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formulation of operational procedures for rotorcraft vehicles. STOP 
has the ability to treat under a common framework both trajectory 
optimization problems (Bottasso et al. 2010b, 2012), also referred 
to in the following as maneuver optimal control problems 
(MOCPs), and parameter estimation problems (PEPs) (Bottasso 
et al. 2010a). In fact, it can be shown that both can be formulated 
as two-point boundary value constrained optimization problems de-
fined over a temporal domain of known or unknown duration; 
moreover, both can be discretized in time using the same tech-
niques, thereby obtaining a constrained nonlinear programming 
(NLP) problem that is formally identical in the two cases (Bottasso 
et al. 2009a).

Some of the features of STOP have already been discussed in a 
series of previous publications by the authors (Bottasso et al. 
2009a, 2010a, b). In this work, the authors describe the develop-
ment of evolutionary algorithms (EAs) (Bäck et al. 1997) for the 
global solution of MOCPs and PEPs and their integration into 
STOP (Bottasso et al. 2011b).

This work is motivated by the fact that trajectory optimization 
problems might lead to NLP problems that are nonconvex and 
hence with multiple solutions (Luraghi 2009; Celi 2007). In this 
case, gradient-based methods are likely to converge to local optimal 
solutions. Furthermore, convergence is often possible only in the 
presence of suitable initial guesses, whose determination is a some-
times hard and often problem-dependent problem. Therefore, there 
is a need to develop tools that are capable of effectively exploring 
the space of solutions, seeking global optima, and reducing the 
need to generate good quality initial guesses.

Designed to solve nonconvex problems, EAs borrow their work-
ing principle from the mechanisms that govern the process of 
natural evolution of biological organisms. By the application of 
genetic operators (selection, crossover, mutation), a population 
of possible solutions (individuals) is allowed to evolve through 
successive generations so as to promote the individuals that better 
meet some given design requirements. Since EAs are unconstrained 
optimization methods, their successful application to the solution 
of constrained problems requires the use of suitable constraint-
handling techniques; a comprehensive survey of the different 
techniques that have been used to handle constraints in EAs is given 
in Coello (2002).

Introduction

In rotorcraft flight mechanics, problems such as, for instance, con-
tinued and rejected take-off procedures following an engine failure 
[category A certification (FAA 1999)], optimal auto-rotation, land-
ing procedures after tail-rotor loss, and the analytical, i.e., nonpi-
loted, simulation of aeronautical design standard-33 (ADS) mission 
task elements (U.S. AAMD 2000), can be profitably studied with 
the help of trajectory optimization. In all these cases, the analyst is 
interested in computing an extremal maneuver for a given vehicle 
model; one looks for a solution that minimizes a cost function while 
satisfying given constraints that translate various requirements in-
cluding the boundaries of the performance envelope of the vehicle. 
Clearly, the quality of the results strongly depends on the fidelity of 
the model to the actual vehicle. If flight-test data are available, 
parameter estimation techniques can be used to tune the model 
parameters, thereby enhancing the ability of the model to represent 
the actual vehicle behavior. In this circumstance, the analyst is 
interested in finding the values of the parameters in the given 
mathematical model such that the model-computed response best 
matches (in a statistical sense) the experimentally observed one.

The software system identification and trajectory optimization 
program (STOP) was developed at the Dipartimento di Scienze e 
Tecnologie Aerospaziali of the Politecnico di Milano and 
conceived as a tool to be used in support of certification and
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Published works that have investigated the use of EAs for the 
solution of optimal control problems rely on the use of either penalty 
functions (Wang and Chiou 1997) or specialized genetic operators 
(Seren et al. 2006; Onnen et al. 1997). In the former case, one trans-
forms a constrained problem into an unconstrained one by penaliz-
ing constraint violations in the objective function with suitably high 
weights. Despite its simplicity, the major drawback of such an ap-
proach is that it requires fine tuning of the penalty parameters, and 
this might not be a trivial task when dealing with highly-constrained 
search spaces. The latter approach, in contrast, is more involved: by 
taking advantage of the knowledge of the constraint conditions im-
posed on the problem at hand, ad hoc modifications of the genetic 
operators are introduced to preserve the feasibility of the solutions at 
all generations. However, this leads to specialized computer codes, 
i.e., codes capable of solving just one specific problem type. Clearly,
this is not desirable when one is interested in developing a tool that
can be applied to an ample variety of problems.

