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We study analytically and numerically an optical analogue of tachyon condensation in amplifying
plasmonic arrays. Optical propagation is modeled through coupled-mode equations, which in the
continuous limit can be converted into a nonlinear one-dimensional Dirac-like equation for fermionic
particles with imaginary mass, i.e. fermionic tachyons. We demonstrate that the vacuum state
is unstable and acquires an expectation value with broken chiral symmetry, corresponding to the
homogeneous nonlinear stationary solution of the system. The quantum field theory analogue of
this process is the condensation of unstable fermionic tachyons into massive particles. This paves
the way for using amplifying plasmonic arrays as a classical laboratory for spontaneous symmetry
breaking effects in quantum field theory.

PACS numbers:

Introduction – Photonic crystals and their one-
dimensional realizations – waveguide arrays (WAs) –
have been extensively studied in order to mimic the non-
relativistic dynamics of quantum particles in periodic po-
tentials [1–3]. In this respect, WAs constitute a useful
classical laboratory for simulating quantum effects and
can be used either to analyze well-known fundamental
mechanisms like Bloch oscillations [4], Zener tunneling
[5, 6], optical dynamical localization [7], and Anderson
localization in disordered lattices [8], or even possibly
uncover novel quantum effects. The thorough correspon-
dence between the Schrödinger equation for the quan-
tum wavefunction and the paraxial equation for the op-
tical field is the key that makes it possible to establish
a precise quantum-optical analogy. Similarly, it is pos-
sible to mimic relativistic phenomena of quantum field
theories in binary waveguide arrays (BWAs), since op-
tical propagation in the continuous limit is governed by
a (1+1)D Dirac equation [9]. Several mechanisms such
as Klein tunneling [10], Zitterbewegung [11], Klein para-
dox [12], and fermion pair production [13] have been ob-
served in BWAs. Analytical soliton solutions of the dis-
crete coupled-mode equations (CMEs) for a BWA, con-
stituting the optical analogue of the (1+1)D nonlinear
relativistic Dirac equation, have been recently reported
[14]. Although there is no evidence of fundamental non-
linearities in quantum field theory (QFT), the nonlinear
Dirac equation has constituted a matter of study since
long time and it has been used as an effective theory in
atomic [15], nuclear and gravitational physics [16] and in
the study of ultracold atoms [17]. An intriguing mecha-
nism arising in quantum field theories is represented by
tachyon condensation [18]. This is a process in particle

physics where the system lowers its energy by sponta-
neously generating particles. The tachyonic field with
complex mass is unstable and acquires a vacuum expecta-
tion value reaching the minimum of the potential energy
and getting a non-negative squared mass. This mecha-
nism is intimately related to the process of spontaneous
symmetry breaking, i.e. the spontaneous collapse of a sys-
tem into solutions that violate one or more symmetries
of the governing equation, which in other contexts is re-
sponsible for the existence of Higgs bosons [19], Nambu-
Goldstone bosons [20, 21] and fermions [22].

Motivated by the importance of using BWAs as a clas-
sical laboratory for the study of QFT phenomena, in this
Letter we theoretically investigate optical propagation
in amplifying plasmonic arrays with alternate couplings,
which in the continuous limit are governed by a nonlinear
Dirac-like equation with imaginary mass. We find that
the vacuum state is unstable and acquires an expecta-
tion value with broken chiral symmetry corresponding to
the dissipative nonlinear stationary mode. We also study
modulational instability, finding the conditions where the
new vacuum is stable and unstable due to the presence of
topological defects, i.e. dissipative solitons. This paves
the way for using BWAs to simulate tachyon conden-
sation and spontaneous symmetry breaking mechanisms
arising in QFT.

