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Abstract. We study the asymptotic properties of the semigroup S(t) arising from the
nonlinear viscoelastic equation with hereditary memory on a bounded three-dimensional
domain

|∂tu|ρ∂ttu−∆∂ttu−∆∂tu−
(
1 +

∫ ∞

0

µ(s) ds
)
∆u+

∫ ∞

0

µ(s)∆u(t− s) ds+ f(u) = h

written in the past history framework of Dafermos [10]. We establish the existence of
the global attractor of optimal regularity for S(t) when ρ ∈ [0, 4) and f has polynomial
growth of (at most) critical order 5.

1. Introduction

1.1. The model system. Given a bounded domain Ω ⊂ R3 with smooth boundary ∂Ω
and ρ ∈ [0, 4], we consider for t > 0 the system of equations

(1.1)

|∂tu|ρ∂ttu− ∆∂ttu− ∆∂tu− ∆u−
∫ ∞

0

µ(s)∆η(s) ds+ f(u) = h

∂tη = −∂sη + ∂tu

in the real-valued unknowns

u = u(x, t) and η = ηt(x, s),

where x ∈ Ω, t ∈ [0,∞) and s ∈ R+ = (0,∞). System (1.1) is complemented by the
Dirichlet boundary condition

(1.2) u(x, t)|x∈∂Ω = 0,

and by the “boundary condition” for η

(1.3) lim
s→0

ηt(x, s) = 0.

The model is subject to the initial conditions (the dependence on x is omitted)

u(0) = u0, ∂tu(0) = v0, η0 = η0,

where u0, v0 : Ω → R and η0 : Ω×R+ → R are prescribed functions. The external force h
is time-independent, while the locally Lipschitz nonlinearity f , with f(0) = 0, fulfills the
critical growth restriction

(1.4) |f(u) − f(v)| ≤ c|u− v|(1 + |u|4 + |v|4),

2000 Mathematics Subject Classification. 35B41, 35L72, 45G10.
Key words and phrases. Nonlinear viscoelastic equations, memory kernel, solution semigroup, global

attractor.
1



2 M. CONTI, E.M. MARCHINI, V. PATA

along with the dissipation conditions1

f(u)u ≥ F (u) − λ1
2

(1 − ν)|u|2 −mf(1.5)

F (u) ≥ −λ1
2

(1 − ν)|u|2 −mf(1.6)

for some ν ∈ (0, 1) and mf ≥ 0. Here λ1 > 0 denotes the first eigenvalue of the Dirichlet
operator −∆ and

F (u) =

∫ u

0

f(y) dy.

Finally, the convolution (or memory) kernel µ is a nonnegative, nonincreasing, piecewise
absolutely continuous function on R+ of finite total mass∫ ∞

0

µ(s) ds = κ ≥ 0

complying with the further assumption

(1.7)

∫ ∞

s

µ(σ) dσ ≤ Θµ(s),

for some Θ > 0. In particular, µ is allowed to exhibit (even infinitely many) jumps, and
can be unbounded about the origin. At the same time, µ can be identically zero, yielding
the equation

|∂tu|ρ∂ttu− ∆∂ttu− ∆∂tu− ∆u+ f(u) = h.

Remark 1.1. Assuming the past history of u to be known, from the second equation
of (1.1) together with (1.3) one deduces the formal equality (see [10])

(1.8) ηt(s) = u(t) − u(t− s).

Accordingly, the first equation becomes

|∂tu|ρ∂ttu− ∆∂ttu− ∆∂tu− (1 + κ)∆u+

∫ ∞

0

µ(s)∆u(t− s) ds+ f(u) = h.

This provides a generalization, accounting for memory effects in the material, of equations
of the form

ϱ(∂tu)∂ttu− ∆∂ttu− ∆∂tu− ∆u+ f(u) = h,

arising in the description of the vibrations of thin rods whose density ϱ depends on the
velocity ∂tu (see e.g. [20]).

1Conditions (1.5)-(1.6) follow for instance by requiring f ∈ C1(R) with lim inf
|u|→∞

f ′(u) > −λ1.
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1.2. Earlier contributions. The Volterra version of (1.1) with f = h ≡ 0

|∂tu|ρ∂ttu− ∆∂ttu− ∆∂tu− (1 + κ)∆u+

∫ t

0

µ(s)∆u(t− s) ds = 0,

corresponding to the choice of the initial datum η0 = u0, has been considered by several
authors, also with different kind of damping terms, in concern with the decay pattern of
solutions (see [3, 14, 15, 18, 19, 21, 22, 23, 24, 25, 28]). On the contrary, the asymptotic
analysis of the whole system (1.1) has been tackled only in the recent work [1], where
the authors prove the existence of the global attractor (without any additional regularity)
within the following set of hypotheses:

• The nonlinearity f has at most polynomial growth 3 and

(1.9) f(u)u ≥ F (u) ≥ 0.

• The nonnegative kernel µ ∈ C1(R+) ∩ L1(R+) fulfills for some δ > 0 and every
s ∈ R+ the relation

(1.10) µ′(s) + δµ(s) ≤ 0.

• The parameter ρ ∈ (1, 2].

In addition, the exponential decay of solutions is obtained when h ≡ 0 (meaning that
the global attractor A = {0} is exponential as well).

Remark 1.2. Actually, analogously to what done in all the other papers on the Volterra
case, the (exponential) decay rate turns out to depend on the size of the initial data. As
we will see in the next Section 4, a simple argument allows to get rid of such a dependence.

The restriction on ρ is also motivated by the fact that the well-posedness result for (1.1),
hence the existence of the semigroup, was available only for ρ ∈ (1, 2] (besides for the
much simpler case ρ = 0). On the other hand, after [7] now we know that (1.1) generates
a strongly continuous semigroup in our more general assumptions, and in particular, for
all ρ ∈ [0, 4]. This, of course, opens a new scenario which is worth to be investigated.

1.3. The result. In this work, we prove that the strongly continuous semigroup S(t)
generated by system (1.1) is dissipative (i.e. possesses bounded absorbing sets) for all
ρ ∈ [0, 4]. In particular, the exponential decay of solutions occurs whenever mf = 0 and
h ≡ 0. Besides, we establish the following theorem.

Theorem 1.3. Let h ∈ L2(Ω) and ρ ∈ [0, 4). Then S(t) possesses the global attractor of
optimal regularity.

With respect to the earlier literature, Theorem 1.3 improves the picture in several
directions:

• The attractor is bounded in a more regular (in fact, the best possible) space.

