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The fault detection problem is investigated for a class of wireless network control systems which has stochastic uncertainties in the
state-space matrices, combined with time delays and nonlinear disturbance. First, the system error observer is proposed. Then, by
constructing proper Lyapunov-Krasovskii functional, we acquire sufficient conditions to guarantee the stability of the fault detection
observer for the discrete system, and observer gain is also derived by solving linearmatrix inequalities. Finally, a simulation example
shows that when a fault happens, the observer residual rises rapidly and fault can be quickly detected, which demonstrates the
effectiveness of the proposed method.

1. Introduction

Over the past decades, the fault detection (FD) problem has
received considerable research attention and a rich body of
literature has appeared on both the theoretical research and
practical construction [1–4]. Furthermore, in recent years,
the fault detection based on data-driven approach has even
started to appear [5, 6]. Meanwhile, the research and appli-
cation of fault detection in wireless network control system
has attracted more and more interest [7–12]. It is a highly
interdisciplinary and knowledge integrated as hot research
field, which combines sensor technology, embedded comput-
ing technology, wireless communication technology, network
technology, automatic control technology and distributed
information processing technology, and other areas of tech-
nological achievements. Distributed sensors are arranged in
the place of interest, which is convenient for people to gather
information, and measured value can be acquired through
multihop technology, until they are transmitted to the user’s
terminal. WNCS has very broad application prospects in the
military, industry, urban management, environmental moni-
toring, and many other important areas which have potential
practical value [13–17]. However, as system is growing highly
modular and complex, and system failure probability is also

growing. Faults can bring disastrous damage to the entire
control system. Therefore, fault detection study on WNCS is
essential.

Parameter uncertainty is a kind of factor that contributes
to the complexity of the system, and much effort has been
made to address this problem when designing observer
for state estimation or fault detection [18–29]. Reference
[25] applied sliding-window strategy to minimize the worst-
case quadratic cost function of estimated state variables,
which lead to convert estimation problem in the form of
a regularized least-squares one with uncertain data. Ref-
erence [26] addressed the problem of the system which
had unknown inputs and combined time varying delay in
their state variables. Linear matrix inequality formulation
was used to improve computational efficiency. In addition,
sufficient conditions were also derived in the reduced order
system. Reference [27] investigated the effect of parameter
uncertainties on genetic regulatory networks. The author
presented the convergence region to guarantee the stability of
uncertain genetic regulatory networks and derived all results
in the case that nonlinear item is unknown. In [28], parameter
uncertainties were assumed to be norm-bounded, based on
the Lyapunov-Krasovskii functional and stochastic stability
theory; stability criteria were obtained in terms of linear
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matrix inequalities. In [29], the parameter uncertainties were
allowed to be norm-bounded and be entered into the state
matrix; the addressed filtering problem could effectively be
solved in terms of linear matrix inequalities.

It is well known that time delays play an important role in
system stability analysis, which could make system unstable
or lead to system crash, so many scholars devoted to this
field and got fruitful result in recent years [30–36]. Reference
[34] dealt with the filtering problem and designed the mean-
square finite dimensional filter for incompletely measured
time delay system over linear observations. Reference [35]
investigated the feedback control problem in discrete time
stochastic systems involving sector nonlinearities and mixed
time delays.The distributed time delay in the system was first
defined and then a special matrix inequality was developed to
handle the distributed time delay within an algebraic frame-
work. Reference [36] designed a full order filter for stochastic
nonlinear system with time delay, sufficient conditions were
derived by using an algebraicmatrix inequality approach, and
filter design problem was tackled based on the generalized
inverse theory.

Motivated by the stated above, we aim to deal with the
fault detection problem for a class of WNCSs with stochas-
tic uncertainties and time delays. By constructing proper
Lyapunov-Krasovskii functional, we can get sufficient condi-
tions such that the system error observer is asymptotically
stable in mean-square sense and acquire gain of designed
observer. The main contributions of this paper are listed in
the two following aspects. (1) The multiple communication
delays and nonlinear disturbance are introduced for discrete-
time wireless networked control systems to reflect more real-
istic environment. (2) The measurement delay is considered
when signals are transmitted from plant to controller.

The rest of paper is organized as follows. In Section 2, the
problem of WNCS is formulated and some useful lemmas
are introduced. In Section 3, we present sufficient conditions
to make sure of the asymptotical stability of the system
error observer. Besides, the gain used in the observer can be
derived by solving linear matrix inequalities. An illustrated
example is given in Section 4 to demonstrate the effectiveness
of proposed method. Finally, we give our conclusions in
Section 5.
Notations.The notations in this paper are quite standard. R𝑛
andR𝑛×𝑚 denote the 𝑛-dimensional Euclidean space and the
set of 𝑛×𝑚 realmatrices; the superscript “𝑇” stands formatrix
transposition; 𝐼 is the matrix of appropriate dimension; ‖ ⋅ ‖

denotes the Euclidean norm of a vector and its induced norm
of matrix; the notation 𝑋 > 0 (resp., 𝑋 ≥ 0), for 𝑋 ∈ R𝑛×𝑛

means that the matrix 𝑋 is real symmetric positive definite
(resp., positive semidefinite). E{⋅} stands for the expectation
operator. What is more, we use (∗) to represent the entries
implied by symmetry. Matrices, if not explicitly specified, are
assumed to have compatible dimensions.

