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Suppression of wave scattering and the realization of transparency effects in engineered optical
media and surfaces have attracted great attention in the past recent years. In this work the problem
of transparency is considered for optical wave propagation in a nonlinear dielectric medium with
second-order χ(2) susceptibility. Because of nonlinear interaction, a reference signal wave at carrier
frequency ω1 can exchange power, thus being amplified or attenuated, when phase matching condi-
tions are satisfied and frequency conversion takes place. Therefore, rather generally the medium is
not transparent to the signal wave because of ’scattering’ in the frequency domain. Here we show
that broadband transparency, corresponding to the full absence of frequency conversion in spite of
phase matching, can be observed for the signal wave in the process of sum frequency generation
whenever the effective susceptibility χ(2) along the nonlinear medium is tailored following a suitable
spatial apodization profile and the power level of the pump wave is properly tuned. While broad-
band transparency is observed under such conditions, the nonlinear medium is not invisible owing
to an additional effective dispersion for the signal wave introduced by the nonlinear interaction.

PACS numbers: 42.65.Ky, 42.79.Nv, 42.25.Fx

I. INTRODUCTION

In the past decade considerable research efforts have
been devoted in developing synthetic materials appro-
priately engineered to mold the flow of light in unprece-
dented ways, opening the way to several important appli-
cations. A noteworthy example is provided by the pos-
sibility to suppress wave reflection and scattering from
inhomogeneities or surfaces in engineered optical media
(see, for instance, [1–7] and reference therein). Optical
waves propagating in linear but inhomogeneous media
generally experience reflection and scattering when the
material properties rapidly change over a distance of the
order of the optical wavelength [8]. In one-dimensional
purely dielectric systems, wave scattering suppression
can be achieved by tailoring the optical refractive index
to realize reflectionless potentials. For continuous media,
the synthesis of reflectionless potentials was investigated
in a pioneering work by Kay and Moses in 1956 [9], and
then studied in great detail in the context of the inverse
scattering theory [10, 11] and supersymmetric quantum
mechanics [12], with applications to e.g. broadband om-
nidirectional antireflection coatings [13] and transparent
optical intersections [14]. Exploiting the imaginary part
of the dielectric permittivity ǫ (i.e. absorption) in addi-
tion to its real part, unidirectional antireflection can be
also realized [7]. In the electromagnetic domain, the full
access to four quadrants of the real ǫ−µ plane by means of
sub-wavelength structured metamaterials [15, 16], in con-
nection with methods inspired by transformation optics
[17], has widely extended the possibilities of controlling
and suppressing wave scatting, with the demonstration
of amazing phenomena like metamaterial cloaking and
invisibility (for recent reviews in this broad research field
see, for instance, [5, 16, 18]).

In this work we consider the problem of transparency
of optical waves that propagate in a nonlinear dielectric

medium with second-order χ(2) susceptibility. Because
of nonlinear interaction, waves at different carrier fre-
quencies can exchange power and, when phase match-
ing conditions are satisfied, frequency conversion gener-
ally occurs [19]. In such a medium ’scattering’ can be
viewed in ’frequency’ domain rather than in the spa-
tial one. It is well-known that nonlinear interaction
of light waves in a quadratic nonlinear crystal can be
exploited to properly control the spectral transmission
(both in amplitude and phase) of a given reference wave
at carrier frequency ω1 (signal wave). For example, in
a suitably-designed optical parametric amplifier it was
shown [20] that a narrow transparency window for the
signal wave can be opened, leading to superluminal group
velocities. Such a narrow transparency effect, associated
to superluminal propagation, basically reproduced the
gain-assisted transparent pulse propagation experiment
by Wang et al. [21] in atomic vapours and shares cer-
tain similarities with electromagnetically-induced trans-
parency (EIT). The transparency windows that can be
opened in a parametric down-conversion process as well
as in EIT media, however, is rather narrow. An open
question is whether broadband transparency can be re-
alized in a nonlinear optical interaction process. Here
we show that, while broadband transparency can not be
observed in parametric amplification, it can arise (theo-
retically with an infinite bandwidth) in an up-conversion

process, namely in sum frequency generation (SFG) [19]
[Fig.1(a)]. To observe broadband transparency in SFG,
the effective susceptibility χ(2) along the nonlinear crys-
tal has to be suitable apodized, which can be realized us-
ing well-established quasi-phase-matching (QPM) meth-
ods [22, 23]. While broadband transparency is observed
under such conditions, the nonlinear medium is not in-
visible, since the nonlinear interaction introduces an ef-
fective additional dispersion (phase delay) for the signal
wave that can be detected by nonlinear-induced pulse
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FIG. 1. (Color online) (a) Schematic of sum frequency gener-

