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A B S T R A C T

Thin-walled cylindrical shells are nowadays widely used for principal structures in the aerospace field. Despite
the capacity to sustain high levels of axial compressive loads they are also easily prone to fall into buckling.
One of the methods currently studied to increase the value of the critical load associated with this phenomenon
consists in the use of curvilinear fibers, through which it is possible to continuously change the stiffness, and
consequently the local behavior of the structure. The paper describes an optimization methodology developed for
the buckling optimization of thin-walled variable stiffness cylindrical shells subjected to axial load, together with
a general fibers path formulation. The framework proposed involves a synergic work between the finite element
method and artificial intelligence techniques. The optimal configuration shows an increase of the buckling load
of about 4 together with an increase of the pre-buckling stiffness of about 6 .

1. Introduction

In the last decades, the evolution in automation and manufacturing
techniques led to the birth of new advanced technologies such as Au-
tomated Fiber Placement (AFP) in which robotic is used to lay fibers
tows onto a mold surface to create the laminate. In AFP, the machine
head is capable of steering the fibers within the plane of the laminate
allowing to change locally the stiffness of the component, creating the
so-called variable stiffness (VS) composites [1]. Varying the stiffness
continuously along a certain path, the designer is capable to fully ex-
ploit the directionality of the composites, increasing considerably the
design space when compared to constant stiffness (CS) counterparts.
The possibility to better tailor the structural behavior doesn’t come for
free as it is accompanied by a higher complexity of the design phase
and by manufacturing limitations. The most important manufacturing
limitation is related to the maximum allowable curvature of the fibers
path, beyond which a drastic decrease of the performances is obtained
due to fibers wrinkling. The concept of curvilinear fibers composite ma-
terials was firstly introduced by Hyer and Charette [2] with the idea
of increasing the tensile load capacity of a plate with a centrally lo-
cated circular hole avoiding the interruption of the fibers. Successively,
many authors, attracted by this new design possibility, investigated the
effect of stiffness variation with different purposes. Abdalla et al. [3]
investigated the application of VS laminates with the goal of mitigat-
ing resonance problems applying the concept of lamination parameters.

The same approach was also considered by Setoodeh et al. [4] for the
maximization of the buckling load of a composite VS panel. Wu et al.
[5] analyzed the problem of the correlation between numerical and
experimental tests, taking into account different prestress conditions.
Other authors, such as Vescovini and Dozio [6], considered the approx-
imation of the structural behavior with analytical formulations. Despite
the concept of variable stiffness composites attracted a lot of researchers
since the start of the XXI century their applications were limited to flat
panels. One of the first researcher who extended the applicability of
this concept to cylindrical shells is Tatting [7]. In his work, both ax-
isymmetric and circumferential stiffness variation were considered, and
only in the second case, a satisfactory increase in performance was ob-
tained. Blom [8] applied the VS concept to elliptical-section cylinders
obtaining numerically an increase in the fundamental natural frequency
of 30% and an increase of the bending critical load of 18% with com-
pared to the quasi-isotropic counterpart. Labans and Bisagni [9] inves-
tigated the behavior of CS and VS cylinders with imperfections. Both
buckling, post-buckling, vibration analysis and tests were performed ob-
taining good correlation.

In aerospace, like in many other fields, a lot of effort is spent try-
ing to increase the performances of commonly used structures. Struc-
tural responses are simulated by means of well known Finite Elements
(FE) software, since physical experiments are too expensive and take too
much time if the objective is to find the best parameters set up during
a preliminary phase. For an appropriate choice of parameters values, it
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is necessary to move the problem into an optimization framework in
which parameters update is made following a specific methodology
which allows finding the best design in a limited amount of time. Dur-
ing the optimization, the behavior of the structure associated with dif-
ferent combinations of the design parameters must be evaluated in or-
der to assess the value of an objective function. This phase may require
hundreds of thousands of FE simulations and consequently a high com-
putational time. A possible solution to overcome this problem is the re-
placement of the high fidelity FE analysis with a properly constructed
metamodel. This technique represents a model of the model since it tries
to approximate the response of the numerical model of the physical sys-
tem. This strategy is not completely new since many authors successfully
applied it in case of CS laminates [10–13] but only few works concern-
ing VS composites, where the number of design variables is considerably
higher, are present. Rouhi et al. [14] considered the fibers path opti-
mization of a cylinder subjected to bending moment with a multi-step
metamodeling-based design optimization approach. Ye et al. [15] ap-
plied Least Squares Support Vector Regression for the optimization of
a plate under compression and a cylinder in bending. Nik et al. [16]
conducted a comparative study about the state-of-the-art metamodeling
techniques for square panels and cylindrical shells. These papers repre-
sent the first attempts to take advantage from the introduction of Arti-
ficial Intelligence (AI) techniques inside a structural optimization prob-
lem concerning VS laminates.