2. Problem Formulation

Considering a class of WNCSs as shown in Figure 1, we can
know that sensor nodes of wireless network control system
comprise a fixed topology in advance and gather information
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Figure 1: WNCS with stochastic uncertainties and time delays.

from plants and then transfer data to other nodes nearby.
However, due to limited communication range or signal
strength concern, existing signal channel may be vanished
and a new one may be established. This is the main reason
resulting in the uncertainties and time delays of WNCS.

The system can be described by the following discrete
stochastic systems:

𝑥 (𝑘 + 1) = (𝐴 + 𝛼
𝑘
Δ𝐴) 𝑥 (𝑘) + (𝐴

𝑑
+ 𝛽
𝑘
Δ𝐴
𝑑
)

×

𝑁

∑
𝑖=1

𝑥 (𝑘 − 𝑖) + 𝐸
𝑔
𝑔 (𝑥 (𝑘)) + 𝐸

𝑓
𝑓 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝐷𝑥 (𝑘 − 𝑑
𝑘
) ,

(1)

where 𝑥(𝑘) ∈ R𝑛 is the system state vector, 𝑦(𝑘) ∈ R𝑚 is
the measured output, Δ𝐴 and Δ𝐴

𝑑
are internal perturbation

arising from uncertain factors, 𝑓(𝑘) ∈ R𝑙 is the fault of
the system, 𝑔(⋅) ∈ R𝑝 is the nonlinear disturbance, and 𝐴,
𝐴
𝑑
, 𝐸
𝑔
, 𝐸
𝑓
, 𝐶, and 𝐷 are constant matrices with appropriate

dimensions.
To account for the phenomena of randomly occurring

uncertainties, we introduce the stochastic variables𝛼
𝑘
and𝛽
𝑘
,

which are Bernoulli distributed white sequences governed by
Prob {𝛼

𝑘
= 1} = 𝛼, Prob {𝛼

𝑘
= 0} = 1 − 𝛼,

Prob {𝛽
𝑘
= 1} = 𝛽, Prob {𝛽

𝑘
= 0} = 1 − 𝛽,

(2)

where 𝛼, 𝛽 ∈ [0, 1] are known constants.

Remark 1. For the uncertainties in system that occur in a
stochastic way and 𝛼

𝑘
obeys Bernoulli distribution with a

known probability, in this case, the system can be viewed as
a changing system as time goes on. In addition, time delay
item in system will also be variable as topology changes, we
also suppose that it obeys another Bernoulli distribution 𝛽

𝑘

independent of 𝛼
𝑘
, which reflects stochastic character of the

time delay in system model.

Remark 2. The random variables 𝛼
𝑘
and 𝛽

𝑘
that satisfy

E{𝛼
𝑘
} = 𝛼, E{𝛽

𝑘
} = 𝛽, and E{(𝛼

𝑘
− 𝛼)
2

} = 𝛼(1 − 𝛼),
E{(𝛽
𝑘
− 𝛽)
2

} = 𝛽(1 − 𝛽) are used to model the probability
distribution of the randomly occurring uncertainties.

For the system shown in (1), we make the following
assumption throughout the paper.

Assumption 3. Δ𝐴 and Δ𝐴
𝑑
are time-varying matrices with

appropriate dimensions and are defined as
[Δ𝐴 Δ𝐴

𝑑
] = 𝐺𝐷 (𝑘) [𝐻 𝐻

𝑑
] , (3)
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where 𝐺, 𝐻, and 𝐻
𝑑
are known constant matrix, 𝐷(𝑘) is

an unknown real time-varying matrix with Lebesgue mea-
surable elements satisfying 𝐷𝑇(𝑘)𝐷(𝑘) ≤ 𝐼.

Assumption 4. 𝑔(⋅) is the nonlinear disturbance which satis-
fies the following Lipschitz condition:

𝑔 (𝑥
1
) − 𝑔 (𝑥

2
)
 ≤

𝛾 (𝑥
1
− 𝑥
2
)
 (4)

with 𝛾 being a known constant matrix of appropriate dimen-
sion, and 𝑔(0) = 0.

Assumption 5. The variable 𝑑
𝑘
denotes the output time-

varying delay satisfying
0 ≤ 𝑑
𝑘
≤ 𝑑, (5)

where 𝑑 is constant positive integers representing the upper
bound on the communication delay.

In order to generate residual signal, we construct the
following state observer:
𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐴

𝑑

×

𝑁

∑
𝑖=1

𝑥 (𝑘 − 𝑖) + 𝐸
𝑔
𝑔 (𝑥 (𝑘)) + 𝐾 [𝑦 (𝑘) − 𝑦 (𝑘)] ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

(6)
where 𝐾 is the gain of observer to be determined.