• The nonlinearity f is allowed to reach the critical polynomial order 5, under the
very general dissipation conditions (1.5)-(1.6), which include for instance terms of
the form

f(u) = u5 + au4 + bu3 + cu2 + du+ e,

not covered by (1.9).
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• Condition (1.7) on the memory kernel µ is the most general possible one (among
the class of nonincreasing summable kernels), since its failure prevents the uniform
decay of solutions to systems with memory, no matter how the equations involved
are (see [5]). As shown in [11], the condition can be equivalently stated as

(1.11) µ(σ + s) ≤ Ce−δσµ(s)

for some C ≥ 1, δ > 0, every σ ≥ 0 and almost every s > 0. Observe that the
latter inequality with C = 1 boils down to (1.10) (actually, for a.e. s ∈ R+). At
the same time, when C > 1 a much wider class of memory kernels is admissible
(see [5] for more comments).

• The parameter ρ belongs to the interval [0, 4). Nonetheless, the existence of the
global attractor in the case ρ = 4, which is critical for the Sobolev embedding,
seems to be out of reach at the moment.

Plan of the paper. After introducing the functional setting (Section 2), we dwell on the
existence of the solution semigroup (Section 3), whose dissipative features are discussed in
Section 4. Our main results on the existence of the global attractor of optimal regularity
are presented in Section 5. The remaining three Sections 6-8 are devoted to the proofs.
The final Appendix contains some technical lemmas.

2. Functional Setting

We denote by A = −∆ the Dirichlet operator on L2(Ω) with domain H2(Ω)∩H1
0 (Ω). For

r ∈ R, we define the scale of compactly nested Hilbert spaces

Hr = Dom(A
r
2 ), ⟨u, v⟩r = ⟨A

r
2u,A

r
2v⟩L2(Ω), ∥u∥r = ∥A

r
2u∥L2(Ω).

The index r is omitted whenever zero. In particular,

H−1 = H−1(Ω), H = L2(Ω), H1 = H1
0 (Ω), H2 = H2(Ω) ∩H1

0 (Ω),

and we have the generalized Poincaré inequalities

λ1∥u∥2r ≤ ∥u∥21+r.

Remark 2.1. It is readily seen that the dissipation conditions (1.5)-(1.6) imply

⟨f(u), u⟩ ≥ ⟨F (u), 1⟩ − 1

2
(1 − ν)∥u∥21 −Mf ,(2.1)

⟨F (u), 1⟩ ≥ −1

2
(1 − ν)∥u∥21 −Mf ,(2.2)

where Mf = mf |Ω|.

Next, we introduce the history spaces

Mr = L2
µ(R+; H1+r)

endowed with the inner products

⟨η, ξ⟩Mr =

∫ ∞

0

µ(s)⟨η(s), ξ(s)⟩1+r ds.
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We will also consider the infinitesimal generator T of the right-translation semigroup on
M defined as

Tη = −η′, Dom(T ) =
{
η ∈ M : η′ ∈ M, η(0) = 0

}
,

the prime standing for weak derivative. The following inequality holds (see e.g. [12])

(2.3) ⟨Tη, η⟩M ≤ 0, ∀η ∈ Dom(T ).

Finally, we introduce the extended history spaces

Hr = H1+r × H1+r ×Mr.

Notation. Throughout the paper, c ≥ 0 and Q(·) will stand for a generic constant and
a generic increasing positive function, respectively. We will use, often without explicit
mention, the usual Sobolev embeddings, as well as the Young, Hölder and Poincaré in-
equalities.

3. The Gradient System

Rewriting (1.1)-(1.3) in the form

(3.1)

|∂tu|ρ∂ttu+ A∂ttu+ A∂tu+ Au+

∫ ∞

0

µ(s)Aη(s) ds+ f(u) = h,

∂tη = Tη + ∂tu,

the following result is proved in [7].

Theorem 3.1. Let h ∈ H−1 and ρ ∈ [0, 4]. Then system (3.1) generates a solution
semigroup S(t) : H → H that satisfies the joint continuity

(t, z) 7→ S(t)z ∈ C([0,∞) ×H,H).

Besides, given any initial data z = (u0, v0, η0) ∈ H and denoting the corresponding solu-
tion by

(u(t), ∂tu(t), ηt) = S(t)z,

we have the explicit representation formula

(3.2) ηt(s) =

{
u(t) − u(t− s) 0 < s ≤ t,

η0(s− t) + u(t) − u0 s > t.

Moreover, defining the energy at time t of the solution S(t)z as

(3.3) E(t) =
1

2
∥S(t)z∥2H =

1

2

[
∥u(t)∥21 + ∥∂tu(t)∥21 + ∥ηt∥2M

]
,

we have (see [7])

Proposition 3.2. The uniform estimates

E(t) + ∥∂ttu(t)∥1 ≤ Q(R)

and ∫ ∞

0

∥∂tu(t)∥21 dt ≤ Q(R)

hold for every initial data z ∈ H with ∥z∥H ≤ R.
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Finally, we show the existence of a gradient system structure. We first recall the
definition.

Definition 3.3. A function L ∈ C(H,R) is called a Lyapunov functional if

(i) L(ζ) → ∞ if and only if ∥ζ∥H → ∞;
(ii) L(S(t)z) is nonincreasing for any z ∈ H;

(iii) if L(S(t)z) = L(z) for all t > 0, then z is a stationary point for S(t).

If there exists a Lyapunov functional, then S(t) is called a gradient system.

Proposition 3.4. S(t) is a gradient system on H.

Proof. For ζ = (u, v, η), let us define

L(ζ) =
1

ρ+ 2

∫
Ω

|v|ρ+2 dx +
1

2
∥ζ∥2H + ⟨F (u), 1⟩ − ⟨h, u⟩.

In light of (1.4) and (2.2), it is readily seen that

(3.4)
ν

4
∥ζ∥2H − cf,h ≤ L(ζ) ≤ c∥ζ∥2H

(
1 + ∥ζ∥4H

)
+ ∥h∥2−1,

where

cf,h = Mf +
1

ν
∥h∥2−1.

This proves (i). For sufficiently regular initial data z, testing system (3.1) with (∂tu, η)
in H ×M and recalling (2.3), we get

(3.5)
d

dt
L(S(t)z) + ∥∂tu(t)∥21 = ⟨Tηt, ηt⟩M ≤ 0,

so establishing (ii). To prove (iii), we note that if L(S(t)z) is constant, it follows that

∥∂tu(t)∥21 = ⟨Tηt, ηt⟩M = 0.