ation (SFG) in a nonlinear χ(2) crystal with a periodic QPM
grating. A weak signal field at frequency ω1 interacts with a
strong pump field at frequency ω2 to generate a SFG wave at
frequency ω3 = ω1+ω2. L is the crystal length, Λ is the QPM
grating period. For first-order QPM grating Λ = 2π/∆k,
where ∆k = |k3 − k2 − k1| is the wave vector mismatch of
the three interacting waves. (b) Coherently-driven two-level
atom analogue of the SFG process. The Rabi frequency q(z)
of the exciting optical pulse, with carrier frequency detuned
by 2δ from the atomic transition resonance, corresponds to
the apodization profile of the QPM grating.

distortion in a transmission experiment.

II. SUM FREQUENCY GENERATION: BASIC

EQUATIONS AND THE DRIVEN TWO-LEVEL

ATOM ANALOGUE

A. The model

We consider parametric interaction of three co-
propagating waves with carrier frequencies ω1 (signal
wave), ω2 (pump wave) and ω3 = ω1+ω2 (SFG wave) in
a nonlinear medium of length L with a second-order χ(2)

nonlinearity, which are phase-matched via a QPM grat-
ing [Fig.1(a)]. The pump field at frequency ω2 is assumed
to be a strong and continuous-wave field, whereas the
signal at carrier frequency ω1 injected into the medium
as well as the SFG wave are assumed weak but arbi-
trarily broadband. In the effective plane-wave approx-
imation and taking into account material dispersion,
from Maxwell’s equations the electric field E(z, t) is the
medium is found to satisfy the nonlinear and dispersive

wave equation (see, for instance, [24])

∂2E
∂z2

+

∫

∞

−∞

dωk2(ω)Ẽ(z, ω) exp(−iωt) = µ0
∂2PNL

∂t2
,

(1)

where Ẽ(z, ω) = (2π)−1
∫

∞

−∞
dωE(z, t) exp(iωt) is the

Fourier transform of E(z, t), k(ω) = (ω/c0)
√

1 + χ̃(ω) =
(ω/c0)n(ω) is the dispersion relation defined by the com-
plex linear susceptibility χ̃(ω) [or by the complex refrac-

tive index n(ω) =
√

1 + χ̃(ω)], c0 is the speed of light
in vacuum, µ0 is the vacuum magnetic permeability, and
PNL is the nonlinear driving polarization term. For a
quadratic medium and neglecting dispersion and absorp-
tive effects of second-order polarization, one can take
PNL(z, t) = ǫ0χ

(2)(z)E2(z, t), where χ(2) is the spatially-
modulated nonlinear susceptibility that accounts for the
QPM grating. To study the process of SFG, the electric
field E(z, t) is assumed to be given by the superposition
of three wave trains with carrier frequencies ω1 (signal
field), ω2 (pump field) and ω3 = ω1 + ω2 (SFG field),
co-propagating along the longitudinal z direction. Phase
matching is accomplished by a QPM grating, i.e. the
susceptibility χ(2) is a quasi-periodic function of z with
period Λ

χ(2)(z) =
∞
∑

n=−∞

χ(2)
n (z) exp(−2inπz/Λ) , (2)

where the Fourier coefficients χ
(2)
n (z) are slowly varying

functions of z over one period Λ. In practice, the slow
dependence of coefficients on z can be achieved by a +/-
reversal of domains in the ferroelectric crystal with a lo-
cal period and local duty cycle that are slowly varying
along the z axis; methods to apodize the QPM grating
are described and demonstrated, for instance, in [22]. For
first-order QPM, the grating period Λ satisfies the con-
dition Λ = 2π/∆k, where ∆k ≡ |k3 − k2 − k1| is the
wave vector mismatch of interacting waves and kl = k(ωl)
(l = 1, 2, 3). After setting

E(z, t) = 1

2
{A1(z, t) exp(−iω1t+ ik1z)

+ A2(z, t) exp(−iω2t+ ik2z) (3)