Define the state error 𝑒
𝑥
(𝑘) and the system residual 𝑒

𝑦
(𝑘)

of the system can be written as
𝑒
𝑥
(𝑘) = 𝑥 (𝑘) − 𝑥 (𝑘) , 𝑒

𝑦
(𝑘) = 𝑦 (𝑘) − 𝑦 (𝑘) . (7)

If there is no fault, the system residual is close to zero. In
order to detect system fault, we adopt a residual evaluation
stage, including an evaluation function 𝐽(𝑘) and a threshold
𝐽th of the following form:

𝐽 (𝑘) =
{

{

{

𝑘=𝑠

∑

𝑘=𝑠−𝜁

𝑒
𝑇

𝑦
(𝑘) 𝑒
𝑦
(𝑘)

}

}

}

1/2

, 𝐽th = sup
𝑓(𝑘)=0

E {𝐽 (𝑘)} ,

(8)

where 𝜁 denotes the length of the finite evaluating time
horizon. Based on (8), the occurrence of faults can be detected
by comparing 𝐽(𝑘) with 𝐽th according to the following rule:

𝐽 (𝑘) > 𝐽th ⇒ with faults ⇒ alarm,

𝐽 (𝑘) ≤ 𝐽th ⇒ no faults.
(9)

In addition, from (1)–(6), we have the state error detection
dynamic governed by the following system:
𝑒
𝑥
(𝑘 + 1) = (𝐴 − 𝐾𝐶) 𝑒

𝑥
(𝑘) + (𝛼

𝑘
− 𝛼)Δ𝐴𝑥 (𝑘)

+ 𝐸
𝑔
𝑔 (𝑒
𝑥
(𝑘)) + 𝛼Δ𝐴𝑥 (𝑘)

+ (𝐴
𝑑
+ 𝛽Δ𝐴

𝑑
)

𝑁

∑
𝑖=1

𝑒
𝑥
(𝑘 − 𝑖) + (𝛽

𝑘
− 𝛽)Δ𝐴

𝑑

×

𝑁

∑
𝑖=1

𝑒
𝑥
(𝑘 − 𝑖) − 𝐾𝐷𝑥 (𝑘 − 𝑑

𝑘
) ,

(10)
where 𝑔(𝑒

𝑥
(𝑘)) = 𝑔(𝑥(𝑘)) − 𝑔(𝑥(𝑘)).

By augmenting 𝜂(𝑘) = [𝑥
𝑇(𝑘) 𝑒𝑇

𝑥
(𝑘)]
𝑇, we have the fol-

lowing augmented system:

𝜂 (𝑘 + 1) = (𝐴 + 𝛼Δ𝐴) 𝜂 (𝑘) + (𝛼
𝑘
− 𝛼)Δ𝐴𝜂 (𝑘)

+ 𝐸
𝑔
𝑔 (𝜂 (𝑘)) + (𝐴

𝑑
+ 𝛽Δ𝐴

𝑑
)

𝑁

∑
𝑖=1

𝜂 (𝑘 − 𝑖)

+ (𝛽
𝑘
− 𝛽)Δ𝐴

𝑑

𝑁

∑
𝑖=1

𝜂 (𝑘 − 𝑖) + 𝐾𝜂 (𝑘 − 𝑑
𝑘
) ,

(11)

where

𝐴 = [
𝐴 0

0 𝐴 − 𝐾𝐶
] , Δ𝐴 = [

Δ𝐴 0

Δ𝐴 0
] ,

𝐸
𝑔
= [

𝐸
𝑔

0

0 𝐸
𝑔

] , 𝐴
𝑑
= [

𝐴
𝑑

0

0 𝐴
𝑑

] ,

Δ𝐴
𝑑
= [

Δ𝐴
𝑑

0

0 Δ𝐴
𝑑

] , 𝐾 = [
0 0

−𝐾𝐷 0
] .

(12)

Remark 6. Because there is a big probability of the existence
of errors between theoretical and practical systems because
of unexpected factors in WSNs, in order to overcome this
phenomenon, it is natural to assume system uncertainties.
In addition, the system uncertainties may be the ran-
dom changes in environmental circumstances, for example,
network-induced random failures and repairs of components
and sudden environmental disturbances. Therefore, we con-
struct the system state observer (6) without the randomly
occurring uncertainties according to the original system (1).

Remark 7. Compared with [37], it is clear the system error
observer (11) has only one parameter which needs to be
decided. In addition, because the uncertainty item is sepa-
rated from the certainty item in (11), this makes it easier to
take theoretical derivation.

The purpose of our work is to design a fault detec-
tion observer for a class of WNCSs, which has stochastic
uncertainties and time delays, combined with nonlinear
disturbance. In the following, we will utilize the Lyapunov
stability theory to proceed the proof process in terms of LMI.

Besides, some useful and important lemmas that will be
used in deriving out results will be introduced as below.

Lemma 8 (Schur complement). Given constant matrices 𝑆
1
,

𝑆
2
, and 𝑆

3
where 𝑆

1
= 𝑆𝑇
1
and 0 < 𝑆

2
= 𝑆𝑇
2
, then 𝑆

1
+𝑆𝑇
3
𝑆−1
2

𝑆
3
<

0 if and only if

[
𝑆
1

𝑆𝑇
3

𝑆
3

−𝑆
2

] < 0 or [

[

−𝑆
2

𝑆
3

𝑆𝑇
3

𝑆
1

]

]

< 0. (13)

Lemma 9. For any 𝑥, 𝑦 ∈ 𝑅𝑛, 𝜇 > 0, the following inequality
holds:

2𝑥
𝑇

𝑦 ≤ 𝜇𝑥
𝑇

𝑥 +
1

𝜇
𝑦
𝑇

𝑦. (14)
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Lemma 10. Let 𝑌 = 𝑌𝑇, 𝑀, 𝑁, and 𝐷(𝑘) be real matrix of
proper dimensions, and 𝐷𝑇(𝑘)𝐷(𝑘) ≤ 𝐼; then inequality 𝑌 +

𝑀𝐷𝑁 + (𝑀𝐷𝑁)
𝑇

< 0 holds if there exists a constant 𝜀, which
makes the following inequality holds:

𝑌 + 𝜀𝑁𝑁
𝑇

+ 𝜀
−1

𝑀
𝑇

𝑀 < 0 (15)

or equivalently

[

[

𝑌 𝑀 𝜀𝑁𝑇

∗ −𝜀𝐼 0

∗ ∗ −𝜀𝐼

]

]

< 0. (16)

3. Main Results

In this part, we will construct Lyapunov-Krasovskii func-
tional and give sufficient condition such that the system error
model in (11) could be asymptotically stable in mean square.