Beyond the approximation of FE models AI has found several other
applications related to the aerospace structural field. In the paper by
Salehi and Burgueo [17], it is reported a very detailed overview of the
various AI models applied for health monitoring of structures, damage
detection and structural identification. In the paper by Fonte et al. [18]
a recurrent neural network controller is designed for load alleviation by
means of a dedicated wingtip equipped with a small control surface to
be applied to a regional aircraft. Finally, in Bernelli et al. [19] the same
network architecture is involved in the active suppression of the flutter.

In this paper, an optimization methodology based on bio-inspired
AI techniques is presented. The methodology involves the design of an
Artificial Neural Network (ANN) for the approximation of the buck-
ling load and of the pre-buckling stiffness of a composites cylindrical

shell. The net is then used for the evaluation of the fitness functions dur-
ing the optimization carried out using a Particle Swarm Optimization
(PSO) method. Fig. 1 shows the optimization framework developed in
this paper that will be detailed in the following sections. The goal of the
work is to evaluate the possibility and the quality of the structural ap-
proximation through ANNs and to further demonstrate the beneficial ef-
fects of a data-driven approach inside a structural optimization problem.

2. Modelling technique

The geometry of the cylindrical shell here considered is the same as
a previous work by Labans and Bisagni [20] and consists of 705mm
of height, 300mm of radius and 8-ply lay-up with a total thickness of
1.448mm. The plies are made of AS4/8552 CFRP prepreg which me-
chanical properties are reported in Table 1.

The FE models are generated inside the commercial software Abaqus
[21] and the Abaqus/CAE tasks are executed with the help of paramet-
ric Python scripts. The cylindrical shell is created in the plane and
then rotated during the assembly so to have the x axis coincident with
the cylinder axis and the cross sections in the plane Fig. 2.

The nodes belonging to the section at are clamped while ones
at , where h is the cylinder height are free to move only along
the x axis. The constraints are introduced through two reference points,
one in the origin at (0, 0, 0) and the other at (h, 0, 0) which are con-
nected with tied constraints to all the nodes of the relative cross-sec-
tion. In this way, the boundary conditions can be directly applied only
to the two reference points. The upper reference point is also used for
the introduction of the axial load. Since the load distribution doesn’t
vary circumferentially, the model is built such that the fibers path can
vary only in the axial direction: . In this way it is possible to
assign a preferred lay-up to all the elements at a certain cross-section
from the origin. The continuous variation of the fiber angle is approx-
imated as a piece-wise constant inside each element and, along the
circumference, all the elements have the same lay-up. The elements
used are reduced integration S4R shell-type with a mesh size of 5mm.
The dimension of the elements has been fixed after a mesh sensitivity

Fig. 1. Methodology flowchart.

2



UN
CO

RR
EC

TE
D

PR
OO

F

S.F. Pitton et al. Composite Structures xxx (xxxx) xxx-xxx

Table 1
Material properties of AS4/8552 prepreg.

(GPa) (GPa) (GPa) (–) (kg/m 3)

141 10.3 4.5 0.3 1580

Fig. 2. FE model of the cylindrical shell.

analysis based on the convergence of the buckling load to variations of
the mesh size.