The approach proposed in this work makes use of a split of the 
design variables: a first set (typically represented by model param-
eter, control policies, and/or initial conditions) is handled by the 
global EA optimizer, whereas a second set (typically involving 
state variables but also possibly control inputs, as better explained 
later on) is handled by a local optimizer using a sequential quadratic 
programming (SQP) method. When working at the level of vehicle 
states, the SQP optimizer effectively implements a repair heuristic 
on these quantities, making them compatible with the problem con-
straints. Because this can be a time consuming process, the SQP 
method is typically run only for a limited number of iterations. 
When achieving a feasible solution within the specified maximum 
number of iterations proves to be difficult, the repair heuristic is 
given a limited authority on the control time histories; however, 
the repaired individual is never returned to the population [never 
replacing approach (Coello 2002)]. Using a repair technique re-
duces the search space of EA to feasible solutions only; hence, 
no special operators or modifications of the objective function need 
to be considered. Hence, the resulting code can be used to solve the 
different classes of problems that find applicability in the general 
area of rotorcraft flight mechanics.

The paper first briefly describes the formulation and solution of 
optimization problems in rotorcraft flight mechanics, with particu-
lar reference to the STOP code. After having formulated MOCPs 
and PEPs as optimization problems using a single common 
notation, the architecture of STOP is briefly described. Next, the 
proposed methodology for the use of EA in the solution of maneu-
ver optimal control problems is illustrated. Finally, the application 
of the global optimization version of STOP to the solution of 
engineering problems arising in the context of rotorcraft flight 
mechanics is presented.

Optimization Problems in Rotorcraft Flight 
Mechanics

Maneuver Optimal Control Problem

Consider a generic flight mechanics model M described in terms of 
the following set of nonlinear differential equations:

f ðẋ; x; u; p;w; tÞ ¼ 0 ð1aÞ

y ¼ hðxÞ ð1bÞ
where x is the state vector, which groups together the structural
dynamics (including states that describe rigid and possibly flexible
rotor(s), fuselage, engine, etc.) and aerodynamics states (e.g.,

dynamic inflow variables), u is the control input vector, p is a
set of model parameters, and wðtÞ models other exogenous inputs
and disturbances acting on the system (e.g., gusts and air turbu-
lence). Eq. (1b) specifies a set of outputs y, which typically re-
present some vehicle states describing its gross motion or other
quantities useful for the analysis of the vehicle dynamics. Finally,
the notation ð·Þ

·
¼ dð·Þ=dt indicates a derivative with respect to

time t.
A general MOCP (Bottasso et al. 2005a, b) for model M can be 

formulated as

min
x;y;u;T

JMOCPðy; u;T;TiÞ ð2aÞ

subject to f ðẋ; x; u; p�;w�; tÞ ¼ 0 ð2bÞ

y ¼ hðxÞ ð2cÞ

gðx; y; u; t; T;TiÞ ≤ 0 ð2dÞ

The problem is defined over the interval Ω ¼ ½T0; T�, t ∈ Ω,
where the final time T is typically unknown and must be deter-
mined as part of the solution. Specific events might be associated
with unknown time instants Ti, T0 < Ti < T (for example, the jet-
tisoning of part of the cargo or other instantaneous conditions).

In Eq. (2a), JMOCP indicates the to-be-optimized cost which, de-
pending on the problem at hand, might account for maneuver du-
ration, control activity, fuel consumption, etc., or some other given
function of interest that typically expresses an index of performance
of the vehicle.

The maneuver definition is completed by providing a set of
problem-dependent equality and inequality constraints [Eq. (2d)]
which translate the operating envelope of the vehicle, the perfor-
mance and procedural requirements as dictated by norms and reg-
ulations (for example, certification rules), and all other necessary
maneuver-defining constraints. These same equations will also typ-
ically include initial and/or final conditions on the vehicle states x.

Notice that the problem is formulated for fixed values of the
model parameters p ¼ p�, where the symbol ð·Þ� indicates a known
assigned value. Similarly, if exogenous inputs are present, these are
also known, so that wðtÞ ¼ w�ðtÞ.

Parameter Estimation Problem

A general PEP for the parametric model MðpÞ can be formu-
lated as

min
x;y;p

JPEPðz − yÞ ð3aÞ

subject to f ðẋ; x; u�; p;w; tÞ ¼ 0 ð3bÞ

y ¼ hðxÞ ð3cÞ

gðpÞ ≤ 0 ð3dÞ
where z are measurements of the outputs gathered at N discrete
sampling time instants tk during the experimental test

zðtkÞ ¼ yðtkÞ þ vðtkÞ ð4Þ
The available measures are affected by noise v with covariance

Rk ¼ E½vkvTk �, E½·� being the expected value operator. The presence
of measurement noise, together with the possible presence of a



process noise term w for modeling disturbances acting on the sys-
tem (e.g., air turbulence), makes the problem of a stochastic nature.
Hence, the to-be-optimized cost function JPEP is typically a statis-
tical measure of the match between quantities z and model
outputs y.