Theorem 11. Consider the system (1) and suppose that the
estimator parameters 𝐾 are given. The system error model (11)
is said to be asymptotically stable in mean square, if there exists
positive definite matrices 𝑃 = diag{𝑃

11
, 𝑃
22
},𝑄 > 0, 𝑅 > 0, and

scalars 𝜆 > 0, 𝜀
1
> 0, 𝜀
2
> 0 satisfying the following inequality:

Γ =

[
[
[
[
[
[
[
[

[

Γ
11

0 0 Γ
14

0 0

∗ −𝑄 0 Γ
24

0 0

∗ ∗ −
2

(1 + 𝑁)𝑁
𝑅 Γ
34

0 0

∗ ∗ ∗ Γ
44

Γ
45

0

∗ ∗ ∗ ∗ −𝜀
1
𝐼 Γ
56

∗ ∗ ∗ ∗ ∗ −𝜀
2
𝐼

]
]
]
]
]
]
]
]

]

< 0, (17)

where

Γ
11

= 4𝜆𝑀
𝑇

𝑀 − 𝑃 + (1 + 2𝑑)𝑄

+ 𝑁𝑅 + 𝜀
1
𝐻
𝑇

𝐻 + 𝜀
2
𝐻
𝑇

𝑑
𝐻
𝑑
,

Γ
14

= [2𝐴
𝑇

𝑃 0 0 0 0] ,

Γ
24

= [0 0 2𝐾
𝑇

𝑃 0 0] ,

Γ
34

= [0 0 0 2𝐴
𝑇

𝑑
𝑃 0] ,

Γ
44

= diag {−𝑃, −𝑃, −𝑃, −𝑃, −𝑃} ,

Γ
𝑇

45
= [𝛼𝑃

𝑇

𝐺 𝛼𝑃
𝑇

𝐺 0 0 0] ,

Γ
𝑇

56
= [0 0 𝛽𝑃

𝑇

𝐺 𝛽𝑃
𝑇

𝐺 0] ,

𝛼 = √𝛼 (1 − 𝛼), 𝛽 = √𝛽 (1 − 𝛽),

𝜆 = 𝜆max (𝐸
𝑇

𝑔
𝑃𝐸
𝑔
) , 𝑀 = diag {𝛾, 𝛾} ,

𝐻 = [𝐻 0] , 𝐻
𝑑
= [𝐻
𝑑

0] , 𝑃 = [
𝑃
11

𝑃
22

] .

(18)

Proof. For the stability analysis of the system (11), construct
the following Lyapunov-Krasovskii functional:

𝑉 {𝜂 (𝑘)} = 𝑉
1
{𝜂 (𝑘)} + 𝑉

2
{𝜂 (𝑘)} + 𝑉

3
{𝜂 (𝑘)} , (19)

where
𝑉
1
{𝜂 (𝑘)} = 𝜂

𝑇

(𝑘) 𝑃𝜂 (𝑘) ,

𝑉
2
{𝜂 (𝑘)} =

𝑘−1

∑
𝑙=𝑘−𝑑𝑘

𝜂
𝑇

𝑙
𝑄𝜂
𝑙
+

−𝑑

∑
𝑗=−𝑑

𝑘−1

∑
𝑙=𝑘+𝑗

𝜂
𝑇

𝑙
𝑄𝜂
𝑙
,

𝑉
3
{𝜂 (𝑘)} =

𝑁

∑
𝑖=1

𝑘−1

∑
𝑙=𝑘−𝑖

𝜂
𝑇

𝑙
𝑅𝜂
𝑙
.

(20)

By calculating the difference of 𝑉{𝜂(𝑘)} along error
dynamics (11), we have

E {Δ𝑉
1
}

= E {𝜂
𝑇

(𝑘 + 1) 𝑃𝜂 (𝑘 + 1) − 𝜂
𝑇

(𝑘) 𝑃𝜂 (𝑘)}

= 𝜂
𝑇

(𝑘) (𝐴 + 𝛼Δ𝐴)
𝑇

𝑃 (𝐴 + 𝛼Δ𝐴) 𝜂 (𝑘)

+ 2𝜂
𝑇

(𝑘) (𝐴 + 𝛼Δ𝐴)
𝑇

𝑃 (𝐴
𝑑
+ 𝛽Δ𝐴

𝑑
)

𝑁

∑
𝑖=1

𝜂 (𝑘 − 𝑖)

+ 2𝜂
𝑇

(𝑘) (𝐴 + 𝛼Δ𝐴)
𝑇

𝑃𝐸
𝑔
𝑔 (𝜂 (𝑘))