+ A3(z, t) exp(−iω3t+ ik3z) + c.c. } , (4)

the evolution equations of the slowly-varying envelopes
Al(z, t) (l = 1, 2, 3) can be derived, in the limit of weak
nonlinearity and quasi-monochromatic wave trains, by
a multiple-scales asymptotic expansion analysis (see, for
instance, [25]). The resulting equations read [26]:

2ik1
∂A1

∂z
=

[

k21 − k2(ω1 + i∂t)
]

A1 −
2k21
n2
1

deffA
∗

2A3 (5a)

2ik2
∂A2

∂z
=

[

k22 − k2(ω2 + i∂t)
]

A2 −
2k22
n2
2

deffA
∗

1A3 (5b)

2ik3
∂A3

∂z
=

[

k23 − k2(ω3 + i∂t)
]

A3 −
2k23
n2
3

d∗effA1A2 (5c)
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where nl = n(ωl) (l = 1, 2, 3) are the refractive indices at
the three carrier wavelengths,

deff (z) ≡
1

2
χ(2)(z) exp(i∆kz) =

1

2
χ
(2)
1 (z), (6)

is the effective nonlinear interaction coefficient for first-
order QPM, and the overline denotes a spatial average
over a few modulation periods of the QPM grating. For
a square-wave (+/-) modulation of the ferroelectric do-
mains with 50% duty cycle and uniform period, one has

deff (z) =
2

π
d0W (z), (7)

where d0 is the nonlinear coefficient in the absence of the
grating and the real envelopeW , with 0 ≤ W (z) ≤ 1, can
be tailored rather arbitrarily with the methods demon-
strated in Ref.[22], for example by means of the domain
cancellation technique.
The linear operators on the right hand side of Eqs.(5)
describe the linear dispersive and absorptive properties
of the medium at any order of approximation. In the fol-
lowing, we will consider spectral regions of transparency
for the medium, so that we will neglect the imaginary
part of k(ω). In addition, we will assume a strong and
continuous-wave pump field, so that A2 can be taken to
be constant (independent of space and time) in Eqs.(5a)
and (5c). Under the no-pump-depletion approximation,
one can thus write

2ik1
∂A1

∂z
=

[

k21 − k2(ω1 + i∂t)
]

A1 −
2k21
n2
1

deffA
∗

2A3 (8a)

2ik3
∂A3

∂z
=

[

k23 − k2(ω3 + i∂t)
]

A3 −
2k23
n2
3

d∗effA1A2 (8b)

B. Driven two-level atom analogy

The coupled equations (8a) and (8b) describing the
SFG process in the no-pump-depletion approximation,
when written for monochromatic waves, bear a close
analogy to the optical Bloch equations describing the
dynamics of a two-level atomic system driven by a near-
resonant optical pulse. Such an analogy, which is fruitful
for the prediction of the transparency effect presented
in the next section, has been previously discussed in the
monochromatic case in Ref.[27] and applied to efficient
broadband SFG based on the analogue of rapid adia-
batic passage using chirped QPM gratings [27, 28]. Other
analogies between multi-step frequency conversion pro-
cesses in nonlinear second-order optical media and coher-
ent population transfer in coherently-driven multi-level
atomic systems, including stimulated Raman adiabatic
passage, have been highlighted in the recent literature as
well [29, 30].
To show the equivalence of Eqs.(8a) and (8b) with the op-
tical Bloch equations of a driven two-level atom [27, 30],
let us consider a monochromatic signal wave with fre-
quency offset Ω from the reference frequency ω1. Since

Eqs.(8a) and (8b) are linear ones, the general case of
an incident pulsed wave is obtained by standard Fourier
analysis starting from the solution of the monochromatic
case. After setting in Eqs.(8a) and (8b)

A1(z, t) = u(z) exp[−iΩt+ iβ(Ω)z] (9a)

A2(z, t) =
n1

n3

√

k3
k1

v(z) exp[−iΩt+ iβ(Ω)z] (9b)

with

β(Ω) ≡ −k21 − k2(ω1 +Ω)

4k1
− k23 − k2(ω3 +Ω)

4k3
(10)

one obtains the following coupled equations for the am-
plitudes u(z) and v(z)

i
du

dz
= −δu− q(z)v (11a)

i
dv

dz
= δv − q∗(z)u (11b)

where we have set

q(z) =

√
k1k3A

∗

2deff (z)

n1n3
(12)

δ = δ(Ω) =
k23 − k2(ω3 +Ω)

4k3
− k21 − k2(ω1 +Ω)

