, i.e. |〈u〉(7)| and the same quantity obtained with six cy-
cles, i.e. |〈u〉(6)|. Differences can be appreciated only in the
post-stenotic region, with a maximum value of 0.203 m/s.
This is a relatively small value, considering that at this phase
of the cycle the mean velocity magnitude can be larger than
2.8 m/s. Moreover, the pre-stenotic region and the flow in
the ECA are almost unaffacted by the limited sample size.

Fig. 6: Spatial distribution of the OSI index, as computed
from DNS, viewed from three different angles. Significant
oscillations of the WSS vector are observed in localized por-
tions of the post-stenotic region, in areas just upstream of the
carotid bifurcation, and in a small area in the final part of the
ECA.

Hence, in line with [37], the use of 7 actual cycles is con-
sidered a good compromise between the need for an accurate
statistical description of the flow and the requirement of an
affordable computational cost.

We further present in fig. 6 the behavior of the Oscil-
latory Shear Index (OSI), a quantity often used in the liter-
ature to quantify the importance of the unsteady wall-shear
stresses (WSS). The OSI describes the cyclic departure of the
WSS vector from its predominant axial alignment [58, 59].
The OSI is a wall-based and time-independent scalar quan-
tity defined as follows (using phase-averaged values in the
case of DNS):

OSI =
1
2

(
1− |

∫ T
0 〈WSS〉 dt|∫ T
0 |〈WSS〉|dt

)
.

The WSS vector is calculated as:

WSS = ν∇u ·n

where n is the direction perpendicular to the vessel surface.
By its definition, the OSI ranges from 0 to 0.5, where a
value of 0 means that the instantaneous WSS vector is always
aligned with the time-averaged vector throughout the entire
pulse and, thus, does not oscillate at all. On the other hand,
0.5 means that the instantaneous vector is never aligned with
the time-averaged vector, thus indicating an extremely oscil-
lating behavior. The importance of the OSI and the ability
of its correct prediction via numerical simulations resides in
the direct link between OSI and the process of rupture of the
atherosclerotic plaque [60].
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Fig. 7: Isosurfaces for λ2 = −250000 s−1, colored by the
vorticity magnitude, in an instantaneous flow field at differ-
ent phases of the cycle: τ = 0.1, left; τ = 0.2, center; τ = 0.3,
right. The color scale is expressed in 1/s. Turbulent struc-
tures are present downstream of the stenosis mainly between
t = 0.1s and t = 0.2s.

The OSI can be easily calculated as a post-processing
of DNS results, and it is shown in fig. 6. The DNS results
produce large values of the OSI in a few patches of the post-
stenotic region, as well as in a few areas just upstream of the
carotid bifurcation. Oscillations of the WSS vector are also
present in a small area located in the final part of the ECA.

Finally, we use the fluctuating velocity field u′ to com-
pute the quantity λ2, which is often employed [61] to visual-
ize vortical regions in the flow, identified by regions where λ2
is negative. We seek further evidence to the fact that the flow
is not turbulent everywhere and at every time, something that
has profound implications on turbulence modeling.

The scalar quantity λ2 is defined as the second eigen-
value of the symmetric tensor S2 +A2 where:

S =
1
2

(
∇u′+(∇u′)T

)
and

A =
1
2

(
∇u′− (∇u′)T

)
are the symmetric and anti-symmetric part of the tensor
∇u′ [62]. Figure 7 shows isosufaces of λ2 at three different
phases of a cycle, i.e. τ = 0.1 s, τ = 0.2 s and τ = 0.3 s. It is
evident that turbulent structures appear quite downstream of
the stenosis, especially in the time interval between the sys-
tolic peak (fig. 7 left) and the end of the deceleration phase
(fig. 7 center), while in the remaining parts of the domain no
structures can be seen. At τ = 0.3 s (fig. 7 right) the vorti-
cal structures begin to disappear and after that time the flow
appears to be nearly laminar even in the ICA. This confirms
that, in a real carotid artery affected by stenosis, turbulence
is present only at certain phases of the cardiac cycle, and
only in the post-stenotic region. For this reason, a turbulence
model capable to describe the transition (both in space and
time) from the laminar to the turbulent regime is expected

Fig. 8: Magnitude of the mean velocity vector as computed
by the RANS models at τ= 0.1s: k−kL−ω model (left), k−
ε model (center), k−ω model (right). Quantities are plotted
in the mid-plane of the carotid bifurcation. By comparison
with fig. 5 (left), the transitional model is seen to be much
better at reproducing the complex flow pattern in the post-
stenotic region after the jet impacts the vessel wall.

to possess particularly good predictive characteristics for the
flow under consideration.