2.1. Fibers path definition

The most used path definition for VS composites relies on a piece-
wise linear variation of the fibers angle [7] and allows discrete freedom
in the path definition. The problem is that, in order to approximate a
complex function, the structure must be divided into a lot of pieces at
the expense of an increasing number of design variables. The other used
path definitions like Lagrangian [22] or Lobatto [23] polynomials lack
simplicity since involve complex mathematical formulations, do not al-
low for a direct interpretation of the fibers path and, in some cases, must
be recovered with other techniques as the streamline analogy. The pos-
sibility of having an extensive range of paths defined through a function
that requires few parameters is fundamental for an efficient optimiza-
tion process. For this reason, it is here proposed a new mathematical
formulation for the definition of the fibers path. The formulation is valid
both for plates and for cylinders. Considering a reference system with
the x-coordinate aligned with the cylinder axis and the y-coordinate tan-
gent to the unrolled surface of the shell, the fiber path proposed is ex-
pressed as:

(1)

where A is the amplitude, the frequency and the phase shift of the
harmonic function, h the height of the cylindrical shell and the slope
of the linear term. From the just presented equation it is possible to re-
cover the local fiber angle:

(2)

where is the local angle between the fiber and the x axis. The ex-
pression can be divided into two terms: the first term is a trigonometric
function with three parameters and that allows the fiber to follow
a simple or complex path depending on the parameters combination,
while the second term is the one related to the CS design space. This last
term allows the formulation to overcome the limitations given by actual
fiber path definitions thanks to the possibility to generate straight paths
ranging from 0 to 90 . In this way, the design space of the CS com-
posites is completely taken into account and enlarged. The combination
of these two terms guarantee a high design space but easily shrinkable
since each parameter has a direct and known effect on the fiber shape as
shown in Fig. 3. Moreover, the approximation capacity can be increased
by increasing the trigonometric terms inside the path definition of Eq.
(1).

Beside the large design space offered by this formulation, it gives also
the possibility to easily introduce manufacturing constraints related to
the fibers curvature. If the curvature of a path exceeds the limit value al-
lowable by the specific AFP machine considered, the fibers at the inner
side of the curvature will buckle during the placement of the tow. This
constraint is fundamental in order to generate only admissible stacking
sequences, free of defects due to fibers wrinkling. The curvature of the
path is expressed as:

(3)

where and are respectively the first and the second derivative of
the path w.r.t the x-coordinate.

2.2. Domain of interest

One important aspect of the design optimization methodology here
presented is the definition of the design space. It is fundamental to prop-
erly bound the range of variation of the variables in order to construct
a global approximation model without wasting time with simulations
outside the space of interest, decreasing the local approximation capa-
bility. Moreover, the optimization phase requires the knowledge of the
boundaries inside which looking for the optimal configuration. For this
purpose, and since the value of the curvature is imposed by the AFP ma-
chine, it was decided to use the frequency of the path formulation (Eq.
(1)) as a dependent variable. After setting the values of and ,
the maximum value of which guarantee no wrinkling is calculated as:

(4)

In this way, the upper boundary of the frequency varies according to
the values of the other variables. Instead of considering the actual max-
imum curvature allowable by AFP machines, in this paper it is decided
to use a higher value, mainly for two reasons:

1. The capacities of manufacturing machines in the field of fiber steer-
ing are continuously growing, so a further increase in manufacturing
freedom is expected in the future years.

2. It is more challenging to build a metamodel onto a system with more
freedom in terms of its inputs variability and response. A low value of
the curvature restricts the response of the structure to be very close
to a classical CS composite.

Considering in this study only symmetric and balanced configura-
tions, as in [7], the number of design parameters is 8, as two fiber
paths are considered in order to completely define the composite lay-
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Fig. 3. Effect of the fiber path parameters.

up given by . In Table 2 the boundaries of the fiber parame-
ters, chosen after a sensitivity analysis, and the value of the maximum
curvature allowed are reported. The fiber parameters are bounded so
as to avoid wasting resources by simulating configurations that are cer-
tainly not optimal.