Therefore ∂tu(t) ≡ 0, so that u(t) = u0 for all t. In particular, the second equation of (3.1)
reduces to

∂tη = Tη,

and a multiplication by η gives

∥ηt∥M = ∥η0∥M, ∀t ≥ 0.

On the other hand, we learn from (3.2) that

ηt(s) =

{
0 0 < s ≤ t,

η0(s− t) s > t,

thus, in light of (1.11)

∥η0∥2M = ∥ηt∥2M =

∫ ∞

0

µ(t+ s)∥η0(s)∥21 ds ≤ Ce−δt∥η0∥2M,

which forces the equality η0 = 0. In conclusion,

S(t)z = z = (u0, 0, 0),

meaning that z is a stationary point. �
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4. Dissipativity

The dissipativity of S(t) follows from the existence of a bounded absorbing set. This is a
straightforward consequence of the next result.

Theorem 4.1. There exists ω > 0 such that

E(t) ≤ Q(R)e−ωt +R0

whenever E(0) ≤ R, having set

R0 =
4

ν

(
cf,h +Mf

)
=

4

ν

(
2Mf +

1

ν
∥h∥2−1

)
.

Remark 4.2. In light of the theorem, every ball B of H centered at zero with radius
strictly greater than

√
2R0 is a (bounded) absorbing set for S(t). Recall that B is called

an absorbing set if for every bounded set B ⊂ H there exists a time tB ≥ 0 such that

S(t)B ⊂ B, ∀t ≥ tB.

If R0 = 0 the exponential decay of the energy occurs.

Corollary 4.3. Let h = 0 and f satisfy (1.5)-(1.6) with mf = 0. Then

E(t) ≤ Q(R)e−ωt

whenever E(0) ≤ R.

As a first step, we prove the result in a weaker form, allowing the (exponential) decay
rate to depend on R.

Lemma 4.4. For every R ≥ 0 there exists a constant δ = δR > 0 such that

E(t) ≤
[
Q(R)E(0) +

4

ν
∥h∥2−1

]
e−δt +R0

whenever E(0) ≤ R.

Proof. For a fixed ∥z∥H ≤ R, let

L(t) = L(S(t)z)

be the Lyapunov functional of Proposition 3.4. Then, we introduce the further functionals

Ψ(t) =

∫ ∞

0

(∫ ∞

s

µ(y) dy
)
∥ηt(s)∥21 ds

Φ(t) =
1

2
∥u(t)∥21 + ⟨∂tu(t), u(t)⟩1 +

1

ρ+ 1
⟨|∂tu(t)|ρ∂tu(t), u(t)⟩.

Arguing as in the proof of Lemma A.1 in Appendix,

(4.1)
d

dt
Ψ +

1

2
∥η∥2M ≤ 2Θ2κ∥∂tu∥21.

A multiplication of the first equation of (3.1) by u gives

d

dt
Φ + ∥u∥21 + ⟨f(u), u⟩ − ⟨h, u⟩

= −
∫ ∞

0

µ(s)⟨η(s), u⟩1 ds+ ∥∂tu∥21 +
1

ρ+ 1

∫
Ω

|∂tu|ρ+2 dx,



8 M. CONTI, E.M. MARCHINI, V. PATA

and from (2.1) we obtain

d

dt
Φ +

1 + ν

2
∥u∥21 + ⟨F (u), 1⟩ − ⟨h, u⟩(4.2)

≤ −
∫ ∞

0

µ(s)⟨η(s), u⟩1 ds+ ∥∂tu∥21 +
1

ρ+ 1

∫
Ω

|∂tu|ρ+2 dx +Mf .

Fixing ε > 0 such that

1 − 2εΘ2κ ≥ 1

2
,

and for δ > 0 to be properly chosen later, we consider the functional

E(t) = L(t) + εΨ(t) + δΦ(t).

Collecting (3.5) and (4.1)-(4.2), we end up with

d

dt
E + δL + δ2Φ +

δ

2
(ν − δ)∥u∥21 +

1

2
(1 − 3δ)∥∂tu∥21 +

1

2
(ε− δ)∥η∥2M

≤ δMf − δ

∫ ∞

0

µ(s)⟨η(s), u⟩1 ds+ δ2⟨∂tu, u⟩1

+ δ
( 1

ρ+ 1
+

1

ρ+ 2

)∫
Ω

|∂tu|ρ+2 dx +
δ2

ρ+ 1
⟨|∂tu|ρ∂tu, u⟩.

We estimate the right-hand side above in the following way. For δ > 0 sufficiently small,
standard computations entail

−δ
∫ ∞

0

µ(s)⟨η(s), u⟩1 ds ≤ δ
√
κ∥η∥M∥u∥1 ≤

δ

8
(ν − δ)∥u∥21 + cδ∥η∥2M

and

δ2⟨∂tu, u⟩1 ≤
δ

8
(ν − δ)∥u∥21 +

1

4
∥∂tu∥21.

Moreover, by Proposition 3.2 and the embedding H1 ⊂ L
6
5
(ρ+1)(Ω),

δ
( 1

ρ+ 1
+

1

ρ+ 2

)∫
Ω

|∂tu|ρ+2 dx +
δ2

ρ+ 1
⟨|∂tu|ρ∂tu, u⟩ ≤ δQ(R)∥∂tu∥21 +

δ

4
(ν − δ)∥u∥21.

Therefore, we arrive at

d

dt
E + δL + δ2Φ +

(1

4
− 3δ

2
− δQ(R)

)
∥∂tu∥21 +

(ε
2
− cδ

)
∥η∥2M ≤ δMf .

Hence, we can choose δ = δR small enough that

d

dt
E + δE + ε

(1

4
∥η∥2M − δΨ

)
≤ δMf .

Actually, since by (1.7)

(4.3) 0 ≤ Ψ ≤ Θ∥η∥2M ≤ 2ΘE,

up to further reducing δ, we get

d

dt
E + δE ≤ δMf ,
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and an application of the Gronwall lemma leads to

(4.4) E(t) ≤ E(0)e−δt +Mf .