6 Comparison between DNS and RANS
Once the DNS database is available, the phase averaging

procedure allows isolating the background turbulent velocity
fluctuations from the mean velocity field. The latter is used
to carry out a first comparison between RANS and DNS cal-
culations. Figure 8 shows the magnitude of the mean veloc-
ity field, plotted in the mid-plane of the carotid bifurcation,
predicted by the RANS models at τ = 0.1s. Although at first
glance the 3 plots may seem qualitatively similar, a compar-
ison with figure 5 (left) reveals that the transitional model
better predicts the complex flow pattern present in the post-
stenotic region after the strong jet exits the restriction and
impacts the vessel walls. The two classic RANS models are
unable to correctly reproduce the region with relatively large
velocity close to the wall on the right, clearly underestimat-
ing the value of the mean velocity.

The phase averaging procedure of the DNS results also
allows to compute the turbulent kinetic energy:

k =
1
2
[〈

u′2
〉
+
〈
v′2
〉
+
〈
w′2
〉]
, (15)

for which every considered RANS model provides an ex-
plicit prediction. A simple comparison then brings to light
the error incurred by the models. Fig. 9 plots, for every tur-
bulence model, the difference between the RANS-predicted
k and the DNS-computed k. The comparison is carried out
in the mid plane of the artery bifurcation for two different
phases of the cardiac cycle. It emerges that, at both the con-
sidered phases, the transitional turbulence model provides
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(a) kT − kL−ω (b) k− ε (c) k−ω

(d) kT − kL−ω (e) k− ε (f) k−ω

Fig. 9: Difference kRANS−kDNS between the turbulent kinetic
energy kRANS predicted by the RANS models and the same
quantity kDNS computed by the DNS, shown at the mid plane
of the artery bifurcation. Top: τ = 0.1s; bottom: τ = 0.2s.
The transitional model (left) provides significantly better re-
sults overall, especially in the important region immediately
downstream of the stenosis, where the two-equation models
significantly overestimate the level of turbulent fluctuations.

significantly better results, with the whole field of k predicted
with small error or no error at all, if exception is made for a
few small spots at τ = 0.1 s in the post-stenotic impingement
region. On the other hand, the classic RANS models lead
both to an incorrect prediction of k right at the stenosis and
downstream, significantly overestimating the level of turbu-
lent fluctuations.

At τ = 0.1 s the region of the ICA downstream of the
stenosis, and in particular the impingement region, appears
to be difficult to deal with for both classic and transitional
models. In fact, in this area the value of k is underestimated
in small spots near the right wall. The value of the standard
error at τ = 0.1 s as calculated in eq. (14) is important in
interpreting this aspect. In fact, the square of the SE associ-

Fig. 10: OSI as computed from transitional (left), k−ε (cen-
ter) and k−ω (right) RANS models. If compared with fig. 6
(right), the transitional model is seen to much better repro-
duce the DNS results. Two-equations RANS model predict
nearly zero OSI (non-oscillatory WSS) except for small re-
gions upstream the carotid bifurcation.

ated with k can be quantified as SE2 = 0.082 m2/s2, a small
value in comparison with the typical differences observed in
figs. 9b, 9c and 9a. This observation is essential to confirm
that the differences visible in figure 9 are related to actual
differences in the k fields, and not just to the statistical error
associated with finite-time averaging.

A further comparison based on the OSI is shown in
Figs. 10 and 11. The first provides an overall view of the
OSI surface field, and conveys the idea that the transitional
model is vastly superior to the classic RANS models in pre-
dicting a spatial distribution of OSI that closely resembles
the DNS one, both in terms of absolute values and location
of the regions where the flow deviates from a non-oscillatory
behavior. The distribution in the area just upstream the steno-
sis is well approximated by the transitional model, while the
classic RANS models clearly underestimate the oscillations
of the WSS vector. The same happens in the post-stenotic
region, where the transitional model performs better than the
classic RANS, although it does not fully succeed in accu-
rately describing the complex pattern predicted by the DNS.

Figure 11 provides a detailed, zoomed view of the
stenotic region, and confirms that the distribution in the ICA
is well approximated only by the transitional model, that is
able to capture the localized ridged peak of the OSI along the
ascending branch.

As a final comparison, we examine the temporal behav-
ior of pressure, spatially averaged over the sections B–B and
C–C introduced in fig.1. Plotted in the graphs is the differ-
ence between the section-averaged pressure pav and the ex-
ternal reference pressure pext outside the vessel walls. Obvi-
ously, in the DNS case pressure is also phase-averaged over
the available cardiac cycles. The evolution over time, and in
particular its minimum values, are important because, as re-
called in the Introduction, negative pressure could lead to a
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Fig. 11: OSI as computed from transitional (left), k−ε (cen-
ter) and k−ω (right) RANS models: zoom on the post-
stenotic region. If compared with fig. 6 (left), the transitional
model predicts oscillations in the post-stenotic region in ac-
cordance with the DNS result, but the complex pattern is not
correctly reproduced. Two-equations RANS models signifi-
cantly underestimate the extent of WSS vector oscillation in
the post-stenotic region.
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Fig. 12: Temporal evolution of the difference pav− pext be-
tween the section-averaged pressure pav over the section B–
B, as identified in fig. 1, and the external pressure pext . The
negative pressure peak at τ = 0.1 s is overestimated by all
models, but the transitional model is significantly more ac-
curate.

