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1. Introduction

The growing use of composite materials is encouraged by those 
industrial sectors in search of lightweight materials, which guar-
antee the same safety levels and reliability as those in traditional 
metallic structures. A solution is to equip those structures with an 
on-board sensing technique, capable of detecting damage. This 
family of techniques goes under the name of Structural Health 
Monitoring (SHM), comprising all those systems that monitor, 
either continuously or at specific moments, the health status of a 
material, giving an indication to the user about damage developing, 
damage severity and eventually damage location [1].

Such SHM systems, if appropriately designed, will also allow a 
reduction in the downtime of assets. Planned, inspection-interval 
based maintenance will no longer be required in favour of an on-
demand maintenance programme. Safety critical structures, such 
as off-shore wind turbines or aircrafts, will receive the most benefit
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from this approach to monitoring, since their maintenance down-
time represents a large part of their operative cost.

Among the SHM techniques being investigated at the moment,
Acoustic Emission (AE) is considered to be a good candidate [2]. AE
is based on the observation that materials, when undergoing some
type of damage, release energy in the form of short, transient elastic
waves in the ultrasound band (100 kHze1000 kHz). These waves
propagate in the structure through the material's bulk and surface,
and eventually dissipate due to various phenomena. These waves
can be recorded by means of appropriate sensors, usually of the
piezoelectric type [3].

AE is classified as a passive Non Destructive Technique (NDT): it
does not require signals to be emitted (i.e. to introduce energy in
the structure) to detect damage. Instead, it waits for signals to be
recorded; those signals originate inside the material by some
damage or energy release process. This is a major advantage of AE,
as it does not require continuous scanning of the structure or the
continuous recording of data in search of a potential defect. This is
however also a downside, because it does not provide information
about a structure when it is not loaded, unlike other NDTs (like
radiography or ultrasound). In other words, the source must be
active to be detected; unstressed flaws will not generate AE.
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 Fig. 1. CFRP panel during layup of the inner plies: entire panel (a), detail of the cut (b)
and cut plies schematic (c).
There are several sources of AE. In metallic structures, AE can
arise from crack propagation and plastic deformation [4], as well as
from non-detrimental phenomena such as friction and bonding
relative movement. Spurious noise sources from parts that are
acoustically connected are also a concern. In composite structures,
AE sources are associated with the main failure modes of those
materials: fibre breakage, matrix cracking, fibre pull-out and
delamination [5]. An in-depth analysis of these AE events can lead
to source type identification based on waveform characteristics;
this is the subject of current extensive research [6]. Especially in
composite materials, AE has proved to offer interesting indications
to researchers about the development of damage. Static tests, but
also fatigue tests [7e9], crack propagation, bond strength tests [10],
residual strength tests [11] and many others have benefited from AE
monitoring.

For all these applications, the necessity to identify different AE
sources emerges. The main concern is to learn how to assess
whether and when a specific failure mode occurs in a material; such
research is usually aimed at increasing the knowledge regarding
failure modes of materials or structures and is directed towards the
development of better damage models.

One of the advantages of AE is its ability to localise damage
sources by using multiple sensors (three or more for localisation on
a plane [3]). Common planar location algorithms usually consider a
uniform velocity in the whole plane; then, based on the time of
arrival (ToA) of the waveforms, they compute the position by
intersection of hyperbolas between sensor pairs. This algorithm is
robust for homogeneous materials, provided that the waveforms
ToA is computed correctly and the velocity is known with an
adequate precision. However, in anisotropic materials, such as
Carbon Fibre Reinforced Polymers (CFRP), the wave velocity de-
pends on the orientation of the wavepath with respect to the ply
orientation. This makes the ToA technique prone to errors. More-
over, local features (such as material's local inhomogeneities and
discontinuities) add uncertainty to the problem. To overcome this
issue, a technique called Delta-T was developed [12,13]. Delta-T
utilises user-generated maps of ToA differences between sensors,
without defining a wave velocity but with the help of a calibration
grid. A HSU-Nielsen source [14] is generated at each grid point;
subsequently, for each sensor pair, a ToA difference map is
computed. The location algorithm then, when receiving a wave-
form (or, more specifically, the sensor pairs ToA differences) looks
up each Delta-T map and identifies the source location. This tech-
nique proved to be more accurate than the ToA method in a number
of test cases [15].

Commercial AE systems already provide some sort of data
compression, by encoding the information contained in each
waveform into different parameters, such as peak amplitude, fre-
quency content, duration, energy and some others. Moreover, these
parameters are thought to be linked to the kind of damage source
that originated the signal. For SHM based on AE, this feature would
be helpful because it provides information not only on the event
localisation, but also on the activity of specific damage modes.