+ 2𝜂
𝑇

(𝑘) (𝐴 + 𝛼Δ𝐴)
𝑇

𝑃𝐾𝜂 (𝑘 − 𝑑
𝑘
)

+ 𝛼 (1 − 𝛼) 𝜂
𝑇

(𝑘) Δ𝐴
𝑇

𝑃Δ𝐴𝜂 (𝑘)

+

𝑁

∑
𝑖=1

𝜂
𝑇

(𝑘 − 𝑖) (𝐴
𝑑
+ 𝛽Δ𝐴

𝑑
)
𝑇

𝑃 (𝐴
𝑑
+ 𝛽Δ𝐴

𝑑
)

×

𝑁

∑
𝑖=1

𝜂
𝑇

(𝑘 − 𝑖)

+ 2

𝑁

∑
𝑖=1

𝜂
𝑇

(𝑘 − 𝑖) (𝐴
𝑑
+ 𝛽Δ𝐴

𝑑
)
𝑇

𝑃𝐸
𝑔
𝑔 (𝜂 (𝑘))

+ 2

𝑁

∑
𝑖=1

𝜂
𝑇

(𝑘 − 𝑖) (𝐴
𝑑
+ 𝛽Δ𝐴

𝑑
)
𝑇

𝑃𝐾𝜂 (𝑘 − 𝑑
𝑘
)

+ 𝛽 (1 − 𝛽)

𝑁

∑
𝑖=1

𝜂
𝑇

(𝑘 − 𝑖) Δ𝐴
𝑇

𝑑
𝑃Δ𝐴
𝑑

×

𝑁

∑
𝑖=1

𝜂 (𝑘 − 𝑖) + 𝑔
𝑇

(𝜂 (𝑘)) 𝐸
𝑇

𝑔
𝑃𝐸
𝑔
𝑔 (𝜂 (𝑘))

+ 2𝑔
𝑇

(𝜂 (𝑘)) 𝐸
𝑇

𝑔
𝑃𝐾𝜂 (𝑘 − 𝑑

𝑘
)

+ 𝜂
𝑇

(𝑘 − 𝑑
𝑘
)𝐾
𝑇

𝑃𝐾𝜂 (𝑘 − 𝑑
𝑘
) − 𝜂
𝑇

(𝑘) 𝑃𝜂 (𝑘) .

(21)
According to Lemma 9, we have

2𝜂
𝑇

(𝑘) (𝐴 + 𝛼Δ𝐴)
𝑇

𝑃 (𝐴
𝑑
+ 𝛽Δ𝐴

𝑑
)

𝑁

∑
𝑖=1

𝜂 (𝑘 − 𝑖)

≤ 𝜂
𝑇

(𝑘) (𝐴 + 𝛼Δ𝐴)
𝑇

𝑃 (𝐴 + 𝛼Δ𝐴) 𝜂 (𝑘)

+

𝑁

∑
𝑖=1

𝜂
𝑇

(𝑘 − 𝑖) (𝐴
𝑑
+ 𝛽Δ𝐴

𝑑
)
𝑇

𝑃 (𝐴
𝑑
+ 𝛽Δ𝐴

𝑑
)

×

𝑁

∑
𝑖=1

𝜂 (𝑘 − 𝑖) ,
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2𝜂
𝑇

(𝑘) (𝐴 + 𝛼Δ𝐴)
𝑇

𝑃𝐸
𝑔
𝑔 (𝜂 (𝑘))

≤ 𝜂
𝑇

(𝑘) (𝐴 + 𝛼Δ𝐴)
𝑇

𝑃 (𝐴 + 𝛼Δ𝐴) 𝜂 (𝑘)

+ 𝑔
𝑇

(𝜂 (𝑘)) 𝐸
𝑇

𝑔
𝑃𝐸
𝑔
𝑔 (𝜂 (𝑘)) ,

2𝜂
𝑇

(𝑘) (𝐴 + 𝛼Δ𝐴)
𝑇

𝑃𝐾𝜂 (𝑘 − 𝑑
𝑘
)

≤ 𝜂
𝑇

(𝑘) (𝐴 + 𝛼Δ𝐴)
𝑇

𝑃 (𝐴 + 𝛼Δ𝐴) 𝜂 (𝑘)

+ 𝜂
𝑇

(𝑘 − 𝑑
𝑘
)𝐾
𝑇

𝑃𝐾𝜂 (𝑘 − 𝑑
𝑘
) ,

2

𝑁

∑
𝑖=1

𝜂
𝑇

(𝑘 − 𝑖) (𝐴
𝑑
+ 𝛽Δ𝐴

𝑑
)
𝑇

𝑃𝐸
𝑔
𝑔 (𝜂 (𝑘))

≤

𝑁

∑
𝑖=1

𝜂
𝑇

(𝑘 − 𝑖) (𝐴
𝑑
+ 𝛽Δ𝐴

𝑑
)
𝑇

𝑃 (𝐴
𝑑
+ 𝛽Δ𝐴

𝑑
)

×

𝑁

∑
𝑖=1

𝜂 (𝑘 − 𝑖)

+ 𝑔
𝑇

(𝜂 (𝑘)) 𝐸
𝑇

𝑔
𝑃𝐸
𝑔
𝑔 (𝜂 (𝑘)) ,

2

𝑁

∑
𝑖=1

𝜂
𝑇

(𝑘 − 𝑖) (𝐴
𝑑
+ 𝛽Δ𝐴

𝑑
)
𝑇

𝑃𝐾𝜂 (𝑘 − 𝑑
𝑘
)