Fig. 13: Temporal evolution of the difference pav− pext be-
tween the section-averaged pressure pav over the section C–
C, as identified in fig. 1, and the external pressure pext . The
kT − kL −ω points lie on the DNS curve after the systolic
peak. Near the systolic peak at τ = 0.1 s the transitional
model is the only one to be not too far off the DNS values.

collapse of the vessel in correspondence of the stenosis.
None of the turbulence model provides entirely satis-

factory predictions. The transitional model, however, con-
sistently shows improved predictions compared to the stan-
dard two-equations models. In section B–B (fig. 12), slightly
downstream of the stenosis, all the turbulence models under-
estimate the minimum value of pressure during the systolic
phase (τ = 0.1 s), although the classic non-transitional mod-
els are off by more than twice the error observed for the tran-
sitional model. The difference between the DNS value and
the RANS-computed values remains visible at later stages
of the cycle, where pressure remains negative but decreases
towards zero: RANS values are consistently lower than the
DNS one, and the transitional model is the nearest to DNS.

In section C–C (fig. 13), located after the stenosis but
also after the impingement region, the absolute values of
pressure are lower, but the improvement brought about by
the use of the transitional model is more evident. In fact, af-
ter τ = 0.2 s the kT −kL−ω points practically lie on the DNS
curve. Substantial differences are visible only at the systolic
phase and immediately thereafter (τ = 0.1 s and τ = 0.15 s),
but also at these phases the transitional model better approx-
imates the results of the DNS.

7 Conclusions
The blood flow in a stenosed, patient-specific, carotid

bifurcation has been numerically simulated by solving the
unsteady RANS equations. The aim of the study is to as-
certain whether transitional RANS models, that consider the
transition process from the laminar to the turbulent regime,
are well suited in such an application, by providing signif-
icant improvements in solution accuracy at negligible addi-
tional computing cost. To quantify the improvements objec-
tively, a companion DNS has been carried out on the same
anatomy, thus providing for the first time a direct compari-
son of the outcome of standard and transitional RANS model
in a patient-specific setting.

The DNS has been effective at describing the complex-
ity of the flow, indicating that turbulent motions only exist
at the beginning of the cardiac cycle near the systolic peak,
and only downstream of the stenosed section. Hence tur-
bulence is confirmed, in this specific flow, to be a localized
phenomenon, both in space and time.

A comparison between DNS and RANS with different
models has proved that the three-equation transitional model
is definitely more accurate in describing the solution in terms
of turbulence kinetic energy (which is severely overestimated
by classic models, especially when and where the flow is
nearly laminar), OSI and temporal evolution of the pres-
sure. It is noteworthy that the classic models provide results
which are in very good mutual agreement, while differing
from those of the transitional model significantly. Hence the
role of the accompanying DNS study on the same patient-
specific anatomy is essential to identify and interpret such
differences.

It should be remembered that transitional models bring
along a (limited) computational overhead when compared to
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the classic models. Although a comparison at the same com-
putational cost has not been carried out, the present mesh
is such that all models provide essentially mesh-independent
results. Hence, the superiority of the transitional model is
assessed, at least when reasonable mesh sizes are employed.

Even if the kT − kL−ω model used in this work is still
not accurate enough to achieve a perfect description of the
flow statistics as observed by the DNS, the class of transi-
tional RANS models appears to be the correct choice for the
type of simulations considered in the present work, where the
flow is not fully turbulent. In order to improve the description
of the flow in such simulations, more recent transitional mod-
els could be used. For example, the new k−ω− v2 model
recently developed [63] proposes an alternative to the lam-
inar kinetic energy approach involved in the present work,
and was proved to have more capabilities, especially for free
shear flows.

The boost in solution accuracy envisaged by the use
of transitional model, together with additional developments
that have not been employed in the present work but are al-
ready or are becoming available (more accurate reconstruc-
tion of geometry, non-Newtonian rheological models, de-
formable walls, more physically consistent outlet boundary
conditions) will pave the way for the use of patient-specific
RANS simulations as a valuable tool in the clinical practice.

A certain amount of idealization clearly exists in the
present study, as in the simplified anatomy, the assumption
of rigid walls, some of the boundary conditions, and the rhe-
ological model. However, its focus is on the potential advan-
tages of transitional RANS models versus the classic ones,
which are often used in literature but cannot capture the tran-
sitional nature of the flow. Our work demonstrates that clas-
sic RANS models may provide incorrect estimates of impor-
tant fluid dynamics quantities, whereas transitional models
possess much better predictive capabilities at a comparable
computational cost.
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