Model – In the following we consider an amplifying
plasmonic array – a metal-dielectric stack – sketched in
Fig. 1. Surface plasmon polaritons (SPPs) propagat-
ing at every metal-dielectric interface are weakly cou-
pled to nearest neighbours through alternating positive
and negative couplings [23]. This condition can also be
achieved in BWAs either through a Bragg structure with
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FIG. 1: Illustrative sketch of the structure analyzed in this
work: a metal-dielectric stack supporting SPPs at every z−y
interface. The dielectric media (blue slabs) embed externally
pumped active inclusions, which amplify SPPs (red sinusoidal
curves) propagating along the z-direction. Every nth dielec-
tric slab of width wd, adjacent to a metallic stripe of thickness
wm, supports SPPs at the left and right interfaces with optical
amplitudes Ln, Rn.

a low-index defect [24] or through waveguides with prop-
agation constants that vary periodically along the prop-
agation direction [9, 25]. Amplification schemes with
SPPs have been intensively studied and also demon-
strated experimentally [26, 27]. Gain is provided by ex-
ternally pumped active inclusions embedded in the di-
electric layers that can be modeled as two-level atoms.
For continuous monochromatic waves oscillating with
angular frequency ω, the complex susceptibility ǫd of
the pumped dielectric media is inherently nonlinear [28]:
ǫd = ǫb + α(δ − i)/(1 + δ2 + |E/ES |

2), where ǫb is the
linear susceptibility of the hosting medium, α is the di-
mensionless gain rescaled to ω/c, c is the speed of light
in vacuum, δ is the dimensionless detuning from reso-
nance rescaled to the dephasing rate, ES is the satura-
tion field and E is the electric field of the optical wave.
For weak optical fields much smaller than the satura-
tion field, the full-saturated susceptibility can be approx-
imated by its first-order Taylor expansion in terms of
|E/ES |

2, where the zeroth order term ǫb+α(δ−i)/(1+δ
2)

accounts for linear susceptibility and gain, while the first
order term α(i− δ)/(1+ δ2)2|E/ES |

2 accounts for focus-
ing/defocusing nonlinearity (depending on the sign of the
detuning δ) and nonlinear saturation of the gain.
Optical propagation in the amplifying plasmonic array

sketched in Fig. 1 can be modeled by the following pair
of coupled mode equations (CMEs) [23]:

i
dLn

dz
− iηLn + κ(Rn −Rn−1) + γ|Ln|

2Ln = 0, (1)

i
dRn

dz
− iηRn + κ(Ln − Ln+1) + γ|Rn|

2Rn = 0, (2)

where η = η′ + iη′′, η′ > 0 is the effective gain param-
eter, η′′ is the linear phase shift induced by two-level
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FIG. 2: (a) Amplitude of the dissipative nonlinear mode A as
a function of the effective gain η′ for γ′′ = 0.01i. (b) Nonlinear
dispersion µ±(q) as a function of q/π for η = 0.01−0.5i, k = 1
and γ = −0.01+0.01i. Blue and red curves represent the two
dispersion branches µ+, µ−. The black dashed line denotes
µ = 0.

atoms (η′′ = 0 at resonance), κ, γ are the coupling and
nonlinear coefficients and Ln, Rn are the left and right di-
mensionless field amplitudes at every n-th dielectric slot
(see Fig. 1). The longitudinal coordinate z is normalized
to the scaling length z0, which is arbitrary and can be
chosen conveniently. In what follows, we will set z0 to be
the coupling length, so that κ = 1 and η, γ are complex
dimensionless constants. At optical frequencies, assum-
ing a coupling length of the order of z0 ≃ 1µm, realis-
tic values for the gain parameter are of the order |η| ≃
10−2, since amplification of SPPs has been experimen-
tally demonstrated over a distance d ≃ 100µm [27]. The
full field E is given by the linear superposition E(r, t) =
ES