In composite materials, AE can be generated in a number of
ways; the main failure modes include matrix cracking, fibre-matrix
debonding, fibre fracture and delaminations. There are differences
in the nature of the AE signals due to the source type; this is mainly
due to the in-plane or out-of-plane energy content. It is known that
matrix cracking and fibre breakage initiate mostly in-plane phe-
nomena and generate extensional waves of higher frequency, while
delaminations are dominated by flexural waves of lower frequency
[16].

In a delamination, the laminate separates at the interface be-
tween two layers, in some cases without indications on the surface
(for example, some impacts, although not visible from the impacted
surface, may hide large delaminations). Some authors suggest de-
laminations give rise to high amplitude signals [17], while others 
point out medium amplitude signals for a ±45� laminate [18]; au-
thors generally agree on delamination signals having in general a 
long duration [19], but tend to include debonding within the same 
classification.

Matrix cracking generally occurs between fibres at the fibre-
matrix interface, or as shear failures between plies. These types of 
matrix failures usually cause hackles, which are visible on the 
surface. Results have been found to be dependent on material and 
testing procedure, with some agreement on defining matrix 
cracking AE as mid-to-high amplitude and low frequency [20], but 
some studies report low amplitude [17,18,21] and medium fre-
quency [22] fast decay [23] but also slow decay [24].

Finally during loading, some fibres fail in tension. The expected 
AE signature is an abrupt energy release mechanisms, with high 
amplitude and fast rise time [18], as it would happen in a brittle 
crack phenomenon.

As discussed, early approaches based the classification of dam-
age mechanisms on a single AE parameter, typically peak 
amplitude or frequency content. When trying to overcome some 
issues, mainly related to signal attenuation as a function of distance, 
multiple parameters at once have been considered [21,25]. Due to 
the high amount of data to be processed and difficulties in identi-
fying patterns with traditional statistical techniques, machine



Fig. 2. Artificial crack panel after manufacturing.

(a)
learning algorithms, especially Artificial Neural Networks (ANN), 
have been increasingly used in this field [26e30]. Among these 
techniques, a previous paper by the authors [31] presented an 
unsupervised technique for the classification of AE signals, based 
on the Self Organizing Map (SOM) and the k-means clustering al-
gorithm. The technique, for brevity referred to as k-SOM, also em-
ploys a number of clustering indexes to determine which is the 
optimal number of natural classes found in a dataset. In this way, 
no user input or tuning is required.

The aim of this experimental work is to obtain, analyse and 
identify AE signals from different damage sources. These sources 
should be generated in a way that they could be easily isolated 
from boundary effects (like edge reflections), while at the same 
time being in a known and distinct location. The positive 
identification of different damage sources by the k-SOM 
classification technique is key to separate the different 
contributions of the various AE modes in a real structure; for this 
reason, it is the intention of this work to provide a further 

validation of the technique.
2. Experimental plan

2.1. Panel

A 500  mm � 500 mm CFRP panel was manufactured from 
unidirectional pre-preg T800S carbon fibre (56.6% in volume) in
Fig. 3. Panel fitting in the tensile machine.
epoxy resin (M21/35%/UD268/T800S, Hexcel Corporation). The 
final laminate consisted of eight layers, laid up as [0/90]2s, giving a 
total thickness of 2.2 mm; this was in line with the indications of 
the manufacturer (a 2.1 mm thickness was expected).

To promote matrix cracking in the innermost 0� layers (3rd and 
6th) a 25 mm crack was introduced by cutting the fibres with a 
knife. Particular attention was paid when manufacturing the final 
lay-up to ensure that the two cracked layers were aligned (Fig. 1). 
This would ensure matrix cracks are more likely to happen in this 
area as these plies are no longer supported by longitudinal fibres in 
the direct loading path.

The panel was then cured as per manufacturer specifications in 
an autoclave. The panel was subsequently C-scanned to make sure 
that no macroscopic defects or curing failures were present.

To allow the panel to be loaded in tension, two holes were 
drilled and reinforced with aluminium square tabs. This helped
(b)

Fig. 4. Examples of Delta-T calibration maps for sensors 1e3 (a) and 1e5 (b).



Fig. 5. Panel with sensors and fitted in the testing machine.

Fig. 6. Impact machine and panel fitting.

avoid damage deriving from the direct contact between the fixture 
and the panel surface.

The tabs were bonded before cutting the holes with araldite 
glue; the holes were then drilled through both aluminium and the 
material. Another C-scan was then performed to compare with the 
original scan to make sure that it was not damaged during this 
process. The final panel geometry is shown in Fig. 2.