≤

𝑁

∑
𝑖=1

𝜂
𝑇

(𝑘 − 𝑖) (𝐴
𝑑
+ 𝛽Δ𝐴

𝑑
)
𝑇

𝑃 (𝐴
𝑑
+ 𝛽Δ𝐴

𝑑
)

×

𝑁

∑
𝑖=1

𝜂 (𝑘 − 𝑖)

+ 𝜂
𝑇

(𝑘 − 𝑑
𝑘
)𝐾
𝑇

𝑃𝐾𝜂 (𝑘 − 𝑑
𝑘
) ,

2𝑔
𝑇

(𝜂 (𝑘)) 𝐸
𝑇

𝑔
𝑃𝐾𝜂 (𝑘 − 𝑑

𝑘
)

≤ 𝑔
𝑇

(𝜂 (𝑘)) 𝐸
𝑇

𝑔
𝑃𝐸
𝑔
𝑔 (𝜂 (𝑘))

+ 𝜂
𝑇

(𝑘 − 𝑑
𝑘
)𝐾
𝑇

𝑃𝐾𝜂 (𝑘 − 𝑑
𝑘
) .

(22)

Besides, according to Assumption 4, we have

𝑔
𝑇

(𝜂 (𝑘)) 𝐸
𝑇

𝑔
𝑃𝐸
𝑔
𝑔 (𝜂 (𝑘))

≤ 𝜆max (𝐸
𝑇

𝑔
𝑃𝐸
𝑔
) 𝑔
𝑇

(𝜂 (𝑘)) 𝑔 (𝜂 (𝑘))

≤ 𝜆𝜂
𝑇

(𝑘)𝑀
𝑇

𝑀𝜂 (𝑘) ,

E {Δ𝑉
2
}

=

𝑘

∑
𝑙=𝑘+1−𝑑𝑘+1

𝜂(𝑙)
𝑇

𝑄𝜂 (𝑙) −

𝑘−1

∑
𝑙=𝑘−𝑑𝑘

𝜂(𝑙)
𝑇

𝑄𝜂 (𝑙)

+

𝑑

∑
𝑗=−𝑑

(

𝑘

∑
𝑙=𝑘+1+𝑗

𝜂(𝑙)
𝑇

𝑄𝜂 (𝑙) −

𝑘−1

∑
𝑙=𝑘+𝑗

𝜂(𝑙)
𝑇

𝑄𝜂 (𝑙))

= 𝜂(𝑘)
𝑇

𝑄𝜂 (𝑘) +

𝑘−1

∑
𝑙=𝑘+𝑑+1

𝜂(𝑘)
𝑇

𝑄𝜂 (𝑘)

+

𝑘+𝑑

∑
𝑙=𝑘+1−𝑑𝑘+1

𝜂(𝑙)
𝑇

𝑄𝜂 (𝑙) − 𝜂(𝑘 − 𝑑
𝑘
)
𝑇

𝑄𝜂 (𝑘 − 𝑑
𝑘
)

−

𝑘−1

∑
𝑙=𝑘+1−𝑑𝑘

𝜂(𝑙)
𝑇

𝑄𝜂 (𝑙)

+

𝑑

∑
𝑗=−𝑑

(

𝑘−1

∑
𝑙=𝑘+1+𝑗

𝜂(𝑙)
𝑇

𝑄𝜂 (𝑙) −

𝑘−1

∑
𝑙=𝑘+𝑗

𝜂(𝑙)
𝑇

𝑄𝜂 (𝑙)

+ 𝜂(𝑙)
𝑇

𝑄𝜂 (𝑙))

= (2𝑑 + 1) 𝜂(𝑘)
𝑇

𝑄𝜂 (𝑘) − 𝜂(𝑘 − 𝑑
𝑘
)
𝑇

𝑄𝜂 (𝑘 − 𝑑
𝑘
)

+

𝑘−1

∑
𝑙=𝑘+𝑑+1

𝜂(𝑙)
𝑇

𝑄𝜂 (𝑙)

+

𝑘+𝑑

∑
𝑙=𝑘+1−𝑑𝑘+1

𝜂(𝑙)
𝑇

𝑄𝜂 (𝑙) −

𝑘−1

∑
𝑙=𝑘+1−𝑑𝑘

𝜂(𝑙)
𝑇

𝑄𝜂 (𝑙)

−

𝑘+𝑑

∑
𝑙=𝑘−𝑑

𝜂(𝑙)
𝑇

𝑄𝜂 (𝑙)

≤ (2𝑑 + 1) 𝜂(𝑘)
𝑇

𝑄𝜂 (𝑘) − 𝜂(𝑘 − 𝑑
𝑘
)
𝑇

𝑄𝜂 (𝑘 − 𝑑
𝑘
) ,

E {Δ𝑉
3
}

=

𝑁

∑
𝑖=1

(

𝑘

∑
𝑙=𝑘+1−𝑖

𝜂(𝑙)
𝑇

𝑅𝜂 (𝑙) −

𝑘−1

∑
𝑙=𝑘−𝑖

𝜂(𝑙)
𝑇

𝑅𝜂 (𝑙))

=

𝑁

∑
𝑖=1

(𝜂(𝑘)
𝑇

𝑅𝜂 (𝑘) − 𝜂(𝑘 − 𝑖)
𝑇

𝑅𝜂 (𝑘 − 𝑖))

≤ 𝑁𝜂(𝑘)
𝑇

𝑅𝜂 (𝑘)

−
2

(1 + 𝑁)𝑁
(

𝑁

∑
𝑖=1

𝜂 (𝑘 − 𝑖))

𝑇

𝑅(

𝑁

∑
𝑖=1

𝜂 (𝑘 − 𝑖)) .