3. Metamodeling

One AI technique that is getting more and more successful in these
years is the global approximation through artificial neural networks
(ANNs) [24]. ANNs derive from observations of brain processes from an
engineering point of view. They are nothing but the result of the attempt
to simulate the accumulation of experience inside a machine with the
aim of solving complicated tasks exploiting parallelization of simple op-
erations. The fundamental unit of an ANN is the mathematical model of
a neuron, which is able to perform a linear combination with a bias fol-
lowed by a nonlinear function, as shown in Fig. 4. From the figure it is
possible to see the design parameters of the ANN, namely w and b. The
former are weights applied to the inputs of the neuron while the latter
is the bias.

The complete architecture of the net is obtained by connecting
a certain number of this simple unit according to different schemes.
Here the feedforward scheme is adopted in which the neurons are
grouped in layers and each neuron of each layer is fully connected
with the neurons of the adjacent layers. Three kinds of layer exist:
the input layer which contains the input parameters, the hidden layers
which transform the inputs space into another dimension and the output

Table 2
Parameters boundaries and maximum curvature allowed.

A (mm) (°) (rad/s) (°) (1/mm)

[10, 100] [0, 90] [0, 2] [0, 45] 1/200

Fig. 4. Mathematical model of a neuron.

layer which provides the requested outputs. By discovering the nonlin-
ear relation that exists between the input features and the outputs, the
network is able to produce a global approximation of specific quantities.
In this way, the net can replace FE simulations reducing the time re-
quired to compute the structural response. The process, through which
the net is trained to approximate the structural behavior, is called learn-
ing. During this phase a certain number of input/output pairs, which
constitute the dataset, are passed through to the network and its para-
meters are modified until a satisfactory level of approximation accuracy
is obtained.

3.1. Dataset generation

In order to decide which combinations of input parameters could
be used to train the model and so, which FE simulations perform, the
Latin Hypercube Sampling (LHS) method is adopted. This method al-
lows to generate a near-random sample of the design parameters in-
side the multidimensional design space. The total number of simula-
tions performed are 135 eigenvalue buckling analysis to determine the
buckling load and 135 linear static analysis to determine the stiffness.
Buckling load and stiffness, together with the fiber parameters, repre-
sent the 135 inputs/outputs pairs that are used to learn this multi-task

4
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regression. Of these simulations, 81 are involved to train the network to
learn the relationship between the inputs and the outputs, 27 to eval-
uate the approximation quality of the network and modify its architec-
ture during the training, while the remaining 27 to state the final per-
formances of the metamodel. The first group of samples is called train-
ing set, the second validation or dev set and the third test set. Since it
is very important that all these three sets are able to represent the de-
sign space, they are generated independently and using the same LHS
method. During this phase the manufacturing constraint regarding the
maximum curvature is taken into account. First of all, the sample values
for the parameters and , are generated and then the values of
are sampled randomly between the minimum and the maximum allow-
able for each sample calculated with Eq. (4). Another important aspect
taken into account during the generation of the dataset is the correlation
between the input variables. If the correlation between the variables is
too strong, the quality of the approximation can decrease significantly.
The Spearman Rank Correlation Coefficient (SRCC) is introduced for this
aim. The dataset generation process is repeated different times and the
training set with the lowest values of the correlation index is used. In
Fig. 5 the SRCC between the design variables considered is reported.
The value inside each square box represents the correlation between the
corresponding variables on the x and y axes.

Fig. 5. Spearman Rank Correlation Coefficient.

According to [25], a value of the correlation coefficient of 0.1 in-
dicates weak correlation, a value of 0.3 indicates moderate correlation,
while a value of 0.5 indicates a strong correlation. As expected there is
a fairly strong correlation between and A and a moderate correlation
between and since the values of the frequency are obtained on the
basis of the maximum curvature.