A schematic drawing of the specimen in the tensile machine is 
shown in Fig. 3.

2.2. AE setup

For this test, a Vallen AMSY-4 system was used. Physical Acoustics 
Corporation WD (wideband) sensors were connected to Vallen AEP3 
pre-amplifiers, with the gain set to 34 dB. A band-pass filter between 
95 kHz and 1000 kHz was used. Sampling frequency for waveforms 
was set to 5 MHz with a set length of 4096 points, corresponding to a 
819.2 ms wavelength. Noise threshold was set to 44.9 dB.

The panel was then prepared for the Delta-T location 
calibration. A square grid was drawn with two resolutions (Fig. 2): 
the bigger one, 300 mm � 300 mm wide, featured a 50 mm 
spacing; in the central region a finer grid was drawn, with a 10 mm 
spacing and a
Table 1
Peak load levels for the pre-impact phase.

Batch nr. Load (kN) Batch nr. Load (kN) Batch nr. Load (kN)

1 8 9e11 12 19 17
2 8 12e13 13 20e21 18
3e5 9 14e16 14 22 19
6e7 10 17 15 23e25 20
8 11 18 16 26 21
100 mm � 100 mm size. The smaller grid is used to get a more 
accurate location of damage in the cut plies region.

Two examples of the Delta-T maps are shown in Fig. 4 (ten are 
created in total, one for each sensor pair). It is interesting to observe 
how the Delta-T technique allows for compensation of the distur-
bances of wave propagation around the tabs and local anisotropies 
in the wave velocity due to the material's layup.
2.3. Testing plan

After Delta-T calibration, the panel was fitted into the load test 
machine. A pin, running through each extension bar hole, con-
nected the panel to the load test machine. The panel was then 
bolted into the extension bars (Figs. 3 and 5). The bolts were 
tightened before starting the test, thus using friction to improve the 
load transfer between the machine and the panel. Particular care 
was used in making sure that the extension bars were vertical at 
almost-zero load. The panel fitted in the testing machine can be 
seen in Fig. 5.
Table 2
Peak load levels for the post-impact phase.

Batch nr. Load
(kN)

Batch nr. Load
(kN)

Batch nr. Load
(kN)

Batch nr. Load
(kN)

1 14 6 20 15 24 21e22 28
2 16 7e8 21 16e17 25 23e24 29
3 18 9e11 22 18 26 25e30 30
4e5 19 12e14 23 19e20 27 31 31



Fig. 7. Location of AE events from the crack propagation test.

Fig. 9. C-scan images of the panel central region as manufactured (a) and before
The testing plan consisted in running fixed-amplitude batches
of 5000 cycles, at 1 Hz; after each batch the panel was removed
from the rig and C-scanned, monitoring the eventual damage
growth in the panel. The loadwas increased after each batch if none
or little AE was observed, otherwise another run was made at the
Fig. 8. AE events from crack region.

impact (b), also showing sensor location.



Fig. 10. AE events during the selected after impact batch.

Fig. 12. C-scan images of the panel before impact (a), after impact (b) and end of
test (c).
same load level. Tests were run with an R ratio (min load/max load) 
of 0.1 to avoid compression loads and to obtain a sufficient preload 
in the fitting. The peak loads are summarised in Table 1.

After a sufficient number of AE signals from the artificial crack 
area were collected (to allow source characterisation), the panel 
was then impacted with an Instron Dynatup 9250HV impact
Fig. 11. AE events from delamination region.



machine at an energy of 14J, in a location far from the crack but still 
within the loading path of the test. The impact machine, with the 
panel frame fitting, can be seen in Fig. 6.

The purpose of the impact was to generate signals from both the 
crack and the delamination resulting from the impact. The panel 
was then tested again as previously, increasing the load and C-
scanning after every batch of loading (Table 2).
3. Results

3.1. Pre impact

During the first phase of testing, about 40 AE signals were 
detected from the crack region, with a good location accuracy (Fig. 
7). The regions around the bonded tabs also released AE sig-nals, 
especially at the corners of the aluminium tabs; this was not 
unexpected since the stress field induced by the loading fixtures is 
likely to produce a concentration of stresses. Only signals from the 
crack region were used for this analysis as shown in Fig. 7.

For classification repeatability purposes, only signals recorded 
by sensor 5 were considered throughout the whole test. Therefore, 
there are a few signals (as visible in Fig. 7) that were located in the 
region of interest and were not recorded by sensor 5, although they 
are a small percentage (around 2% of the total). A sample of the 
selected waveforms are shown in Fig. 8.