We now prove that

(4.5)
ν

4
E − cf,h ≤ E ≤ Q(R)E + ∥h∥2−1.

Indeed,

|Φ| ≤ ∥u∥21 +
1

2
∥∂tu∥21 +

1

ρ+ 1

∫
Ω

|∂tu|ρ+1|u| dx

≤ ∥u∥21 +
1

2
∥∂tu∥21 +

1

ρ+ 1
∥∂tu∥ρ+1

L
6
5 (ρ+1)

∥u∥L6

≤ ∥u∥21 +
1

2
∥∂tu∥21 + c∥∂tu∥ρ1

(
∥∂tu∥21 + ∥u∥21

)
≤ Q(R)E.

Therefore, on account of (3.4) and (4.3), we readily get

E(t) ≤ Q(R)E(t) + ∥h∥2−1.

Besides,

E ≥ L− δ|Φ| ≥ ν

2
E − cf,h − δQ(R)E,

hence, possibly by further reducing δ in dependence of R, we obtain

E ≥ ν

4
E − cf,h.

The claim follows from (4.4) and (4.5). �
Proof of Theorem 4.1. Let ∥z∥H ≤ R for some R ≥ 0. Then, we infer from Lemma 4.4
the existence of tR ≥ 0 such that

E(tR) ≤ 1 +R0,

and a further application of Lemma 4.4 yields

E(t) =
1

2
∥S(t− tR)S(tR)z∥2H ≤ Q(R0)e

ωtR e−ωt +R0, ∀t > tR,

where ω = δ1+R0 . At the same time, again by Lemma 4.4,

E(t) ≤ Q(R) +R0, ∀t ≤ tR.

Collecting the two inequalities we are done. �

5. Main Results

Theorem 5.1. The semigroup S(t) possesses the global attractor A.

By definition, the global attractor of S(t) is the unique compact set A ⊂ H which is at
the same time fully invariant and attracting for the semigroup (see e.g. [2, 13, 16, 27]).
Namely,

(i) S(t)A = A for every t ≥ 0; and
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(ii) for every bounded set B ⊂ H

lim
t→∞

distH(S(t)B,A) = 0,

where distH denotes the standard Hausdorff semidistance in H. We also recall that, for
an arbitrarily fixed τ ∈ R, the global attractor can be given the form (see [16])

A =
{
ζ(τ) : ζ cbt

}
,

where a complete bounded trajectory (cbt) of the semigroup is a function ζ ∈ Cb(R,H)
satisfying

ζ(τ) = S(t)ζ(τ − t), ∀t ≥ 0, ∀τ ∈ R.
According to [4, 13], the existence of a Lyapunov function (Proposition 3.4) ensures

that A coincides with the unstable manifold of the set S of equilibria of S(t), which is
compact, nonempty and made of all vectors z⋆ = (u⋆, 0, 0) with u⋆ solution to the elliptic
equation Au⋆ + f(u⋆) = h. That is,

A =
{
ζ(0) : ζ is a cbt and lim

τ→−∞
∥ζ(τ) − S∥H = 0

}
.

Moreover, the following result holds.

Proposition 5.2. Any cbt ζ = (u, ∂tu, η) fulfills the relation

lim
τ→±∞

∥ζ(τ) − S∥H = 0.

In particular,

lim
τ→±∞

[
∥∂tu(τ)∥1 + ∥ητ∥M

]
= 0.

Corollary 5.3. If S is discrete, there exist z⋆, w⋆ ∈ S such that ζ(τ) → z⋆ in H as τ → ∞
and ζ(τ) → w⋆ in H as τ → −∞.

On the other hand, S might as well be a continuum (e.g. if F is a double-well potential,
see [16]). In such a case, the convergence of a given trajectory to a single equilibrium
cannot be predicted, and is false in general. Nonetheless, if f is real analytic, there is a
well-known tool which can be used in order to guarantee the convergence of trajectories
to equilibria: the  Lojasiewicz-Simon inequality (see e.g. [17]).

Coming to the regularity of the attractor, we have

Theorem 5.4. The global attractor A of S(t) is bounded in H1.

Theorem 5.1 and Theorem 5.4 subsume the main Theorem 1.3 stated in the introduc-
tion.

Observe that, as S ⊂ A, if h ∈ H without any further assumption we cannot have more
than H2-regularity for the first component. Thus the inclusion A ⊂ H1 is optimal.

Proposition 5.5. For every cbt ζ = (u, ∂tu, η) the formal equality (1.8) holds true for
every t ∈ R. In particular, it follows that ηt ∈ Dom(T ) for all t.

A direct consequence of the proposition is the next corollary, whose proof is left to the
reader.
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Corollary 5.6. Given u ∈ Cb(R,H1) ∩ C1
b(R,H1) and defining η = ηt(s) for all real t by

the formula (1.8), the vector ζ = (u, ∂tu, η) is a cbt if and only if u solves the equation

|∂tu(t)|ρ∂ttu(t) +A∂ttu(t) +A∂tu(t) + (1 + κ)Au(t) −
∫ ∞

0

µ(s)Au(t− s) ds+ f(u(t)) = h

for every t ∈ R.

The proofs of the results stated above will be carried out in the subsequent sections.

6. Existence of the Global Attractor

In what follows, let ρ ∈ [0, 4). Besides, let B be a given bounded absorbing set, whose
existence is guaranteed by Theorem 4.1. The main result of the section is

Proposition 6.1. For any t ≥ 0, there exists a compact set K(t) ⊂ H such that

distH(S(t)B,K(t)) ≤ ce−ωt

for some c ≥ 0 and ω > 0 depending only on B.

Proposition 6.1 tells that S(t) is asymptotically compact. Hence, invoking a general
result of the theory of dynamical systems (see e.g. [2, 6, 13, 16, 27]), S(t) possesses the
global attractor A. This establishes the proof of Theorem 5.1.

In order to prove Proposition 6.1, we need a suitable decomposition of f .

Lemma 6.2. The nonlinearity f admits the decomposition

f(s) = f0(s) + f1(s)

for some f0, f1 with the following properties:

• f1 is Lipschitz continuous with f1(0) = 0;

• f0 vanishes inside [−1, 1] and fulfills the critical growth restriction

|f0(u) − f0(v)| ≤ c|u− v|(|u| + |v|)4

• f0 fulfills for every s ∈ R the bounds

f0(s)s ≥ F0(s) ≥ 0,

where F0(s) =
∫ s

0
f0(y) dy.

Proof. Set α = λ1(1 − ν) and fix β ∈ (α, λ1). Collecting (1.5)-(1.6), we know that

(6.1) f(s)s ≥ −αs2 − 2mf , ∀s ∈ R.
Let k ≥ 1 large enough to have

(6.2) (β − α)s2 − 2mf ≥ 0, ∀ |s| ≥ k.