3.2. Training

During the training, the parameters of the network are modified
backpropagating the approximation error. For regression problems the
error is computed as the Mean Squared Error (MSE). More precisely,
in this case the MSE is calculated both for the buckling load and for
the stiffness, and then added up. Together with the network parameters,
during the training, also other variables of the architecture called hy-
perparameters are modified. The hyperparameters are for example the
number of neurons, the number of hydden layers, the parameters initial-
ization methods and others which have a direct effect on the approxi-
mation capability of the ANN defining the class of the estimator. In this
work the optimization of the network architecture is achieved by a first
global search for a group of hyperparameter in order to narrow their
design space, followed by a deep local search. The hyperparameters are
grouped and optimized as follow:

• Number of hydden layers and number of nodes
• Parameters initializations, batch size and optimizers
• Regularization methods and epochs

The batch size represents how many samples are shown to the net-
work at a time to calculate and propagate the error. Once all the sam-
ples of the training set are passed to the network, an epoch is concluded,
where the number of epochs represents how many times an entire set is
presented to network to update the parameters. The initialization meth-
ods are techniques used to initialize the values of the parameters accord-
ing to specific statistical distribution or to obtain a specific value of their
variance. The optimizers are the methods used to update the parameters.
In this study the most common ones are considered and are all variants
of the basic gradient descent. The regularization methods are introduced
to increase the generalization capacity of the network and to make the
learning process less sensitive to overfitting. In Fig. 6 the flowchart de-
scribing the procedure of the dataset generation and of the training is
reported.

Fig. 6. Flowchart of metamodel generation.
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3.3. Network optimization

In order to properly decide which the best network architecture is, it
is necessary to define specific metrics of accuracy. This necessity comes
from the impossibility of the MSE to take into account fundamental as-
pects as the variance inside the training set. In this research three met-
rics are considered and evaluated during the training process in order
to assess the performance of the network. Let consider that represents
the correct response associated to the sample represents the esti-
mated output of the network at the same sample and is the mean of all
the outputs of the considered batch. The first metric considered is the R
Square Error (R2) which indicates the overall accuracy of the metamodel.
Higher its value is, more accurate the prediction is. Considering a batch
size composed by N samples the R2 is defined as:

(5)

More R2 is close to 1 and more is the variability of the output that
is taken into account. The second metric considered is the Relative Aver-
age Absolute Error (RAAE) which is another indicator of the global accu-
racy of the metamodel since represents the average absolute difference
between the predicted output and the correct one weighted by the stan-
dard deviation (STD). Small RAAE is and more accurate the model is:

(6)

The last metric considered is the Relative Maximum Absolute Error
(RMAE) which is a local indicator of the accuracy, since an higher RMAE
value indicates that the accuracy of the model is low in one or more re-
gions of the design space:

(7)

After it is found the final configuration of the optimized neural net-
work that consists of:

• number of nodes: 32
• number of hydden layers: 3
• initializers: zeros for bias and “Glorot uniform” for weights
• optimizer: Nadam with learning rate of 0.001
• batch size: 32
• epochs: 50000
• L2 regularization: 1e−5

In Table 3 the values of the considered accuracy metrics, evaluated
onto the test set, are reported.

These values are then compared with other metamodels applied to
similar problems found in literature: the R2 metric is close to the values
of the other methods while the other two metrics are particularly im-
proved. Considering the RMAE this means that a neural network allows
approximate very well the local behavior of the system inside the design
space.

Table 3
Accuracy metrics on test set.

R 2 RAAE RMAE

0.722 0.099 0.378

4. Design optimization

In this section, the method adopted to optimize the 8 input parame-
ters with the goal of maximizing the buckling load is presented. The de-
sign variables are subjected to the constraint regarding the maximum
curvature allowable and have a specific range of variation in which the
optimal configuration has to be found. The optimization problem can be
stated as:

(8)

The problem is addressed with a population-based, metaheuristic
and derivative-free method. PSO was proposed by Eberhart and
Kennedy [26] and derives by the observation of a sociobiologist about
the beneficial effects of experience exchange between members of a
group. The idea is to fill the design space, randomly, with a certain num-
ber of particles that move into the space according to Newton’s law. The
dimension of the design space is equal to the number of the design vari-
ables and the position of each particle represents a possible solution of
the optimization. This method is very easy to implement and compared
to the Genetic Algorithm, which is the actual most used metaheuristic
method, allows for a fast convergence with practically the same qual-
ity [27]. In PSO, at each iteration, the particles move subjected to three
forces: the inertia, the cognitive force and the social force. The inertia
force, as for a real physical particle, is a force that opposes changes in
the current state and leads the particle to move in the same direction of
the previous iterations. The cognitive and the social forces derive from
the introduction of the concept of experience: every particle is able to
remember the position associated to the best value of the fitness func-
tion of which he has experienced but is also aware of the position associ-
ated to the higher value of the fitness function found by the swarm. The
cognitive term forces the particle towards its experienced best solution,
while the social term forces the particle towards the global best. The ba-
sic equations of the algorithm are:

(9)

(10)

where:

is the actual position of the particle i,
is the velocity of the particle i,

are the inertia weight, the cognitive term, and the social term re-
spectively,

are the individual best and the swarm best position,
are disturbances introduced as random values taken from a uni-

form distribution between 0 and 1.

In the implemented algorithm the time step is fixed equal to 1.

4.1. Boundaries handling and violated constraints

PSO is a stochastic method in which each particle moves, subjected
to different forces, around the design space. It is impossible to directly
give to these particles an advanced knowledge on the feasibility of the
moving direction. For this reason particles tend to move outside the
boundaries, especially during the first iterations. In case of VS compos-
ites, the problem is even a little bit more complicated due to the de-
pendence of the maximum value of the angular frequency in relation to
the values of amplitude and linear term. This leads to having a vary-
ing maximum boundary for one design variable of each ply. Together
with the imposition of the respect of the domain, it is also necessary to

6
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impose into the optimizer the fulfillment of the functional constraint
about the maximum curvature. The strategy adopted to manage the con-
straint is to apply a sequential approach. In the first step the position of
all the particles is corrected in the dimensions of the amplitudes, phase
shifts, and linear terms and then, after having evaluated the maximum
allowable radii of curvature also the frequencies are corrected. In this
way the constraint regarding the curvature is translated into a correc-
tion of the frequency in a second step. The bound-handling scheme here
considered is the reflection, according to which, if a particle is about to
violate a constraint, it is reflected at a velocity equal in magnitude but
with opposite direction respect to the actual one.

4.2. Optimizer parameters

Before being able to optimize the design variables it is necessary to
properly choose the optimizer parameters: , number of iterations
and number of particles. Among these five parameters the first three are
the most important, since govern the way in which the search of the
minimum is performed, and are strictly related to the stability of the
optimizer. In order to have a high exploitation ability at the beginning
of the process, and more exploration ability at the end of the search, a
dynamic inertia weight is considered. The inertia weight is linearly de-
creased from 0.9 to 0.4. The cognitive and the social terms are taken
both equal to 2 in order to modify the behavior of the swarm during
the optimization only with the inertia. The dimension of the swarm is
fixed as a rule of thumb to 10 times the number of variables, and a good
number of iterations is found to be 200. In Table 4 the times associated
to a single global search are reported. From the table is really clear the
advantage offered by the network in the optimization process since it
makes the evaluation of the objective function the less expensive part of
the process.

5. Results and discussion

Due to the intrinsic stochastic nature of the PSO, the optimization
is repeated 10 times and in all the cases the solution converges to a
similar configuration as visible in Fig. 7. The red line represents the

Table 4
Total times PSO assisted ANN.

Total (s) ANN evaluations (s) Constraints & updates (s)

450 80 370

Fig. 7. Maximum buckling loads envelopes.

envelope of the higher buckling load obtained during the optimization
which configuration will be considered in the following.

Once the optimal configuration is obtained the results given by the
ANN are validated by means of FE simulations. This step is necessary in
order to check if the optimal configuration given by the network is effec-
tively optimal. As done in literature, the buckling load and the pre-buck-
ling stiffness obtained with FE are then compared with the values of a
quasi-isotropic (QI) configuration given by a stacking se-
quence. It is important to remark that for the cylinder under investiga-
tion no imperfections are included, so the real optimum configuration
will be reasonably different from the one here presented. The values of
the two configurations are reported in Table 5.