A maximum likelihood estimator is obtained by choosing

JPEP ¼ detðRÞ ð5Þ
where R ¼ 1=N

P
N
k¼1 νðtkÞνðtkÞT , with νðtkÞ ¼ zðtkÞ − yðtkÞ.

Alternatively, a weighted least squares estimator is obtained if

JPEP ¼ 1

2

XN
k¼1

νðtkÞTWνðtkÞ ð6Þ

where W is a weight matrix. This method can be seen as a particular 
case of the maximum likelihood method for known measurement
noise covariance matrix, W ¼ R−1 (Jategaonkar 2006). In the filter
error method (Jategaonkar 2006), the system states obtained by in-
tegrating model Eq. (3b) are corrected by a Kalman filter, whose 
role is to stabilize the integration around the measurements and to 
account for the presence of process noise; details are omitted for 
brevity, but the PEP can still be expressed in a form resem-
bling Eq. (3).

Inequality Eq. (3d) enforces possible constraints on the model 
parameters. Such constraints ensure that the estimated parameters 
lie within acceptable bounds and do not take at convergence values 
which are nonphysical.

Notice that in this case the model inputs are known and fixed
to the values uðtkÞ ¼  u�ðtkÞ measured during the experimental
test (values in between the sampling instants may be interpolated,
if necessary). Similarly, the temporal domain Ω ¼ ½T0; T�� is also
known.

Rotorcraft vehicles are typically unstable, at least in certain 
flight conditions, and hence they are usually artificially stabilized 
by means of a control system. This fact has important consequences 
on the parameter estimation process and must be explicitly taken 
into account when formulating estimation methods for such ve-
hicles; further details are given in Bottasso et al. (2010a).

STOP Architecture

The architecture of the STOP program is shown in Fig. 1.
A graphical user interface supports the definition of MOCPs and 

PEPs. The common thread between the solution of the two classes 
of problems is the discretization in the temporal domain. STOP im-
plements the so-called direct approach (Betts 2001), which leads to
a nonlinear constrained optimization problem that writes

min
π
JNLPðπÞ ð7aÞ

subject to aðπÞ ¼ 0 ð7bÞ

bðπÞ ≤ 0 ð7cÞ
where π is a set of algebraic unknowns (design variables), and JNLP 

is a scalar objective function which represents an approximation of 
the cost of Eq. (2a) or (3a). The equality constraints in Eq. (7b) are 
generated by the discretization of the equations of motion Eq. (2b) 
or (3b), whereas the inequality constraints in Eq. (7c) are generated 
by the discretization of Eq. (2d) or (3d).

Three discretization techniques are available in STOP—namely, 
the direct transcription and multiple shooting methods (Bottasso 
et al. 2010b) and the recently developed hybrid single-multiple

shooting (Bottasso et al. 2012). Bottasso et al. (2009a) proposes 
a classification of optimal areas of applicability of these methods 
and, for each one of them, derives the specific form of the vector of 
design variables.

Time marching can be based either on algorithms available in ex-
ternal vehicle models or with built-in explicit or implicit time solvers.

The vehicle models include an optional layer that models the 
pilot, which is useful in certain MOCP applications for computing 
maneuvers considering pilot-in-the-loop effects (Bottasso et al. 
2009b). The vehicle itself can be simulated using an internal model 
or by external codes through a generic interface which supports all 
necessary operations.

Global Solution of MOCPs and PEPs

In this section, a formulation that makes use of EAs for the solution 
of problem (7) in the context of MOCPs and PEPs is developed. For 
a general introduction to EA, the authors refer to Bäck et al. (1997) 
for a general introduction to EA, to Betts (2001) for optimal control 
and to Jategaonkar (2006) for parameter estimation.

When using EAs, the computational cost is proportional to the 
population size. In general, if the population size is too small, then 
EA might not be able to thoroughly explore the solution space; con-
versely, increasing the population size generally enables EA to ob-
tain better results. However, it is clear that the larger the population 
size, the longer it takes EA to compute each generation. As a rule of 
thumb, population size is usually set to 5–10 times the number of 
design variables (Bäck et al. 1997).

In light of these considerations, for the solution of optimal con-
trol problems using EA in rotorcraft flight mechanics, the use of 
shooting methods is favored over direct transcription ones because 
the latter tend to generate potentially large NLP problems (Bottasso 
et al. 2009a). However, even in this case, there might be a problem 
of possibly overwhelming computational cost. In fact, when using 
shooting methods, the problem unknowns are defined as the dis-
crete values of the states at the interfaces between shooting seg-
ments, the discrete values of the controls within each segment, 
and possibly the final time. Thus, one would need to consider 
extremely large populations to cover all possible feasible values 
of the design variables.