Choosing then any smooth function ϱ : R → [0, 1] satisfying ϱ′(s)s ≥ 0 and

ϱ(s) =

{
0 if |s| ≤ k,

1 if |s| ≥ k + 1,

define
f0(s) = ϱ(s)[f(s) + βs] and f1(s) = [1 − ϱ(s)]f(s) − βϱ(s)s.
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In light of (6.1)-(6.2), it is immediate to check that f0(s)s ≥ 0, implying in turn F0(s) ≥ 0.
We are left to prove the estimate f0(s)s ≥ F0(s). We limit ourselves to discuss the case
s > 0, being the other one analogous. If s < k, then f0(s) = F0(s) = 0 by the very
definition of ϱ. If s ≥ k, using again (6.1)-(6.2) we infer that

f(y) + βy ≥ 0, ∀y ∈ [k, s].

Hence

F0(s) =

∫ s

k

ϱ(y)[f(y) + βy] dy

≤ ϱ(s)

∫ s

k

[f(y) + βy] dy

= ϱ(s)
[
F (s) +

β

2
s2
]
− ϱ(s)

[
F (k) +

β

2
k2
]
.

Exploiting (1.5)-(1.6) and (6.2), we get

F0(s) ≤ ϱ(s)
[
f(s)s+

α

2
s2 +mf +

β

2
s2
]
− ϱ(s)

2
[(β − α)k2 − 2mf ]

= f0(s)s−
ϱ(s)

2
[(β − α)s2 − 2mf ] − ϱ(s)

2
[(β − α)k2 − 2mf ] ≤ f0(s)s.

This concludes the proof. �
Defining now

σ = min
{1

3
,
4 − ρ

2

}
,

the following result holds.

Lemma 6.3. For any t ≥ 0, there exists a closed bounded set Bσ(t) ⊂ Hσ such that

distH(S(t)B,Bσ(t)) ≤ ce−ωt,

for some constants c ≥ 0 and ω > 0 depending only on B.

Proof. We write f = f0 + f1 as in Lemma 6.2. For an arbitrarily fixed z ∈ B, let

(v̂(t), ∂tv̂(t), ξ̂t) and (ŵ(t), ∂tŵ(t), ψ̂t)

be the solutions at time t > 0 to the problems

(6.3)


|∂tv̂|ρ∂ttv̂ + A∂ttv̂ + A∂tv̂ + Av̂ +

∫ ∞

0

µ(s)Aξ̂(s) ds+ f0(v̂) = 0,

∂tξ̂ = T ξ̂ + ∂tv̂,

(v̂(0), ∂tv̂(0), ξ̂0) = z,

and

(6.4)


|∂tu|ρ∂ttu− |∂tv̂|ρ∂ttv̂ + A∂ttŵ + A∂tŵ + Aŵ +

∫ ∞

0

µ(s)Aψ̂(s) ds = g

∂tψ̂ = T ψ̂ + ∂tŵ,

(ŵ(0), ∂tŵ(0), ψ̂0) = 0,
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having set
g = h− f0(u) + f0(v̂) − f1(u).

In what follows, the generic constant c ≥ 0 is independent of the choice of z ∈ B.

Concerning system (6.3), since the forcing term is null and f0(v)v ≥ F0(v) ≥ 0, an
application of Lemma 4.4 yields the exponential decay

(6.5)
∥∥(v̂(t), ∂tv̂(t), ξ̂t

)∥∥
H ≤ c∥z∥He−ωt,

for some c ≥ 0 and ω > 0, depending only on B. Furthermore, a multiplication of the
first equation of (6.3) by ∂ttv̂ gives

∥∂ttv̂∥21 ≤ ⟨|∂tv̂|ρ∂ttv̂, ∂ttv̂⟩ + ∥∂ttv̂∥21

= −⟨∂tv̂, ∂ttv̂⟩1 − ⟨v̂, ∂ttv̂⟩1 −
∫ ∞

0

µ(s)⟨ξ̂(s), ∂ttv̂⟩1 ds− ⟨f0(v̂), ∂ttv̂⟩.

By the growth assumption on f0,

−⟨f0(v̂), ∂ttv̂⟩ ≤ ∥f0(v̂)∥L6/5∥∂ttv̂∥L6 ≤ c
(
1 + ∥v̂∥51

)
∥∂ttv̂∥1.

Moreover,

−
∫ ∞

0

µ(s)⟨ξ̂(s), ∂ttv̂⟩1 ds ≤ ∥∂ttv̂∥1
∫ ∞

0

µ(s)∥ξ̂(s)∥1 ds,

and ∫ ∞

0

µ(s)∥ξ̂(s)∥1 ds ≤
√
κ ∥ξ̂∥M.

Thus, we infer from (6.5) that

∥∂ttv̂∥21 ≤
(
∥∂tv̂∥1 + ∥v̂∥1 +

√
κ∥ξ̂∥M + c+ c∥v̂∥51

)
∥∂ttv̂∥1 ≤

1

2
∥∂ttv̂∥21 + c

implying the bound

(6.6) ∥∂ttv̂∥1 ≤ c.

Concerning system (6.4), introducing the energy

Êσ(t) =
1

2

∥∥(ŵ(t), ∂tŵ(t), ψ̂t
)∥∥2

Hσ ,

we want to prove the estimate

(6.7) Êσ(t) ≤ ect.

To this aim, we multiply the first equation of (6.4) by Aσ∂tŵ, and the second one by ψ̂
in Mσ, so to get

d

dt
Êσ + ∥∂tŵ∥21+σ ≤ ⟨−|∂tu|ρ∂ttu+ |∂tv̂|ρ∂ttv̂, Aσ∂tŵ⟩ + ⟨g, Aσ∂tŵ⟩.

Observe that

|g| = |h− f0(u) + f0(v̂) − f1(u)| ≤ |h| + c|ŵ|(|u| + |v̂|)4 + c(1 + |u|).
Thus, the Sobolev embeddings

H1+σ ⊂ L
6

1−2σ (Ω) and H1−σ ⊂ L
6

1+2σ (Ω)
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yield

⟨g, Aσ∂tŵ⟩ ≤∥h∥∥Aσ∂tŵ∥ + c(∥u∥L6 + ∥v̂∥L6)4∥ŵ∥L6/(1−2σ)∥Aσ∂tŵ∥L6/(1+2σ)(6.8)

+ c(1 + ∥u∥)∥Aσ∂tŵ∥
≤c∥∂tŵ∥1+σ + c(∥u∥1 + ∥v̂∥1)4∥ŵ∥1+σ∥∂tŵ∥1+σ

+ c(1 + ∥u∥1)∥∂tŵ∥1+σ

≤cÊσ + c.