The C-scans at the beginning and after the last batch without 
impact are shown in Fig. 9. The central sensor (number 5) is always 
visible in the C-scans as a dark spot with its attached cable running 
to the left.
Fig. 13. AE selected events sup
C-scans confirm that no additional damage has been introduced 
during the test. No high attenuation (dark) areas are found; this 
confirms the absence of in-plane discontinuities, like de-
laminations. The crack region, below the sensor visible in the 
centre, appears to darken slightly, but no evidence of growth can be 
observed.
3.2. Post impact

After the impact, the AE activity of the panel increased signifi-
cantly. Fig. 10 shows AE localised events for the last batch after 
impact (batch 31). The test was then interrupted since it showed 
significant sources from the impact region. The figure also shows 
the selected events from this set.

The location accuracy appears reduced, mainly due to the 
presence of the impact area, which alters the wave propagation 
path, while the original Delta-T calibration was still used. Never-
theless, it can be noticed that signals from the crack area have 
decreased in number, and moved toward the crack tips. This is a 
consequence of the crack region having reduced its stiffness: the 
stress field increases at the sides of the crack, and stress concen-
tration areas are found around the crack tips. Therefore, those 
signals may indicate some damage mechanisms happening at or 
near the crack tip regions. A sample of the signals coming from the 
delamination region is shown in Fig. 11.

The delamination size after impact was determined by C-scan-
ning the panel again, as visible in Fig. 12.

A final C-scan after all fatigue testing was completed indicated 
that the delamination had not grown significantly (Fig. 12c).
erimposed to the C-scan.



Superimposing AE data to the C-scan, it is clear that only the left 
border of the impacted area shows AE activity (Fig. 13).

A possible explanation for this, considering that the delamina-
tion has not grown, would be that the active areas in the delami-
nation are the ones that experience some type of rubbing or 
frictional phenomena, in other words those areas that are experi-
encing a high stress gradient, due to the particular stress field the 
panel is exposed to.
(a)

(b)

Fig. 14. AE activity (a) and energy
3.3. Classification of AE signals

Classification of the dataset showed interesting results, with the
identification of two classes of signals.

The parameters used for the classification are:

� Amplitude (A), in dBAE (in logarithmic scale, with a reference
voltage of 1 mV at the sensor output);
(b) trends, after classification.



Fig. 15. Classified signals in the selected region.
� Duration (D), in ms;
� Risetime (R), in ms;
� Counts (CNTS), the number of signal zero-crossings;
� Energy (E), in eu (1eu ¼ 10�14 V2s), calculated measuring the
area under the signal envelope;

� Frequency center-of-gravity (FCOG), the geometric center fre-
quency of the signal's Fast Fourier Transform (FFT) in kHz;

� Peak Frequency (FMXA), the peak of the signal's FFT in kHz.
(a) (b

(d(c)

Fig. 16. AE energy and activity 2D maps, by class (a) activity, clas
The classification technique, presented in detail in Refs. [31], 
uses a Self-Organizing Map which takes as input the waveform's 
parameters vector, and gives as output the Best-Matching Unit 
(BMU). In this way, the SOM maps the multidimensional input to a 
2-dimensional space, which is then further mapped to a number of 
clusters, which themselves correspond to dataset classes. The 
optimal number of clusters in the dataset is chosen automatically 
considering a number of classification parameters.

For this dataset, the k-SOM classification technique identified 
two as the best number of natural classes. AE data has then been 
classified accordingly.

Global AE energy and activity trends (Fig. 14) show that the first 
part, before impact (0e2646 s), is dominated by Class 2, while Class 
1 remains almost silent. Class 1 is observed at approximately 4500 
s, with an increasing trend, which is followed by Class 2.

All classified localised signals for the two batches are shown in 
detail in Fig. 15.

From this preliminary observation, it can be noted that the crack 
region holds mainly Class 2 signals, while the impacted area shows 
a mixture of both classes, with Class 1 being evenly spread and 
Class 2 concentrating at the bottom boundary.

Energy and activity maps (Fig. 16) show that Class 1 has a lower 
energy than Class 2, and is concentrated, as previously observed, 
around the impacted area and at the crack tips. Class 2 is concen-
trated in the middle of the crack and at the tips, and at the bottom 
boundary of the impacted area.

Considering the aforementioned time blocks, the evolution of 
signals is shown in Fig. 17.

Here, the signal evolution indicates that, after impact (Fig. 17b), 
a number of Class 2 events appear in the damaged region; then, a 
mixture of Class 1 and Class 2 signals are emitted at a similar rate.
)

)

s 1 (b) activity, class 2 (c) energy, class 1 (d) energy, class 2.