As it is possible to see the VS composite cylinder exhibits a 4 higher
buckling load together with an increase of about 6 in the stiffness. The
improvement with respect to the QI configuration is not so high. This is
due to the fact that the optimization procedure is performed considering
only symmetric and balanced stacking sequences, so imposes a relevant
constraint on the structural behavior. A larger increase in performance is
expected removing this constraint and considering all the plies as inde-
pendent. In Fig. 8 half of the symmetric lay-up is reported, where each
ply is represented by the shape of only one fiber.

The vertical axis corresponds to the x-coordinate, parallel to the
cylinder axis, while the horizontal axis is the tangent to the unrolled sur-
face. The external plies have fibers nearly at 0 with sinusoidal shape,
while the internal ones are straight at 45 . The first buckling mode
of the optimal design is reported in Fig. 9. With respect to the QI
mode shape the region at higher radial displacements moves toward the
clamped edge. A particular aspect, also highlighted in literature, is that
the shape manifested is very similar to a superposition of both the paths
defined by and .

In addition to the increase in performance, what is important to
point out is the demonstration of the effectiveness of a design proce-
dure based on ANNs and PSO. Considering a machine with Intel(R)
Core(TM) i7-6700HQ CPU@2.60GHz and 8GB of RAM the CPU times
required to compute the buckling load and the stiffness with FE

Table 5
VS and QI comparison.

QI VS

[kN] 300.39 312.51
K [kN/mm] 209.19 222.83

Fig. 8. Fibers shape of the optimized configuration.
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Fig. 9. First buckling mode of the optimized configuration.

simulations are respectively 420s and 30s, while with the ANN the two
quantities are approximated in 0.2 s at once. The time required to com-
pute the optimal configuration with the adopted methodology is about
14days, where also the training time of the network is included. It is
possible to have a comparison by multiplying the number of fitness func-
tion evaluations by the time of FE analysis, including also the times re-
quired by the PSO to evaluate the constraints and update the particles
position. The time saving computed in this way is about two months and
half. The advantages offered by this methodology can be summarised in
three points:

1. The FE model is decoupled from the optimization phase.
2. The ANN allows to approximate multiple quantities at the same time.
3. It is possible to approximate the structural behavior of multiple con-

figurations in the same time with a minimum increase of computa-
tional cost w.r.t. the simulation of a single configuration.

This last point is particularly important since the capability of the
network’s nodes to perform matrix multiplication allows to parallelize
the simulations.

6. Concluding remarks

In this paper, the optimization of a variable stiffness cylindrical
shell for maximum buckling load has been investigated. To this end, a
methodology based on artificial intelligence techniques is proposed. A
new general and easy fiber path formulation for the definition of the
fibers shape was presented first. The formulation couples a trigonomet-
ric function and a linear term and allows to enlarge the design space
associated with classical composite materials. The approximation of the
structural behavior and the buckling optimization were performed com-
bining a neural network system and a particle swarm optimizer. Fi-
nally, an optimization module based on PSO approach has been imple-
mented. The results of the optimization procedure were compared to
the results of a quasi-isotropic configuration showing an improvement
of the buckling load of 4 together with an increase of the stiffness
of 6 . This limited increasing of the buckling load is due to the fact
that the optimization procedure is performed considering only symmet-
ric and balanced stacking sequences, for which the QI configuration is

almost optimal. More, at this stage of the investigation the effects of the
geometrical imperfections as well the influence of the clamping is com-
pletely neglected. Indeed, it is well know the considerable effect on the
buckling load but the main scope of this paper is the validation of the
proposed procedure and not the realization of an optimal cylinder in
presence of imperfections or other variabilities. The metamodel, based
on the use of ANNs appeared as reliable despite the reasonably lim-
ited number of analysis cases used during the training phase. The use of
metamodels during the optimization framework produced an impressive
impact from the computational costs of the entire process. On the other
hand, the PSO technique appears as reliable and easy to implement.

The first medium-term development is represented by the applica-
tion of the proposed methodology to the same problem removing the
constraint on the lay-up and to extend the procedure in order to allow
also the optimization of a cylinder with cutouts. The second, more com-
plex development, aims at the extension of the proposed approach to
more complex structures including holes and other local geometry vari-
ation coupled to a more detailed manufacturing constraints.
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