Fig. 1. Architecture of the STOP code (reprinted from Bottasso et al.
2011, with permission)



As shown in Fig. 2, when the multiple shooting method is used,
the time domain Ω is partitioned as T0 ≡ t0 < t1 < · · · <  tm < · · · <
tM ≡ T with Ωm ¼ ½tm; tm þ 1�, m ¼ ð0; M − 1Þ, where each Ωm is a
shooting segment. Next, the vehicle equations of motion are
marched forward in time within each shooting segment Ωm, starting 
from the initial conditions provided by the value of the states xm at 
the left boundary of the segment. Segments are then glued together
by imposing the equality constraints xm − x̄m ¼ 0, m ¼ ð1; MÞ).

Since EAs can tackle only unconstrained optimization
problems, another challenging task in the framework of EAs is
the satisfaction of the gluing constraints on the states, which ensure
the continuity of their time history across the boundaries of the 
shooting segments (Fig. 2), and of all other problem constraints

To address these issues, a procedure based on a split of the 
design variables is proposed: EA is used to compute an optimal 
solution in terms of the sole controls and/or initial conditions, 
whereas the feasibility of the computed solution is ensured through 
the use of a repair heuristic (RH) (Coello 2002).

The solution of a MOCP proceeds as follows. First, the temporal
domain Ω ¼ ½T0;T� is partitioned into N intervals Ti ¼ ½ti; tiþ1� of
size hi, i ¼ ð0;N − 1Þ. Typically uniform grids are considered and
hence, hi h T T =N. A computational grid T EA

h is¼ ¼ ð  − 0Þ
associated with this partition.

Next, for every individual in the population, depending on the 
problem at hand, the set of design variables is chosen to include one 
or more of the following quantities: (1) all values of the controls at
the nodes of T hEA, and (2) the problem’s initial conditions (if free), 
possibly the final time (if unknown). To limit the population size, 
coarse temporal grids are considered, i.e., with a reduced number 
of nodes.

Remark 1

Evolution strategies (ESs) (Beyer and Schwefel 2002) use a repre-
sentation (encoding) of the design variables as real numbers. The 
authors have observed that in the case of MOCPs, where very small 
variations in the controls or in the maneuver duration typically re-
sult in small (negligible) variations in the objective function, such 
encoding might lead to the premature stop of the algorithm because 
of an excessively low diversity of the individuals in the population. 
The authors have found that this problem is somehow alleviated by 
decreasing the resolution with which EA explores the solution 
space, which can be achieved by forcing the problem unknowns 
to take only values specified at a small number of equidistant points
between their lower and upper bounds. For the generic variable πi
lying in the interval Iπi ¼ ½πmin

i ; πmax
i �, the set Πi of admissible

values is constructed as Πi ¼ fπmin
i þ jΔπi; j ¼ 0; : : : ;Lg,

with L ¼ ðπmax
i − πmin

i Þ=Δπi, where Δπi is the resolution of the
discretization of Iπi . This turns the original problem into a discrete
combinatorial optimization problem.

Controls computed by EA are then projected onto a finer grid
T RH

h , associated with a partition ofΩ intoM shooting segments and
a suitable discretization of the controls within each segment. This
projection can be expressed with the notation

ujT RH
h

¼ PðujT EA
h
Þ ð8Þ

where Pð·Þ is an appropriate projection operator. The time history
of vehicle states that are compatible with the given control policy
and maneuver-defining constraints is found from the solution of the
following NLP problem:

min
θ
Kðθ; ujT RH

h
Þ ð9aÞ

s:t: gðθ; ujT RH
h
Þ ¼ 0 ð9bÞ

θ ∈ ½θmin; θmax� ð9cÞ
where the unknowns θ are the values of the states at the interfaces
between shooting segments. Objective function K represents a
measure (in a given norm) of the violation of constraints (7b)
and (7c) expressed in terms of θ and ujT RH

h
, whereas Eq. (9b) rep-

resents the gluing constraints, which are evaluated by marching the
vehicle equations of motion forward in time under the action of the
controls ujT RH

h
. Problem (9) is solved using a SQP method with

Jacobians computed through centered finite differencing by pertur-
bation of the unknowns (Barclay et al. 1997).

Finally, cost JNLP of Eq. (7a) is evaluated using the computed
time histories of the states and corresponding outputs within each
shooting segment.

Remark 2

Solving problem (9) might be a time consuming process and hence
the SQP method is typically run only for a limited number of
iterations. When achieving a feasible solution within the specified
maximum number of iterations is difficult, RH is allowed a
limited authority on the inputs by modifying the given control time
history as

ujT RH
h

þΔujT RH
h

ð10Þ

whereΔujT RH
h

are bounded corrective terms, i.e.,ΔujT RH
h

∈ ½Δumin;
Δumax�, that are computed as part of the solution to problem (9).
However, the repaired individuals are never returned to the popu-
lation [never replacing approach (Coello 2002)].