4k1
.(13)

Equations (11) are analogous to the optical Bloch equa-
tions for a driven two-level atom describing the transi-
tion between the two atomic levels induced by a nearly
resonant optical pulse with Rabi frequency q(z) and fre-
quency detuning 2δ [Fig.1(b)] [27]. Note that the de-
tuning δ, as given by Eq.(13), accounts for material dis-
persion at any order. A simple expression of δ(Ω) is
obtained when group velocity dispersion (and higher-
order dispersion effects) are negligible, and k2(ωl + Ω)
can be expanded in power series up to first order in
Ω. After setting k2(ωl + Ω) ≃ k2l + 2kl(ωl)Ω/vgl, where
vgl = (dk/dω)−1

ωl
is the group velocity at the carrier fre-

quency ωl, one simply obtains

δ(Ω) ≃ Ω

2

(

1

vg1
− 1

vg3

)

(14)

where vg1 and vg3 are the group velocities of signal and
SFG waves, respectively. In the following analysis, we
will assume that the QPM grating is not chirped, so that
the Rabi frequency q(z) entering in Eqs.(11) can be as-
sumed to be real.
As shown in the next section, the broadband trans-
parency effect predicted in this work is based on the
two-level atom analogy and existence of off-resonance
Rabi pulses q(z), which do not transfer population be-
tween the two atomic levels. It should be noted that the
two-level atom analogy can be established for the SFG
process, but not for other second-order nonlinear inter-
actions like parametric amplification involving a down-
conversion process. In the latter case, which was con-
sidered in [20, 26], the underlying equations for idler
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and signal waves differ from Eqs.(11) because of the re-
placement −q∗(z)u → q∗(z)u on the right hand side of
Eq.(11b). The resulting coupled equations describe an
exponential (rather than oscillatory) behavior of inter-
acting waves, and are similar to coupled-mode equations
found in Bragg scattering theory of counter-propagating
waves [20, 26]. As a result, broadband transparency ef-
fects are prevented in parametric amplification, where
only narrow transparency windows can be opened in the
spectral gain curve and associated to superluminal group
velocities [20, 26].

III. TRANSPARENCY IN SUM FREQUENCY

GENERATION

A. Theoretical analysis

The solution to Eqs.(11), from the input z = −L/2 to
the output z = L/2 planes of the nonlinear medium, can
be written in the general form

(

u(L/2)
v(L/2)

)

=

(

M11(δ) M12(δ)
M21(δ) M22(δ)

)

×
(

u(−L/2)
v(−L/2)

)

(15)
where the transfer matrix M is unimodular with M11 =
M∗

22, M21 = −M∗

12 and |M11|2 + |M12|2 = 1. For
signal excitation at the input plane z = −L/2, i.e. for
v(−L/2) = 0, the spectral transmission of the signal wave
is simply given by

t(Ω) =

(

u(L/2)

u(−L/2)

)

v(−L/2)=0

= M11. (16)

Note that t(Ω) can be factorized as

t(Ω) = t0(Ω) exp[iδ(Ω)L], (17)

where exp[iδ(Ω)L] is the spectral transmission (phase de-
lay) introduced by the medium in the absence of the
nonlinearity, i.e. for q(z) ≡ 0, and t0(Ω) accounts for
the nonlinear interaction. Broadband transparency is re-
alized provided that

M12(δ) = M21(δ) = 0 , |M11(δ)| = |M22(δ)| = 1
(18)

for any detuning δ, i.e. |t0(Ω)| = 1 for any frequency
offset Ω of the carrier wave from the reference frequency
ω1. This means that for an arbitrary optical signal pulse
propagating into the nonlinear medium no SFG field is
produced at the output of the crystal in spite of phase
matching. We note that invisibility is a more stringent
condition than transparency, since it requires t0(Ω) = 1
for any frequency Ω. If the nonlinear medium is trans-
parent but the phase of t0(Ω) is not flat, a propagating
signal pulse in the medium would suffer for an additional
phase delay arising from the nonlinear interaction, re-
sulting in pulse distortion as compared to the invisible
regime χ(2) = 0 of linear propagation.