(a)

(c) (d)

(b)

Fig. 17. AE events in time, classified (a) t ¼ 0e2646 s (b) t ¼ 0e4500 s (c) t ¼ 0e5200 s (d) t ¼ 0 to end.
An example of the waveforms from both classes is shown in Fig. 
18. Here it is clear that the classification technique is capable of 
separating two distinct groups of waveform shapes. Also, average 
parameters for the two classes are reported in Table 3.
4. Discussion

The AE results presented in Section 3 provided some key in-
formation and confirmation regarding AE and damage detection in 
composites:

� Cutting the inner plies allowed the generation of an artificial
flaw that favoured matrix cracking;

� The artificial crack area showed repeatable sources, as visible
from the waveforms;

� A delamination induced by an impact becomes an active source
of AE;

� The delamination source of this experiment contains two
distinguishable classes of AE signals;

� The delamination source is active from the AE point of vieweven
if the delamination does not grow.

When supported by ANN classification, the failure modes are
correctly identified: the pre-impact phase shows only a single class
of signals; when the panel is impacted, a second class appears. It is
observed that in the impact region both delamination and crack
signals are found.

The crack class signals seem to be more related to the region
normal to the load path (matrix failing in tensile load); this is
supported by the AE signals position relative to the delamination
area observed in the C-scan and by the observation of almost only
crack class signals in the cut ply region.

On the other hand, the delamination class signals are distributed
in the delamination region, probably originated by debonded layer
friction. Although this does not imply delamination growth, it
provides a way to identify the delamination region, which may
cause a significant reduction in structural compressive strength of
the component.

It was also observed that the two classes show repeatable
sources, with distinct waveforms and AE parameters. In particular,
matrix cracking sources show higher amplitude and a relatively
quicker decay, while delamination sources appear as a continuous-
like source.

The augmentation of AE data with automatic classification in-
formation presented in this work represents an improvement for
the use of AE as SHM system for carbon components. If a compo-
nent is fitted with an AE sensor network and its signals are classi-
fied according to the procedure presented, the human discretion in
interpreting AE trends and signals is significantly reduced, if not
completely removed, when deciding if a component has developed
a new damage mode.



(a)

(b)

Fig. 18. Waveforms from class 1 (a) and class 2 (b).

Table 3
Average parameters for the two classes.

Class 1 Class 2

Average Std. deviation Average Std. deviation

CNTS 3 4 85 41
A (dB) 49 3 69 6
E (eu) 89 151 27,680 28,732
R (ms) 8 20 94 126
D (ms) 25 33 810 504
FCOG (kHz) 263 38 266 59
FMXA (kHz) 224 57 174 77
An important feature to stress is, that if AE data is presented
without classification data, it is not possible to discriminate
whether a change in activity is related to a particular damage mode
developing, or whether it is only a change in environmental con-
ditions (e.g. noise). By coupling AE location data and classification
information, it would be possible to separate the various contri-
butions of the different classes, and monitor them separately both
by location and in their time evolution.

This feature will be a benefit for real-time monitoring, mainte-
nance and also laboratory component testing, since the use of AE
may give precious indications to the system operator about damage
characteristics, location and evolution, without involving direct hu-
man intervention or downtime for inspection. In the design phase of
parts intended to be monitored, SHMwill help limit both the weight



of the structure and the involved safety factors. A SHM technique
which provides precise information on each damagemode evolution
reduces the uncertainties of the damage models themselves and
consequently decrease inspection intervals. SHM alarms can there-
fore trigger direct, localized and focussed maintenance.

5. Conclusions

This experimental work presented a way of generating two
distinct artificial AE signal sources in a CFRP plate, one related to
matrix cracking phenomena and a second one related to impact-
induced in-plane delamination. A neural network-based fully
automated classification technique proved to be effective in iden-
tifying these two different sources and to correctly separate them.
This was supported by visual observation and ultrasonic C-
scanning.

The AE technique, supported both by advanced location algo-
rithms (namely the Delta-T technique) and automatic classification
methods (the k-SOM classifier), proved to be valid to monitor in
real-time CFRP structures under fatigue load, and could be easily
made capable of automatically identifying the onset of a novel
damage mode in real-time.

Criteria for rejection or acceptance of parts (i.e. defining alarm
levels and assessing false alarm probabilities) have yet to be
investigated deeply. Also, the applicability of the classification
technique to real-time AE data classification without having to
consider the entire dataset is being evaluated at the moment.
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