∑+∞

n=−∞
{LneL,n(r⊥) +RneR,n(r⊥)} e

iβz−iωt, where
r⊥ = (x, y), the (dimensionless) vectors eL,n(r⊥),
eR,n(r⊥) are the unperturbed linear mode profiles and
β is the propagation constant of SPPs at every metal-
dielectric interface. A full detailed derivation of Eqs.
(1,2) and analytical expressions for the coefficients η, κ, γ
are given in Refs. [23, 28, 29]. Note that the following cal-
culations are not dependent on the particular value of the
saturation field ES , which scales the optical field. Owing
to the dual chirality of alternating metal-dielectric inter-
faces (metal-dielectric and dielectric-metal), the system
is inherently binary and every SPP is coupled with left
and right adjacent SPPs by means of two different cou-
pling coefficients κL, κR. However, it is possible to adjust
the width of the dielectric slabs (wd) and metallic stripes
(wm) in order to achieve the condition κL = −κR = κ
[23]. The nonlinear coefficient is complex γ = γ′ + iγ′′,
the real part can be either positive or negative depending
on the sign of the detuning γ′ ∝ δ/(1 + δ2)2, while the
imaginary part is always positive γ′′ > 0 and accounts
for the nonlinear saturation of gain. Note that Eqs. (1,2)
are invariant under reflection in the x-direction (n → −n,
Ln → R−n, Rn → L−n), due to the inherent chiral sym-
metry of the total system.

Vacuum expectation value – Owing to the externally
pumped active inclusions, small perturbations of the vac-
uum state Ln = Rn = 0 are exponentially amplified
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FIG. 3: Optical analogue of the mexican hat potential de-
scribing spontaneous symmetry breaking in quantum field
theory: −µ2 is plotted against |ψ0|cosφ, |ψ0|sinφ, where |ψ0|
is the field amplitude and φ is the relative phase between the
spinor components. The plot is made by taking the parame-
ters η′ = 0.02, κ = 1, γ′′ = 0.01i.

at a rate η′. Instability develops until nonlinear effects
become important and nonlinear gain saturation comes
into play counterbalancing the linear amplification. Ho-
mogeneous nonlinear stationary modes of Eqs. (1,2)
can be found by taking the Ansatz Ln = L0e

iqn+iµz ,
Rn = R0e

iqn+iµz , where q is the transverse momentum
and µ is the nonlinear correction to the unperturbed
propagation constant β. As a consequence of the dis-
sipative nature of the system, the amplitudes L0, R0 do
not remain arbitrary and their moduli are fixed to be
A =

√

η′/γ′′. The nonlinear correction to the propaga-
tion constant is given by µ± = η′′±2k sin(q/2)+γ′η′/γ′′.
The amplitude of the dissipative nonlinear mode A is
plotted as a function of the effective gain parameter η′ in
Fig. 2a, while the nonlinear dispersion µ±(q) is depicted
in Fig. 2b. Note that, due to the inherent alternate
coupling of the system, the nonlinear dispersion is char-
acterized by a Dirac diabolical point at q = 0 [30]. At
this special point, the phases of both amplitudes L0, R0

remain arbitrary. Conversely, for q 6= 0 the mode am-
plitudes are fixed to R0 = ∓ieiq/2L0 and only a global
phase is left arbitrary.

Nonlinear Dirac-like equation – As mentioned in the
introduction, BWAs have been used to mimic phenom-
ena in both non-relativistic and relativistic quantum me-
chanics [2, 11], since CMEs can be converted into the
one-dimensional relativistic Dirac equation [33]. Defin-
ing the two-component spinor ψ = [Ln(z), Rn(z)]