A necessary condition for the observation of transparency
can be readily established as follows. Exact solution to
the Bloch equations (11) is available at exact resonance
δ = 0 for an arbitrary shape of the Rabi frequency q(z).
In fact, for δ = 0 one simply has M11 = cosA, where

A =

∫ L/2

−L/2

q(z)dz (19)

is the ’area’ of the driving pulse in the quantum mechan-
ical analogy. Hence transparency at δ = 0 requires

A = Nπ (20)

with N integer. Equation (20) provides a necessary

condition for broadband transparency, since it ensures
transparency at resonance δ = Ω = 0. However, for a
general profile q(z) transparency is not found far from
resonance, i.e. for δ 6= 0, especially if there is a non-
neglibile group velocity mismatch between signal and
sum-frequency waves [see Eq.(14)]. For example, let us
consider the simplest case W (z) = 1, corresponding to a
non-apodized (uniform) QPM grating, so that q(z) = q0
constant in the range −L/2 < z < L/2. According
to Eq.(20), transparency at resonance δ = 0 requires
q0 = Nπ/L. However, for δ 6= 0 the transmittance in
not unity. In fact, after a simple calculation one finds

|t0(δ)|2 = cos2
(

√

q20 + δ2L

)

+
δ2

δ2 + q20
sin2

(

√

q20 + δ2L

)

.

(21)
The question thus arises whether there exist special pro-
files q(z) such that |t0(δ)|2 = 1 for any vaue of the de-
tuning δ. In the theory of driven two-level atoms, it is
known [31] that for q(z) of the form

q(z) =
q0

cosh(αz)
, (22)

transparency at any value of detuning δ can be realized
whenever the condition (20) on the area is satisfied. The
parameter α entering in Eq.(22) can be taken arbitrarily,
and its inverse 1/α basically determines the characteristic
length of nonlinear interaction. For such a profile of q(z),
exact solution for the optical Bloch equations (11) can be
obtained in terms of hypergeometric functions [31], and
the transparency at special values of the amplitudes q0
satisfying the area condition (20) can be explained in
term of supersymmetric quantum mechanics [32]. As-
suming a medium length L such that cosh(αL/2) ≫ 1,
the nonlinear correction t0(Ω) to the transmission co-
efficient t can be obtained in a closed form and reads
explicitly

t0(Ω) =
Γ(1/2 + i∆)Γ(1/2 + i∆)

Γ(1/2 + i∆−A/π)Γ(1/2 + i∆+A/π)
(23)

where we have set

∆ ≡ δ(Ω)

α
≃ Ω

2α

(

1

vg1
− 1

vg3

)

, (24)
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A = πq0/α is the area (defined by Eq.(19) with L →
∞), and Γ(.) is the Gamma function. From Eq.(23) the
spectral transmittance T (Ω) = |t(Ω)|2 = |t0(Ω)|2 for the
signal wave can be calculated, which reads

T (Ω) = 1− sin2 A
cosh2(π∆)

(25)

where ∆ = ∆(Ω) is given by Eq.(24). Note that broad-
band transparency T = 1 is obtained provided that
A = Nπ with N integer, according to Eq.(20). Once
the normalized spatial profile W (z) of the QPM grat-
ing is designed according to W (z) = 1/ cosh(αz), from
Eqs.(7) and (12) it follows that the transparency condi-
tion A = Nπ is met for special values of the pump ampli-
tude A2. In terms of the intensity I2 = (1/2)ǫ0c0n2|A2|2
of the strong pump wave, the transparency condition is
satisfied provided that I2 = NItr, where N is an integer
number and Itr is the transparency pump intensity given
by

Itr =
1

32

ǫ0c0n1n2n3λ1λ3α
2

d20
(26)

For a pump intensity I2 = NItr, the nonlinear medium is
broadband transparent, i.e. no SFG wave is generated at
the output of the crystal for any arbitrarily broadband in-
cident signal pulse. In fact, once the area condition (20)
is satisfied the transparency bandwidth is in principle
infinite according to Eq.(25). In practice, however, de-
viations of the profile of the effective susceptibility from
the ideal sech shape or pump intensity deviations from
the transparency value result in the appearance of a spec-
tral region around the phase matching condition where
the transmittance is not unitary. For example, if the
pump intensity I2 is close to but slightly detuned from
the transparency value Itr, according to Eq.(25) trans-
parency is not observed in a spectral region with a band-
width ∆Ω determined by the condition π|∆| ∼ 1, i.e.
by the group velocity mismatch and interaction length
∆Ω ∼ (2α/π)|1/vg1 − 1/vg3|−1 [see Eq.(24)].
It should be noted that, even thought the transparency
condition is met, the nonlinearity of the medium is not

invisible since the phase of t0(Ω), as given by Eq.(23), is
not flat. For example, in the simplest case N = 1, i.e.
for A = π, one has

t0(Ω) =
δ + iα/2

δ − iα/2
= exp[iφ(Ω)] (27)

with

φ(Ω) = 2atan

(

α

2δ(Ω)