The solution of PEPs can be developed along similar lines,
although things are simpler in this case given the fact that control
inputs are known. Therefore, the global optimizer operates at the
level of the model parameters, whereas the local optimizer is used
for the satisfaction of the gluing constraints at the interface between
shooting arcs.

Numerical Applications

In this section, the application of STOP is presented, equipped
with the proposed global optimization procedure, to the solution
of problems arising in the context of rotorcraft flight mechanics
applications.

Vehicle model equations are derived based on three-dimensional
rigid body dynamics. Rotor forces and moments are computed
analytically by combining actuator disk and blade element theory,
considering a uniform inflow (Prouty 1990). The rotor attitude is
evaluated by means of quasi-steady flapping dynamics with a linear
aerodynamic damping correction. Look-up tables are used for
the quasi-steady aerodynamic coefficients of the vehicle lifting
surfaces, and simple corrections for compressibility effects and
for the downwash angle at the tail because of the main rotor are

Fig. 2. Basic principle of the multiple shooting method (reprinted from 
Bottasso et al. 2011, with permission)



included in the model. Further details on the model structure are 
given in Bottasso et al. (2005b) and Maffezzoli (2009).

Design of Optimal Inputs for Parameter Estimation of a 
Small Autonomous Helicopter

The design of globally optimal input signals for parameter estima-
tion flight trials is considered. This example is chosen here because 
it combines the characteristics of a MOCP with those of a PEP. In 
fact, in this case, the idea is to formulate a MOCP that maximizes 
the identifiability of a given set of parameters in the vehicle model.

Multistep inputs are commonly used input signals during flight 
tests for parameter estimation. They consist of a sequence of alter-
nating positive and negative amplitude pulses with different dura-
tion. In this case, the design problem consists in finding the optimal 
amplitude and width of the pulses so that the information content 
in the experimental data, as embodied in the Fisher information 
matrix (Kullback 1959), is maximized. Therefore, for this problem 
the EA optimization variables are represented by the control inputs, 
whereas the SQP optimizer is used for compatibilizing the vehicle 
states. Solutions are obtained with the self-adaptive EA imple-
mented in the commercial software OPTIMUS.

A small-size rotorcraft unmanned aerial vehicle (RUAV) is 
considered; the test condition is a forward level flight at a very
low advance ratio, μ ¼ 0.04 (V ¼ 5 m=s). Only the longitudinal
dynamics of the vehicle is considered. The analysis starts from
the controls set to their trim values and perturb the main rotor 
longitudinal cyclic, while holding the others fixed. Control pertur-
bations are restricted to lie in the interval IA ¼ ½−1; 1� deg. For such
an experiment, the model parameters of principal interest are the
main rotor aerodynamic coefficients—namely, the rotor blade lift
curve slope CLα 

and mean drag CD. Interval IA is discretized with a 
resolution of 0.25 deg and the population size is set to 100.

The computed optimal input is shown in Fig. 3 using a solid 
line; the same figure also shows using a dashed-dotted line the 
DLR 1-1-2-3 input, a widely known input form that has been 
shown to be very effective for flight vehicle parameter estimation 
(Jategaonkar 2006). Table 1 gives the results of the maximum 
likelihood estimation of the main rotor aerodynamic parameters 
for the optimal multistep and the 1-1-2-3 inputs. Although the latter

was carefully tuned to excite the vehicle longitudinal natural 
frequencies (Maffezzoli 2009), the accuracy of the estimate of 
the blade lift curve slope is increased by 18% when using the 
optimized input.

Category A Continued Take-Off Maneuver for a 
Medium-Size Helicopter

In this section, the take-off maneuver for a 10 ton twin-engine four-
bladed helicopter under category A certification requirements 
(FAA 1999) is considered, which ensure a safe behavior of the 
vehicle even after an engine failure. Such an emergency maneuver 
was previously studied in Bottasso et al. (2005a, b).

Normally a category A continued take-off is flown in a vertical 
plane. Following the loss of power during a climb towards or in 
hover at the take-off decision point (TDP), the vehicle is aggres-
sively pitched forward to gain speed. As the vehicle starts falling 
while gaining forward speed, its necessary power is reduced; this in 
turn can be used to slow down the descent, to bring the rotor speed 
back to its nominal value and eventually to start climbing and 
regain altitude.