Besides, since 3ρ
2−σ

≤ 6, from the embedding H1 ⊂ L
3ρ

2−σ (Ω) we find

⟨−|∂tu|ρ∂ttu,Aσ∂tŵ⟩ ≤ ∥∂tu∥ρL3ρ/(2−σ)∥∂ttu∥L6∥Aσ∂tŵ∥L6/(1+2σ) ≤ ∥∂tu∥ρ1∥∂ttu∥1∥∂tŵ∥1+σ

and, analogously,

⟨|∂tv̂|ρ∂ttv̂, Aσ∂tŵ⟩ ≤ ∥∂tv̂∥ρ1∥∂ttv̂∥1∥∂tŵ∥1+σ.

Therefore, in light of Proposition 3.2, (6.5) and (6.6), we have

⟨−|∂tu|ρ∂ttu+ |∂tv̂|ρ∂ttv̂, Aσ∂tŵ⟩ ≤ ∥∂tŵ∥21+σ + c.

Collecting the above inequalities we arrive at

d

dt
Êσ ≤ cÊσ + c.

Recalling that Êσ(0) = 0, by the Gronwall lemma we obtain the sought inequality (6.7).
This finishes the proof. �

Lemma 6.3 is not quite enough to conclude, since the embedding Hσ ⊂ H is not compact
(see [26]). Hence, a further argument is needed.

Proof of Proposition 6.1. In the previous notation, for any z ∈ B and any fixed t ≥ 0 we
set

Ξt =
∪
z∈B

ψ̂t.

Exploiting the representation formula for ψ̂t

ψ̂t(s) =

{
ŵ(t) − ŵ(t− s) 0 < s ≤ t,

ŵ(t) s > t,

and taking into account that ∂tŵ ∈ L∞(0,∞; H1), we learn that Ξt ⊂ Dom(T ), and by
elementary computations we obtain

sup
z∈B

∥T ψ̂t∥M ≤ c and sup
z∈B

∥ψ̂t(s)∥21 ≤ c.

Besides, by (6.7),

sup
z∈B

∥ψ̂t∥Mσ ≤ Q(t).

Since

s 7→ cµ(s) ∈ L1(R+),
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we infer from Lemma A.2 that Ξt is precompact in M. At this point, exploiting (6.7)
again, let B(t) be the closed ball of H1+σ×H1+σ centered at zero of a suitable radius Q(t)
such that

sup
z∈B

∥
(
ŵ(t), ∂tŵ(t)

)∥∥
H1+σ×H1+σ ≤ Q(t).

Finally, define
K(t) = B(t) × Ξt,

the bar standing for the closure in M. Then K(t) is compact in H and fulfills the
claim. �
Remark 6.4. Actually, relying on the gradient system structure of S(t) provided by
Proposition 3.4, one could prove the existence of the global attractor without passing
through the existence of a bounded absorbing set, which is then recovered as a byproduct
(see e.g. [8, 13]). The disadvantage of this scheme is that it does not provide any estimate
of the entering time into the absorbing set.

7. Further Regularity

Proposition 7.1. The global attractor A is bounded in Hσ.

Proof. The global attractor A, being fully invariant, is contained in every closed attracting
set. Hence, to prove the lemma it is enough to exhibit a (closed) ball Bσ ⊂ Hσ which
attracts the bounded absorbing set B. Indeed, by applying Lemma A.3 with r = σ, we
will show that

distH(S(t)B,Bσ) ≤ ce−κt,

for some κ > 0. To this end, let z ∈ B be fixed, and let y ∈ B and x ∈ Hσ be any pair
satisfying y + x = z. We define the operators

Vz(t)y = (v(t), ∂tv(t), ξt) and Uz(t)x = (w(t), ∂tw(t), ψt),

where (v(t), ∂tv(t), ξt) and (w(t), ∂tw(t), ψt) solve systems (6.3) and (6.4) without the hats,
with initial data

(v(0), ∂tv(0), ξ0) = y and (w(0), ∂tw(0), ψ0) = x.

Condition (i) of Lemma A.3 holds by construction, while (ii) follows by the exponential
decay (6.5), which now reads

(7.1) ∥(v(t), ∂tv(t), ξt)∥H = ∥Vz(t)y∥H ≤ c∥y∥He−ωt.

Arguing as in the proof of (6.6) we also get

(7.2) ∥∂ttv∥1 ≤ c.

In order to prove (iii), we set

Eσ(t) =
1

2
∥Uz(t)x∥2Hσ .

An application of Lemma A.1 provides a functional Λσ satisfying

(7.3)
1

2
Eσ ≤ Λσ ≤ 2Eσ,
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jointly with the differential inequality

d

dt
Λσ + δEσ ≤ ⟨γ, ∂tw⟩σ + δ⟨γ, w⟩σ,

which holds for all δ > 0 small enough. Here, γ is defined by

γ = g − |∂tu|ρ∂ttu+ |∂tv|ρ∂ttv
where

g = h− f0(u) + f0(v) − f1(u).

We estimate the nonlinearity g as follows: we write

|g| ≤ |h| + c|w|(|u| + |v|)4 + c(1 + |u|)
≤ |h| + c|w|(|v̂| + |v|)4 + c(|u| + |v|)|ŵ|4 + c(1 + |u|)

and, with analogous computations as in (6.8), we obtain

⟨g, Aσ∂tw⟩ ≤∥h∥∥Aσ∂tw∥ + c(∥v∥L6 + ∥v̂∥L6)4∥w∥L6/(1−2σ)∥Aσ∂tw∥L6/(1+2σ)

+ c(∥u∥L6 + ∥v∥L6)∥ŵ∥4L6/(1−2σ)∥Aσ∂tw∥L6/(1+2σ) + c(1 + ∥u∥)∥Aσ∂tw∥
≤c∥∂tw∥1+σ + c(∥v∥1 + ∥v̂∥1)4∥w∥1+σ∥∂tw∥1+σ

+ c(∥u∥1 + ∥v∥1)∥ŵ∥41+σ∥∂tw∥1+σ + c(1 + ∥u∥1)∥∂tw∥1+σ.