(23)

The combination of (19)–(23) results in

E {Δ𝑉} = E {Δ𝑉
1
+ Δ𝑉
2
+ Δ𝑉
3
}

= 𝑍
𝑇

(𝑘)𝑊𝑍 (𝑘) ,
(24)

where

𝑍 (𝑘) = [𝜂𝑇 (𝑘) 𝜂𝑇 (𝑘 − 𝑑
𝑘
)

𝑁

∑
𝑖=1

𝜂𝑇 (𝑘 − 𝑖)]

𝑇

,

𝑊 = [

[

𝑊
11

0 0

0 𝑊
22

0

0 0 𝑊
33

]

]

,

𝑊
11

= 4(𝐴 + 𝛼Δ𝐴)
𝑇

𝑃 (𝐴 + 𝛼Δ𝐴) + 𝛼 (1 − 𝛼) Δ𝐴
𝑇

𝑃Δ𝐴

+ 4𝜆𝑀
𝑇

𝑀 − 𝑃 + (1 + 2𝑑)𝑄 + 𝑁𝑅,
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𝑊
22

= 4𝐾
𝑇

𝑃𝐾 − 𝑄,

𝑊
33

= 4(𝐴
𝑑
+ 𝛽Δ𝐴

𝑑
)
𝑇

𝑃 (𝐴
𝑑
+ 𝛽Δ𝐴

𝑑
)

+ 𝛽 (1 − 𝛽) Δ𝐴
𝑇

𝑑
𝑃Δ𝐴
𝑑
−

2

(1 + 𝑁)𝑁
𝑅.

(25)

According to Lyapunov stability theory, system dynamic
(11) the stable means

𝑊 < 0. (26)

According to Lemma 8, (26) is equivalent to

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Γ̃
11

0 0 2(𝐴 + 𝛼Δ𝐴)
𝑇

𝛼Δ𝐴
𝑇

0 0 0

∗ −𝑄 0 0 0 2𝐾
𝑇

0 0

∗ ∗ −
2

(1 + 𝑁)𝑁
𝑅 0 0 0 2(𝐴

𝑑
+ 𝛽Δ𝐴

𝑑
)
𝑇

𝛽Δ𝐴
𝑇

𝑑

∗ ∗ ∗ −𝑃−1 0 0 0 0

∗ ∗ ∗ ∗ −𝑃−1 0 0 0

∗ ∗ ∗ ∗ ∗ −𝑃−1 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑃−1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑃−1

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (27)

where

Γ̃
11

= 4𝜆𝑀
𝑇

𝑀 − 𝑃 + (1 + 2𝑑)𝑄 + 𝑁𝑅. (28)

Multiply diag{𝐼, 𝐼, 𝐼, 𝑃, 𝑃, 𝑃, 𝑃, 𝑃} on both ends of the matrix;
then

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Γ̃
11

0 0 2(𝐴 + 𝛼Δ𝐴)
𝑇

𝑃 𝛼Δ𝐴
𝑇

𝑃 0 0 0

∗ −𝑄 0 0 0 2𝐾
𝑇

𝑃 0 0

∗ ∗ −
2

(1 + 𝑁)𝑁
𝑅 0 0 0 2(𝐴

𝑑
+ 𝛽Δ𝐴

𝑑
)
𝑇

𝑃 𝛽Δ𝐴
𝑇

𝑑
𝑃

∗ ∗ ∗ −𝑃 0 0 0 0

∗ ∗ ∗ ∗ −𝑃 0 0 0

∗ ∗ ∗ ∗ ∗ −𝑃 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑃 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑃

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0. (29)

Inequality (29) can be rewritten into the following form:

𝑌 + 𝑀𝐷𝑁 + (𝑀𝐷𝑁)
𝑇

< 0, (30)

where

𝑌 =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

Γ̃
11

0 0 2𝐴
𝑇

𝑃 0 0 0 0

∗ −𝑄 0 0 0 2𝐾
𝑇

𝑃 0 0

∗ ∗ −
2

(1 + 𝑁)𝑁
𝑅 0 0 0 2(𝐴

𝑑
+ 𝛽Δ𝐴

𝑑
)
𝑇

𝑃 𝛽Δ𝐴
𝑇

𝑑
𝑃

∗ ∗ ∗ −𝑃 0 0 0 0

∗ ∗ ∗ ∗ −𝑃 0 0 0

∗ ∗ ∗ ∗ ∗ −𝑃 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑃 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑃

]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

𝑀
𝑇

= [0 0 0 𝛼𝐺𝑇 𝑃 𝛼𝐺𝑇 𝑃 0 0 0] ,

𝑁 = [𝐻 0 0 0 0 0 0 0] .