In this paper, the authors want to investigate whether a more 
three-dimensional maneuver than the classical one can be used 
to reduce the loss of altitude following an engine loss. In fact, since 
the vehicle roll inertia is much lower then the pitch one, it can be 
hypothesized that one could more rapidly gain speed and hence, 
reduce necessary power by rolling sideways than by the classical 
forward pitching. Because the helicopter, as far as its flight me-
chanics characteristics are concerned, is a nonsymmetric vehicle 
with respect to its longitudinal plane, rolling right or left will have 
different effects, which also should be understood.

To investigate this problem, different initial conditions in terms 
of climb velocity W, horizontal velocity U and heading angle ψ are 
considered. Heading is measured with respect to the vertical plane 
containing the vehicle velocity vector at the end of the maneuver,
the so-called take-off safety speed VTOSS (FAA 1999).

For a null heading, the vehicle is initially aligned with the plane 
containing the final climb. Even in this case, the vehicle is free to 
sideslip throughout the maneuver and hence rotate out of the 
maneuver-containing plane if necessary to reduce the loss of alti-
tude. This is in fact what is typically observed, as shown in Fig. 4 
for an optimal maneuver starting in hover at the TDP; this result is 
not surprising because helicopters do not exhibit a symmetric 
behavior with respect to their longitudinal plane.

Conversely, for a nonnull initial heading, the vehicle will not 
only pitch forward but also roll sideways and then finally rotate 
so as to align itself with the climb plane. A typical trajectory is 
visualized in Fig. 5 for a case where the power loss takes place 
during the climb to the TDP; after an aggressive lateral roll to 
quickly accelerate and decrease necessary power, the vehicle 
rotates before starting to climb and regain altitude. Clearly, the 
significant initial sideslipping and nonnull heading also have an
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Fig. 3. Optimal longitudinal cyclic input (solid line) and 1-1-2-3
input (dash-dotted line) (reprinted from Bottasso et al. 2011, with
permission)

Table 1. Estimated Value and Standard Deviation of Main Rotor
Aerodynamic Parameters for 1-1-2-3 and Optimal Longitudinal Cyclic
Inputs

Parameter

1-1-2-3 Optimal multistep

Estimated
value

Standard
deviation

Estimated
value

Standard
deviation

CLαMR
[rad−1] 5.62012 0.00576 5.61134 0.00472

CDMR
0.00974 0.00034 0.00973 0.00033



impact on the pilot visibility, whose effects are, however, not 
considered here for simplicity.

In this case, the EA optimization variables are represented by the 
initial conditions, and the SQP optimizer deals with control inputs, 
vehicle states, and maneuver duration. Solutions are computed with 
the self-adaptive EA implemented in the commercial software 
NEXUS (iChrome 2012).

Two different global optimization runs were performed. In the 
first case, only negative initial headings are considered, and the 
search region for the three EA variables is within the following 
ranges:

U ∈ ½−2; 0� KTS ð11aÞ

W ∈ ½−5; 0� KTS ð11bÞ

ψ ∈ ½−45; 0� deg ð11cÞ

with a resolution of 1 KT for the velocities and 5 deg for the
heading angle.

The optimization cost function accounts for the control input
rates and the initial vertical position H (TDP altitude), i.e., it reads

JMOCP ¼ H þ 1

T

Z
T
u̇ · Wu̇dt ð12Þ

The principal optimization constraints include the minimum
rotor speed that should not fall below 90% of the nominal revolu-
tions per minute (RPM) value, a ground clearance not less than
15 ft, and a minimum pitch angle not exceeding −10 deg. The exit
conditions include a climb velocity of 100 ft=min, the rotor speed
back to 100%, and null angular velocities. The starting guess is
provided by a previously calculated STOP solution with a heading
of −45 deg and null vertical and horizontal velocity components.

Results in terms of minimum altitude H versus heading ψ, ver-
tical velocityW, and backup speed U are plotted in Fig. 6 from top
to bottom, respectively. Each point in the graphs represents an indi-
vidual in the population generated by the EA solver. The optimal
solution uses the maximum available climb velocity, a null horizon-
tal speed (i.e., vertical climbing), and a heading of 35 deg.

This problem nicely illustrates the danger of remaining trapped
in a local minimum when using local optimizers. In fact, the
same problem was solved again using SQP, for U ¼ 0 KTS,
W ¼ −5 KTS (the global optimum values), and with an initial
heading constrained between 0 and −45 deg. The converged
SQP solution has an initial heading of −45 deg, which, however,
exhibits a higher associated TDP. This means that the EA solution
is a lower minimum than the one found by SQP.