Exploiting the decay estimates (6.5) and (7.1) together with (6.7), we arrive at

⟨g(t), Aσ∂tw(t)⟩ ≤ δ

8
∥∂tw(t)∥21+σ + ce−4ωt

[
∥w(t)∥21+σ + ∥∂tw(t)∥21+σ

]
+ Q(t),

for some Q(·) independent of x. Besides, arguing exactly as in the proof of Lemma 6.3,

⟨−|∂tu|ρ∂ttu+ |∂tv|ρ∂ttv, Aσ∂tw⟩ ≤
δ

8
∥∂tw∥21+σ + c.

where we used Proposition 3.2, (7.1) and (7.2). By analogous computations, we draw

⟨γ(t), Aσw(t)⟩ ≤
(δ

4
+ ce−4ωt

)
∥w(t)∥21+σ + Q(t),

for some Q(·) independent of x. We finally end up with the differential inequality

d

dt
Λσ(t) +

δ

2
Eσ(t) ≤ ce−4ωtEσ(t) + Q(t).

In light of (7.3), we infer from the Gronwall lemma that

∥Uz(t)x∥Hσ ≤ ce−
δt
8 ∥x∥Hσ + Q(t).

This proves (iii). �
A further regularization for ∂ttu will be needed.

Lemma 7.2. For initial data z ∈ A we have

∥∂ttu∥1+σ ≤ c

for some c > 0 depending only on A.
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Proof. A multiplication of the first equation of (3.1) by Aσ∂ttu gives

∥∂ttu∥21+σ ≤ −⟨|∂tu|ρ∂ttu,Aσ∂ttu⟩ − ⟨∂tu, ∂ttu⟩1+σ − ⟨u, ∂ttu⟩1+σ(7.4)

−
∫ ∞

0

µ(s)⟨η(s), ∂ttu⟩1+σ ds− ⟨f(u), Aσ∂ttu⟩ + ⟨h,Aσ∂ttu⟩.

In order to estimate the terms in the right–hand side, we exploit the bound

∥(u, ∂tu, η)∥Hσ ≤ c.

Note first that

−⟨|∂tu|ρ∂ttu,Aσ∂ttu⟩ ≤ ∥∂tu∥ρL3ρ/(2−σ)∥∂ttu∥L6∥Aσ∂ttu∥L6/(1+2σ)

≤ ∥∂tu∥ρ1∥∂ttu∥1∥∂ttu∥1+σ

≤ c∥∂ttu∥1+σ.

Moreover, in light of (1.4),

−⟨f(u), Aσ∂ttu⟩ ≤ ∥f(u)∥L6/(5−2σ)∥Aσ∂ttu∥L6/(1+2σ)

≤ c
(
1 + ∥u∥51+σ

)
∥∂ttu∥1+σ

≤ c∥∂ttu∥1+σ,

and

−
∫ ∞

0

µ(s)⟨η(s), ∂ttu⟩1+σ ds ≤
√
κ ∥η∥Mσ∥∂ttu∥1+σ.

As a consequence, (7.4) gives

∥∂ttu∥21+σ ≤
(
∥∂tu∥1+σ + ∥u∥1+σ +

√
κ∥η∥Mσ + c+ ∥h∥L6/(5−2σ)

)
∥∂ttu∥1+σ

≤ 1

2
∥∂ttu∥21+σ + c,

concluding the proof. �

8. Optimal Regularity of the Attractor

In this section we prove the optimal regularity of the attractor. The key ingredient is the
following lemma.

Lemma 8.1. Given any r ∈ [σ, 1 − σ] the following holds:

A ⊂ Hr ⇒ A ⊂ Hr+σ.

Proof. Knowing that A is fully invariant and bounded in Hr, we split the solution S(t)z
with z ∈ A into the sum

S(t)z = L(t)z +K(t)z,

where L(t)z = (v(t), ∂tv(t), ξt) and K(t)z = (w(t), ∂tw(t), ψt) solve the systems
A∂ttv + A∂tv + Av +

∫ ∞

0

µ(s)Aξ(s) ds = 0,

∂tξ = Tξ + ∂tv,

(v(0), ∂tv(0), ξ0) = z,
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and 
A∂ttw + A∂tw + Aw +

∫ ∞

0

µ(s)Aψ(s) ds = γ

∂tψ = Tψ + ∂tw,

(w(0), ∂tw(0), ψ0) = 0,

where
γ = h− f(u) − |∂tu|ρ∂ttu.

A direct application of Lemma A.1 together with the Gronwall lemma to the first system
shows that the linear semigroup L(t) decays exponentially in H, i.e.

(8.1) ∥L(t)z∥H ≤ ce−ωt,

for some c = c(A) > 0 and ω > 0. Defining

Er+σ(t) =
1

2
∥K(t)z∥2Hr+σ ,

Lemma A.1 applied to the second system provides the existence of a functional Λr+σ

satisfying

(8.2)
1

2
Er+σ ≤ Λr+σ ≤ 2Er+σ

and
d

dt
Λr+σ + δEr+σ ≤ ⟨γ, ∂tw⟩r+σ + δ⟨γ, w⟩r+σ

for all δ > 0 sufficiently small. We now exploit the embeddings2

H1+r ⊂ L
6

1−2r (Ω) ⊂ L
3ρ
2−r (Ω)

and Lemma 7.2 to estimate the right-hand side as

−⟨|∂tu|ρ∂ttu,Ar+σ∂tw⟩ ≤ ∥∂tu∥ρL3ρ/(2−r)∥∂ttu∥L6/(1−2σ)∥Ar+σ∂tw∥L6/(1+2r+2σ)

≤ c∥∂tu∥ρ1+r∥∂ttu∥1+σ∥∂tw∥1+r+σ

≤ c∥∂tw∥1+r+σ.

Besides, due to (1.4), we have

−⟨f(u), Ar+σ∂tw⟩ ≤ ∥f(u)∥L6/(5−2r−2σ)∥Ar+σ∂tw∥L6/(1+2r+2σ)

≤ c
(
1 + ∥u∥51+r

)
∥∂tw∥1+r+σ

≤ c∥∂tw∥1+r+σ.

Furthermore, since r + σ ≤ 1+r+σ
2

,

⟨h,Ar+σ∂tw⟩ ≤ ∥h∥∥Ar+σ∂tw∥ ≤ c∥h∥∥∂tw∥1+r+σ,

showing that
⟨γ, ∂tw⟩r+σ ≤ c∥∂tw∥1+r+σ.