T , if
the transversal patterns of the amplitudes Ln, Rn are
smooth, one can take the continuous limit by introduc-
ing the continuous spatial coordinate n → x. In this
limit, the spinor satisfies the (1+1)D nonlinear Dirac-like

equation

i∂zψ − iηψ + iκσ̂y∂xψ + γG(ψ) = 0, (3)

where G(ψ) = (|L|2L, |R|2R)T is the nonlinear spinorial
term and σ̂y is the y-Pauli matrix. In what follows, we
will focus on the case where the angular frequency of
SPPs ω coincides with the two-level atom resonant fre-
quency and thus the detuning δ vanishes: δ = 0, so that
η = η′ and γ = iγ′′. In this case Eq. (3) is analogous to
the (1+1)D Thirring model [34] with imaginary mass and
nonlinear terms, describing the dynamics of fermionic
tachyons. Optical analogues of fermionic tachyons have
been recently investigated in optical graphene and in
topological insulators [31, 32]. Note that Eq. (3) is
a Dirac-like equation, since the “mass term” (−iηψ) is
different from previously studied standard formulations
[11, 31], and is responsible for the existence of unstable
tachyon-like particles. Owing to amplification, vacuum
dynamically acquires a stable expectation value and the
ensuing final state is the optical analogue of a condensate
of stable fermionic particles with non-negative squared
mass. In turn, this process is commonly named tachyon

condensation, e.g. in the context of open string field the-
ories [35].

Spontaneous symmetry breaking – Note that, analo-
gously to the Thirring [34], sine-Gordon [36] and Nambu-
Jona-Lasinio [20] models, Eq. (3) is chirally symmetric
since it is left invariant under reflection x → −x if the
spinor components are transformed as L(x) → R(−x),
R(x) → L(−x). In turn, while the unstable vacuum
state ψ = 0 is chirally symmetric, the nonlinear homo-
geneous mode ψ = ψ0e

iµz with finite amplitude ψ0 and
propagation constant µ [where µ2 = −(η′ − γ′′|ψ0|

2)2]
breaks the chiral symmetry. The optical analogue of en-
ergy is represented by the propagation constant µ and
the system spontaneously evolves to states where −µ2

is minimum. In Fig. 3, we plot −µ2 = (η′ − γ′′|ψ0|
2)2

as a function of the mode amplitude |ψ0| and the rela-
tive phase between the spinor components φ. We find
the characteristic mexican hat profile, which constitutes
the archetypical potential describing spontaneous sym-
metry breaking in QFT. Our optical analogue of tachyon
condensation thus drives the physical system to a stable
state with broken chiral symmetry where −µ2 is mini-
mum and particles (i.e. optical states) with non-negative
squared mass are generated.

Modulational instability – In order to study the sta-
bility of the nonlinear homogeneous stationary mode
with broken chiral symmetry under transversal modula-
tion, we perturb it with small amplitude waves carrying
transverse momentum p:

Ln =
[

L0 + l+e
ipn+ρz + l∗−e

−ipn+ρ∗z
]

eiqn+iµz , (4)

Rn =
[

R0 + r+e
ipn+ρz + r∗−e

−ipn+ρ∗z
]

eiqn+iµz .(5)
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FIG. 4: Maximum instability eigenvalue ρ′max as a function
of the transverse momentum p of perturbating waves. (a)
ρ′max vs p for q = π, κ = 1, η′ = 0.01, γ′′ = 0.02i and
several values of γ′. Blue, green and red curves correspond
to γ′ = −0.01, 0.01, 0.05. The black dashed line denotes the
instability threshold ρ′max = 0. (b) ρ′max vs p for κ = 1,
η′ = 0.01, γ = 0.05 + 0.02i and several values of q. Black,
blue, green and red curves correspond to q = 0, 0.006, 0.02, π.