To better illustrate the possible presence of local minima in this
unusual optimal control problem, the category A optimization was
repeated again. The range of initial yaw angles was set to be be-
tween −45 deg and 45 deg, with a resolution of 1 deg, whereas the
velocity components were held fixed at their global optimum values
(U ¼ 0 KTS, W ¼ −5 KTS). Furthermore, the heading angle was
added to the cost function to try to reduce it because pilots typically
prefer to work with a small sideslip (which improves visibility),
resulting in the new cost

JMOCP ¼ H þ 1

T

Z
T
ðu̇ · Wu̇þ wψψ2Þdt ð13Þ

The results, illustrated in Fig. 7 in terms of TDP altitude versus
initial heading, show that there is a global optimum at−43 deg and
local optima at 23 and 31 deg. Some scatter of the points in the plots
is because of generous tolerances in the solution of the SQP prob-
lems. The authors remark that any point in the plots is a solution for
the local optimizer, which again highlights the potential danger of
being trapped in a local minimum when using nonglobal optimi-
zation algorithms.

These plots confirm the initial hypothesis. If one flies a standard
continued take-off, corresponding to the case ψ ¼ 0, the loss of
altitude is of approximately 39 ft. Conversely, rolling left and
climbing at approximately 40 deg from the initial heading gives
a much better performance, reducing the loss of altitude to only
approximately 32 ft. On the contrary, if one were to roll right
and then realign, the performance would be initially worsened,
reaching approximately 41 ft at 15 deg, although then it would im-
prove again to approximately 38 ft for 30 deg of realignment.

In summary, it appears that the minimum possible loss of alti-
tude would be obtained not by a fast forward pitching, as classically
done, but by a sideways rolling on a specific side of the vehicle that,

Fig. 4. Sideslipping but mostly planar trajectory for a continued
take-off

Fig. 5. Three-dimensional maneuver for a continued take-off, with
initial roll followed by realignment



exploiting the reduced inertia about the roll axis, is capable of
accelerating faster and hence reduces necessary power in a shorter
amount of time. This of course would have to be traded against a
more complex maneuver with possible visibility issues.

Height-Velocity Diagram for a Light Rotorcraft

The height-velocity (H-V) diagram of a vehicle represents the per-
formance for a safe landing maneuver under a power failure con-
dition, and it indicates an area in the height-velocity plane that
should be avoided. To trace the H-V diagram of a given vehicle,
test pilots fly a large number of different flight conditions during
the certification of the aircraft. Because this is a time consuming
operation, the numerical identification of the safe H-V boundaries
is attractive to potentially reduce the number of necessary flight
trials. In this section, the H-V diagram for a light rotorcraft is first
determined, and then the most dangerous region where operating
the vehicle within this unsafe area is investigated.

Two different optimization runs were performed. In the first
case, the minimum initial flight speed that still allows for a safe
landing maneuver is computed. The corresponding MOCP is
formulated as

JMOCP ¼ U þ 1

T

Z
T
u̇ · Wu̇dt ð14Þ

where U is the initial velocity that should be minimized, subjected
to constraints ensuring safe impact velocities that are compatible
with the energy absorption capacity of the vehicle, which were
chosen as

UT ≤ 10 KTS ð15aÞ

WT ≤ 2 KTS ð15bÞ

The initial altitude H is allowed to vary within the range
H ∈ ½10,130� ft. For all simulations, the initial conditions corre-
spond to a steady level flight. Furthermore, throughout the duration
of the maneuver, the rotor speed should not fall below 90% of its
nominal value, and negative pitch should not exceed −10 deg.

Fig. 7. Category A continued take-off; TDP altitude versus initial
heading angle ψ (reprinted from Bottasso et al. 2011, with permission)

Fig. 6. Category A continued take-off; Minimum altitude H, vertical 
velocity W, and horizontal speed U versus heading ψ: (a) minimum 
altitude H; (b) vertical velocity W; (c) horizontal speed U (reprinted 
from Bottasso et al. 2011, with permission)



Fig. 8 shows the obtained H-V curve which exhibits the ex-
pected trend. At relatively low speeds, safe landing is possible
either for low altitudes (because of low potential energy) or at
higher ones (because there is enough time to make use of the au-
torotation capabilities of the vehicle to slow down its descent).
However, the intermediate altitudes are unsafe and should be
avoided in operation.

Nonetheless, there are situations where it is impossible for the ac-
complishment of particular missions to completely avoid the unsafe
regions of the H-V plane. Therefore, it becomes necessary to know
what combinations of airspeed and altitude are the most dangerous.