)

≃ 2atan

[

αvg1vg3
Ω(vg3 − vg1)

]

. (28)

The additional phase delay φ(Ω) leads to an effective non-
linear induced contribution to the linear material disper-
sion, and can be detected in pulse transmission experi-
ments, as discussed in the next subsection.
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FIG. 2. (Color online) Numerically-computed (a) spectral
transmittance, and (b) phase delay for the signal wave in a
2.5-cm-long PPLN crystal with cosh−1(αz)-apodized profile
for α = 5 cm−1 and for increasing values of the pump intensity
I2. Curve 1: I2 = 0.5Itr; curve 2: I2 = Itr; curve 3: I2 =
1.3Itr; curve 4: I2 = 2Itr; curve 5: I2 = 2.6Itr. The pump
intensity at transparency is Itr ≃ 24.37 MW/cm2.

B. Numerical results

To illustrate the phenomenon of SFG transparency and
to provide some design parameters, let us consider as an
example nonlinear frequency conversion in a periodically-
poled lithium niobate (PPLN) crystal pumped at the
wavelength λ2 = 810 nm and probed with a weak sig-
nal field at λ1 = 1.55 µm. The SFG wave corresponds to
the wavelength λ3 = 532 nm. We assume extraordinary
wave propagation, corresponding to a nonlinear coeffi-
cient d0 = d33 ≃ 27 pm/V. The temperature-dependent
dispersion relation k = k(ω) = n(ω)ω/c0 for extraordi-
nary waves in lithium niobate is determined using Sell-
meier equations from Ref.[33]. At 25oC, one can estimate
n1 = 2.1381, n2 = 2.1748, n3 = 2.2343, the group veloc-
ities vg1 ≃ 0.4581c0, vg3 ≃ 0.4069c0, and a first-order
QPM grating with period Λ = 2π/∆k = 7.38 µm, which
is accessible with current poling technology. As an ex-
ample, Fig.2 shows the numerically-computed transmit-
tance (modulus square of t0) and phase delay (phase of
t0) versus wavelength in a L = 2.4 cm long PPLN crys-
tal for α = 5 cm−1 and for increasing values of the pump
intensity I2. The intensity at transparency is given by
Itr ≃ 24.37 MW/cm2 according to Eq.(26). Note that,
for a non-integer value of the normalized pump inten-
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FIG. 3. (Color online) Numerically-computed propagation of
a Gaussian signal pulse at carrier wavelength λ1 = 1.55 µm in
a 2.5-cm-long PPLN crystal with cosh−1(αz)-apodized profile
for α = 5 cm−1 and for a FWHM pulse width (a) ∆τp = 23.5
ps, and (b) ∆τp = 589 fs. Curve 1 shows the transmitted pulse
intensity distribution of the signal field for a continuous-wave
pump intensity I2 = Itr ≃ 24.37 MW/cm2, whereas curve 2
is the transmitted pulse distribution of the signal waveform
when the pump field is switched off (I2 = 0, linear propaga-
tion regime). The thin dotted curve [almost overlapped with
curve 2 in (a)] is the pulse intensity distribution of the weak
Gaussian signal pulse at the input plane of the crystal.

sity I2/Itr, SFG is observed in a wavelength range of
the signal wave corresponding to phase matching of the
nonlinear interaction. This is shown by curves 1,3, and
5 in Fig.2(a), where the spectral transmittance shows a
dip near the wavelength of perfect phase matching. The
central wavelength of the dip and its width are deter-
mined by the phase matching condition in the nonlin-
ear interaction, i.e. by the QPM grating period, the
decay length 1/α of the QPM grating, and the mate-
rial dispersion. As the ratio I2/Itr is an integer number
(curves 2 and 4 in Fig.2), there is no SFG wave, i.e.
the medium in transparent for the signal wave according
to the theoretical analysis. Nevertheless, a wavelength-
dependent phase delay is accumulated in the nonlin-
ear interaction [see Fig.2(b)], corresponding to an ad-
ditional non-linear-induced dispersion term for the sig-
nal field. In an experiment, the effect of the nonlinear-
induced dispersion at the transparency regime can be
detected by comparing the propagation of a short opti-
cal pulse along the medium with the pump field switched
off and on. This is illustrated in Fig.3, which shows the
numerically-computed propagation of a Gaussian input
signal pulse A2(−L/2, t) ∝ exp[−(t/τp)

2] along the 2.4

cm-long PPLN crystal when the pump intensity is tuned
at the transparency value I2 = Itr (curve 1) and when it
is switched off I2 = 0 (curve 2). The pulse duration ∆τp,
defined as the full-width at half maximum of the field
intensity, is related to τp by the relation ∆τp =

√
2ln2τp.