Analogous computations provides the estimate

δ⟨γ, w⟩r+σ ≤ δc∥w∥1+r+σ.

2If r ≥ 1
2 we exploit H1+r ⊂ L∞(Ω).
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We thus end up with the differential inequality

d

dt
Λr+σ +

δ

2
Er+σ ≤ c

for some δ > 0. In light of (8.2), and recalling that Er+σ(0) = 0, from the Gronwall
lemma we infer that

(8.3) ∥K(t)z∥Hr+σ ≤ c,

for some c = c(A) > 0. By virtue of (8.1) and (8.3), we conclude that

distH(A,Br+σ) = distH(S(t)A,Br+σ) ≤ ce−ωt → 0,

where Br+σ is a closed ball of Hr+σ of radius sufficiently large. In particular, this yields
the inclusion A ⊂ Br+σ �
Proof of Theorem 5.4. By reiterated applications of Lemma 8.1, in a finite number of
steps we arrive to show that A is bounded in Hr+σ with r + σ = 1. �
Proof of Proposition 5.5. Let ζ(t) = (u(t), ∂tu(t), ηt) be a cbt, that is, a solution lying
on A. Fixed an arbitrary k > 0, let us consider the solution at time τ > 0 with initial
data ζ(t− k)

S(τ)ζ(t− k) = (v(τ), ∂tv(τ), ξτ ).

Observing that
v(τ) = u(t− k + τ) and ξτ = ηt−k+τ ,

the representation formula (3.2) applied to ξτ yields

ηt−k+τ (s) = ξτ (s) = v(τ) − v(τ − s) = u(t− k + τ) − u(t− k + τ − s),

for every s ≤ τ . Letting now k = τ , we obtain (1.8) for all s ≤ τ , and from the
arbitrariness of τ > 0 the claim follows. �

Appendix: Some Technical Results

A.1. An auxiliary problem. Let r ∈ [0, 1]. For a sufficiently regular function γ = γ(t)
on [0,∞), let us consider the Cauchy problem in Hr

(A.1)

A∂ttu+ A∂tu+ Au+

∫ ∞

0

µ(s)Aη(s) ds = γ,

∂tη = Tη + ∂tu,

with related energy

Er(t) =
1

2

[
∥u(t)∥21+r + ∥∂tu(t)∥21+r + ∥ηt∥2Mr

]
.

Lemma A.1. For all δ > 0 small, there exists Λr satisfying

(A.2)
1

2
Er ≤ Λr ≤ 2Er

and

(A.3)
d

dt
Λr + δEr ≤ ⟨γ, ∂tu⟩r + δ⟨γ, u⟩r.
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Proof. We multiply (A.1) by (∂tu, η) in Hr ×Mr, so obtaining

d

dt
Er + ∥∂tu∥21+r = ⟨TA

r
2η, A

r
2η⟩M + ⟨γ, ∂tu⟩r ≤ ⟨γ, ∂tu⟩r.

We now define the functionals

Ψr(t) =

∫ ∞

0

(∫ ∞

s

µ(y) dy
)
∥ηt(s)∥21+r ds,

Φr(t) =
1

2
∥u(t)∥21+r + ⟨u(t), ∂tu(t)⟩1+r,

which satisfy the bounds (see (1.7))

0 ≤ Ψr ≤ Θ∥η∥2Mr

and

|Φr| ≤ ∥u∥21+r +
1

2
∥∂tu∥21+r.

Setting

Λr(t) = Er(t) + εΨr(t) + δΦr(t),

inequality (A.2) is easily seen to hold for every ε ≤ 1
2Θ

and δ ≤ 1
4
. Taking the time

derivative of Ψr we get

d

dt
Ψr +

1

2
∥η∥2Mr = −1

2
∥η∥2Mr + 2

∫ ∞

0

(∫ ∞

s

µ(y) dy
)
⟨η(s), ∂tu⟩1+r ds

≤ −1

2
∥η∥2Mr + 2Θ

√
κ∥η∥Mr∥∂tu∥1+r

≤ 2Θ2κ∥∂tu∥21+r.

Besides, a multiplication of the first equation of (A.1) by Aru provides

d

dt
Φr +

1

2
∥u∥21+r = −1

2
∥u∥21+r + ∥∂tu∥21+r −

∫ ∞

0

µ(s)⟨η(s), u⟩1+r ds+ ⟨γ, u⟩r

≤ ∥∂tu∥21+r +
κ

2
∥η∥2Mr + ⟨γ, u⟩r.

Collecting the inequalities above, we end up with

d

dt
Λr +

δ

2
∥u∥21+r + (1 − 2εΘ2κ− δ)∥∂tu∥21+r +

1

2
(ε− δκ)∥η∥2Mr ≤ ⟨γ, ∂tu⟩r + δ⟨γ, u⟩r.

Fixing ε ∈
(
0, 1

2Θ

]
such that

1 − 2εΘ2κ ≥ 1

2
,

inequality (A.3) holds for every δ > 0 small. �
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A.2. Two lemmas. We finally recall two results needed in the investigation. The first is
a compactness lemma in the space M proved in [26] (see Lemma 5.5 therein), while the
second one is Theorem 3.1 from [9], written here in a suitable form for our scopes.

Lemma A.2. Let Ξ be a subset of Dom(T ), and let r > 0. If

sup
η∈Ξ

[
∥η∥Mr + ∥Tη∥M

]
<∞

and the map
s 7→ sup

η∈Ξ
µ(s)∥η(s)∥21

belongs to L1(R+), then Ξ is precompact in M.

Lemma A.3. Let B ⊂ H be a bounded absorbing set for S(t), and let r > 0. For every
z ∈ B, assume there exist two operators Vz(t) and Uz(t) acting on H and Hr, respectively,
with the following properties:

(i) given any y ∈ B and any x ∈ Hr satisfying the relation y + x = z,

S(t)z = Vz(t)y + Uz(t)x;

(ii) there exists a positive function d1 vanishing at infinity such that, for any y ∈ B,
sup
z∈B

∥Vz(t)y∥H ≤ d1(t)∥y∥H;

(iii) there exists a positive function d2 vanishing at infinity such that, for any x ∈ Hr,

sup
z∈B

∥Uz(t)x∥Hr ≤ d2(t)∥x∥Hr + Q(t),

for some Q(·) independent of x.

Then, B is exponentially attracted by a closed ball Br of Hr centered at zero; namely, there
exist (strictly) positive constants c,κ such that

distH(S(t)B,Br) ≤ ce−κt.
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