To study this problem, an EA optimization was performed.
Given flight altitude and speed, an optimal maneuver is sought
to land the vehicle with minimum impact velocity, an effect which
was translated into the following MOCP cost function:

JMOCP ¼ wUU2
T þ wWW2 þ 1

T

Z
T
ðu̇ · Wu̇þ wPṖ2Þdt ð16Þ

where UT and WT are landing velocity components, P power, and
wU, wW and wP are cost weighting factors. In this case, the EA
optimization variables are the initial forward speed and altitude,
whereas all other constraints are the same as in the previous case.
STOP handles control inputs, vehicle states, and maneuver dura-
tion, and solutions are computed with the NEXUS optimization
environment. The search region for the EA variables was set as
follows:

U ∈ ½0; 20� knots ð17aÞ

H ∈ ½10,100� knots ð17bÞ

with a resolution of 1 knot for the horizontal speed and 3 ft for
height. As the objective is to find the maximum landing velocities
according to different combinations of initial altitude and airspeed,
the to-be-maximized EA cost function is defined as

JMOCP ¼ wUU2
T þ wWW2 ð18Þ

which in this way identifies the criticality of the landing maneuver.
In fact, the higher the touch-down velocities, the more dangerous it
is to land the vehicle.

To prove that the optimum solution found by the EA optimizer
is global, an exhaustive search procedure was implemented by
computing all points in the H-V plane corresponding to the reso-
lution of the EA optimization. The resulting isocontour of the EA
objective value is plotted in Fig. 9. The picture shows the level
of dangerousness of various regions in the H-V plane. It appears
that danger increases rather steeply when moving within the to-be-
avoided area from the upper branch of the curve, i.e., moving down
from the higher altitudes. On the other hand, danger increases in a
milder manner while moving up from the lower altitudes. The
global maximum, i.e., the most dangerous condition associated
with the highest landing speeds, corresponds to 78 ft of initial al-
titude and 1 KT of initial horizontal speed. The global maxima
found by the exhaustive search procedure and by the EA optimizer
(marked in the same plot) are almost identical. However, the maxi-
mum was found by the EA optimizer solving only 280 MOCPs,
whereas the exhaustive search considered 861 different MOCPs,
with a substantial difference in computational cost.
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Fig. 8. H-V diagram for a light helicopter
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Fig. 9. Isocontour plot of cost function for exhaustive search procedure
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The same problem was repeated using the nonlinear con-
strained SQP optimization algorithm which, compared to the 
EA optimizer, is very sensitive to initial guesses and has the po-
tential of being trapped in local optima. To illustrate this problem, 
SQP optimization was initiated from six different starting points 
in the H-V plane. The results are illustrated in Fig. 10 which 
shows the six initial conditions and the six paths towards the 
six associated converged results. It appears that only one of 
the optimizations approximately arrived at the global maximum, 
whereas the other five were trapped in local maxima, often quite 
far away from the global one.

Conclusions

In this paper, a numerical procedure was presented for the global 
solution using evolutionary algorithms of trajectory optimization 
problems in rotorcraft flight mechanics. Based on experience, local 
optima are usually not a major issue for many flight mechanics 
optimization problems, in the sense that one is typically able to 
compute solutions of engineering interest by simply using gradient-
based methods. However, as the applicability of such techniques 
to a variety of rotorcraft flight mechanics problems is progressively 
expanded, it becomes important to guarantee that one is not miss-
ing relevant and better solutions. Furthermore, a well-performing 
global optimizer reduces the need of generating good quality initial 
guesses, which is sometimes hard and is often a problem depen-
dent issue.

The proposed approach makes use of a global EA coupled to a 
repair heuristic which ensures the feasibility of the computed 
solution. Using a repair heuristic reduces the EA search space to 
feasible solutions only; hence, no special evolutionary operators 
or modifications of the objective function need to be considered. 
This way, the resulting code can be used to solve different classes 
of optimization problems, including optimal control and parameter 
estimation ones.

Three different application problems have been used for dem-
onstrating the proposed methodology. In the first, a control input 
time sequence for identification trials of a small unmanned helicop-
ter that improves the commonly adopted 1-1-2-3 signal has been 
designed. In the second, a new strategy for flying category A con-
tinued take-offs has been designed that improves on the standard 
mostly planar maneuvers; such result was obtained by solving 
maneuver optimal control problems that present multiple local min-
ima. In the third, the H-V diagram of a helicopter was first traced, 
and then the most dangerous condition within the to-be-avoided 
unsafe domain was identified, showing here again the fact that stan-
dard gradient-based approaches can be trapped in local stationary 
points.

The applications proposed in this work constitute preliminary 
results that, however, allow one to draw some conclusions. In 
particular, they suggest that the coupling of a global optimizer like 
EA with a local optimizer based on SQP allows one to effectively 
explore the space of solutions. Typically, for this to work, one has to 
avoid conflicts between the two optimizers, which therefore work 
on different sets of variables: a small set that includes control in-
puts, model parameters, initial conditions, etc., for the global opti-
mizer, and the remaining set for the local optimizer, which is in 
charge of satisfying all nonlinear constraints.
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