For a relatively long input pulse [Fig.3(a), ∆τp ≃ 23.5
ps], the linear dispersion of the medium is negligible,
and the nonlinear-induced dispersion is responsible for
a time delay of the transmitted pulse, given by the group
delay τd = d(φ/dΩ) = 2(vg1 − vg3)/(αvg1vg3) ≃ 3.6 ps.
For shorter pulses [Fig.3(b), ∆τp ≃ 589 fs], the linear
dispersion of the medium is non-negligible [curve 2 in
Fig.3(b)], and the additional dispersion introduced by
the non-linear interaction at I2 = Itr is responsible for
strong pulse reshaping. In particular, one can observe
pulse splitting with a long pulse tail [curve 1 in Fig.3(b)].

IV. CONCLUSIONS AND OUTLOOK

Optical waves propagating in a linear but inhomoge-
neous medium generally show reflection and scattering
when the material properties rapidly change over a dis-
tance of the order of the optical wavelength [8]. How-
ever, proper tailoring of the dielectric permittivity can
suppress scattering and the medium thus appears to be
transparent [7, 9, 13]. A different kind of ’scattering’ can
occur in the frequency domain when the optical waves
propagate in a nonlinear χ(2) medium. When phase
matching conditions are met, efficient frequency conver-
sion can occur, and an optical wave at a reference fre-
quency (signal field) can be amplified or attenuated owing
to frequency conversion. Here we have investigated the
possibility to realize optical transparency in the process
of sum frequency generation in a second-order nonlin-
ear crystal. By exploiting the quantum-optical analogy
between the process of SFG in the undepleted pump ap-
proximation and the coherent excitation of a two-level
atom by a near-resonant pulse with tailored shape and
pulse area, we have shown that broadband transparency
can be realized in the nonlinear crystal with an engi-
neered QPM grating. Such a result could be of inter-
est in the nonlinear control of material transparency and
is expected to motivate further theoretical and experi-
mental studies in the field of transparency and invisi-
bility in nonlinear media. A few natural extensions to
the present study can be envisaged. For example, is it
possible to engineer the nonlinear interaction to realize
one-way transparency? Also, can one tailor the nonlin-
earity of the medium to make it invisible? One possibility
might be to engineer the material properties to allow for
an imaginary part of the nonlinear susceptibility [34], i.e.
to explore the full domain of complex non-linear suscep-
tibility. In this case, transferring the recent proposal by
Horsley and coworkers [7] of spatial Kramers-Kronig re-
lations for linear susceptibilities to the nonlinear ones, it
would be possible to realize one-way transparency and
non-linear invisibility. Other extensions of the present



7

study might be the analysis of transparency and invisibil-
ity in two-dimensional QPM gratings, in nonlinear inter-
actions with phase-matched counter-propagating waves
[35], and in frequency wave mixing based on third-order
nonlinear media.
RESPONSE TO YOUR QUERIES
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Lines 8-9: In the sentence: ?? and oscillation provide

a powerful tools for coherent ??, please write ?provide
powerful tools? in place of ?provide a powerful tools?
(i.e. delete ?a? after ?provide?).
Lines 26, 27: In the sentence: ?? nonlinear crystals,

such frequency doubling, ?.? please write ?such as? in
place of ?such? (i.e. please add ?as?after ?such?).

In Eq.(5), first term 2g(z) on the left hand side, please
write g using italic style

Line F5:5, in the second equation of the line 2gl = 26?.:
the space between ?2? and ?g? should be deleted, and
?g? should be written using italic style. The same holds
in line 265 (second equation in the line).

Line 282, the sentence: ? The ?upconversion? OPO
provides ?? please write ?The ?upconversion? paramet-
ric amplification provides??, i.e. please write ?parametric
amplification? in place of ?OPO?.
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