Inserting Eqs. (4,5) into Eqs. (1,2) and linearizing for
small |l±|, |r±| one finds a fourth order homogeneous
system of algebraic equations [M̂ − ρ1̂]v = 0, where
v = (l+, l−, r+, r−)

T , 1̂ is the identity matrix, M̂ is the
linearized system matrix and ρ1, ρ2, ρ3, ρ4 are the insta-
bility eigenvalues of M̂ that we have calculated numeri-
cally. Instability occurs if one of the complex eigenvalues
ρ has a positive real part. In Fig. 4a,b we plot the real
part ρ

′

max of the most unstable eigenvalue as a function
of the transverse momentum p of perturbating waves for
κ = 1, η′ = 0.01, γ′′ = 0.02i. In Fig. 4a, ρ′max is plotted
for q = π and γ′ = −0.01, 0.01, 0.05 (blue, green and red
curves), while in Fig. 4b the real part of the nonlinear
coefficient is fixed to γ′ = 0.05 and q = 0, 0.006, 0.02, π
(black, blue, green and red curves). In both figures, the
instability eigenvalues were calculated for the modes of
the upper branch (µ+, see Fig. 2). Note that, for q 6= 0,
stability depends on the sign of γ′ (instability for γ′ > 0
and stability for γ′ < 0) and thus on the sign of the
detuning δ. Conversely, at the Dirac point q = 0, ho-
mogeneous nonlinear waves are always marginally stable
(ρ′max = 0).

These predictions have been also confirmed by the di-
rect numerical integration of Eqs. (1,2) using a fourth
order Runge-Kutta algorithm. In the panels of Fig. 5,
we contour plot the modulus of the left optical field |Ln|
as a function of the SPP index n and of the propagation
direction z for different input conditions. In Fig. 5a,
we set as initial condition a small random perturbation
of the vacuum state, which is unstable and dynamically
converges to the stable nonlinear homogeneous mode at
the Dirac point q = 0, which represents the vacuum ex-
pectation value. In Fig. 5b, we perturb the homoge-
neous nonlinear mode of the upper branch at the band
edge q = π with small random perturbations, finding a
modulationally unstable chaotic dynamics. Indeed, mod-
ulational instability is strongly related to the presence of
topological defects, which we have found in the present

 

 

z

n

0 100 200 300 400

−200

0

200
0.2

0.4

0.6

0.8

1

1.2

1.4
(d)

FIG. 5: Propagation contour plots of the left field ampli-
tude |Ln| for several input conditions Ln(0), Rn(0) weakly
perturbed with random noise: (a) vacuum state Ln(0) =
Rn(0) = 0, (b) nonlinear homogeneous mode at the band

edge Ln(0) = Rn(0) =
√

η′/γ′′eiπn, (c) bright soliton with
q = π and (d) kink soliton with q = 0. Numerical integra-
tion is taken with the parameters η = 0.01, κ = 1 and (a)
γ = 0.01i, and (b,c,d) γ = 0.01 + 0.01i.

system as kink, bright and dark dissipative solitons. Due
to the instability of the vacuum background, topological
defects are also unstable and behave as strange attrac-
tors for the dynamical system. We have numerically cal-
culated the bright and kink soliton profiles by using the
shooting method. In Figs. 5c,d, we perturb bright and
kink solitons with small random waves finding that the
background noise is amplified and eventually destroys the
solitons.

Conclusions – In this Letter we have studied an opti-
cal analogue of spontaneous symmetry breaking induced
by tachyon condensation. We focused our attention on
amplified SPPs propagating at every interface of a metal-
dielectric stack, but our results are valid also for ampli-
fying BWAs with alternating coupling. Optical propa-
gation is modeled through CMEs, which in the continu-
ous limit converge to a nonlinear Dirac-like equation that
conserves chirality. We find that the vacuum is unstable
and the system spontaneously evolves to a stable homoge-
neous state with broken chiral symmetry. This symmetry
breaking is accompanied by the formation of propagat-
ing optical modes, which correspond to particles with
non-negative squared mass in the QFT/optics analogy.
We studied the modulational instability of the nonlinear
modes of the system, and found that at the Dirac point
instability never occurs. This paves the way for using
amplifying plasmonic arrays as a classical laboratory for
spontaneous symmetry breaking effects in quantum field
theory. We also envisage that further investigations and
developments of QFT/optical analogies may be found in
the context of nonlinear PT -symmetric optical systems.
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