(31)



Abstract and Applied Analysis 7

According to Lemma 10, inequality (30) is equivalent to

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Γ̃
11

+ 𝜀
1
𝐻
𝑇

𝐻 0 0 2𝐴
𝑇

𝑃 0 0 0 0 0

∗ −𝑄 0 0 0 2𝐾
𝑇

𝑃 0 0 0

∗ ∗ −
2

(1 + 𝑁)𝑁
𝑅 0 0 0 2(𝐴

𝑑
+ 𝛽Δ𝐴

𝑑
)
𝑇

𝑃 𝛽Δ𝐴
𝑇

𝑑
𝑃 0

∗ ∗ ∗ −𝑃 0 0 0 0 𝛼𝐺𝑇 𝑃

∗ ∗ ∗ ∗ −𝑃 0 0 0 𝛼𝐺𝑇 𝑃

∗ ∗ ∗ ∗ ∗ −𝑃 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑃 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑃 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
1
𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0. (32)

Then applying Lemma 10 again, we can acquire inequality
(17), which means 𝑊 < 0, and the proof of Theorem 11 is
complete.

Notice that the inequality (17) in Theorem 11 demon-
strates the stability of the dynamic model (11); however, the
gain of fault detection observer cannot be acquired; we will
try to find an accessible way to solve the problem.

Theorem 12. The system error model (11) is said to be
asymptotically stable in mean square, if there exists positive
definite matrices 𝑃 = diag{𝑃

11
, 𝑃
22
},𝑄 > 0,𝑅 > 0, and scalars

𝜆 > 0, 𝜀
1
> 0, 𝜀
2
> 0 satisfying the following inequality:

[
[
[
[
[
[
[
[

[

Γ
11

0 0 Ω
1

0 0

∗ −𝑄 0 Ω
2

0 0

∗ ∗ −
2

(1 + 𝑁)𝑁
𝑅 Γ
34

0 0

∗ ∗ ∗ Γ
44

Γ
45

0

∗ ∗ ∗ ∗ −𝜀
1
𝐼 Γ
56

∗ ∗ ∗ ∗ ∗ −𝜀
2
𝐼

]
]
]
]
]
]
]
]

]

< 0, (33)

where

Ω
1
= [Ω
11

0 0 0 0] ,

Ω
2
= [0 0 Ω

23
0 0] ,

Ω
11

= [
2𝐴𝑇𝑃
11

0

0 2𝐴𝑇𝑃
22

− 2𝐶𝑇𝑋𝑇
] ,

Ω
23

= [
0 −2𝐷𝑇𝑋𝑇

0 0
] ,

(34)

and Γ
11
, Γ
34
, Γ
44
, Γ
45
, and Γ

56
are defined in Theorem 11; in this

case, the gain of fault detection observer is

𝐾 = 𝑃
−1

22
𝑋. (35)

Proof. We set 𝑃
22
𝐾 = 𝑋, so 𝐾 = 𝑃−1

22
𝑋, and substitute it

into Theorem 11; we can get the result easily, and the proof
of Theorem 12 is complete.

Remark 13. The main results in Theorems 11–12 can be
applied to a wide class of wireless network control systems

that involve randomly occurring uncertainties and time
delays that result typically from networked environments.
The LMI conditions are established to ensure the existence
of the desired estimator gain, and the explicit expression of
such estimator gain is characterized in terms of the solution
to a LMI that can be effectively solved.

4. Numerical Simulations

In this section, we present an illustrative example to demon-
strate the effectiveness of the proposed theorems. Consider
the system model (1), where

𝐴 = [
0.2122 0.2060

0.1936 0.1890
] , 𝐴

𝑑
= [

−0.1195 0.0051

−0.0098 0.0320
] ,

𝐷 (𝑘) = [
0.6 sin (0.4𝑘) 0

0 0.6 sin (0.4𝑘)
] ,

𝐺 = [
0.0515 0.1030

0 0.1185
] , 𝐻 = [

0.3708 0.2678

0.2163 −0.3605
] ,

𝐻
𝑑
= [

0.0947 0.0577

0.0499 −0.0824
] ,

𝐸
𝑔
= [

−0.0108

0.0618
] , 𝐸

𝑓
= [

0.1391

0.0978
] ,

𝐶 = [
0.9888 0.3793

0.4496 0.2637
] , 𝐷 = [

0.1 −0.15

0.17 −0.11
] .

(36)

In addition, we suppose the nonlinear function 𝑔(𝑥(𝑘)) =

[0.25 sin𝑥
1
(𝑘) 0.1𝑥

2
(𝑘)]
𝑇, so we have 𝛾 = diag{0.25, 0.1}.

Besides, we set 𝑁 = 2, 𝛼 = 0.1, 𝛽 = 0.15, and 𝑑(𝑘) =

1 + sin(𝜋𝑘/2).
Parameters can be acquired based onTheorems 11 and 12;

we have

𝑃 =
[
[
[

[

101.2398 −2.8940 0 0

−2.8940 107.1766 0 0

0 0 143.0241 −0.9776

0 0 −0.9776 129.4239

]
]
]

]

,
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Figure 2: System residual signal with fault.

𝑄 =
[
[
[

[

1.8344 0.0332 23.0058 0.2020

0.0332 1.7967 0.2020 23.6888

23.0058 0.2020 186.6175 −0.4714

0.2020 23.6888 −0.4714 179.8521

]
]
]

]

,

𝑅 =
[
[
[

[

8.8777 0.0172 59.3935 −0.0474

0.0172 9.1231 −0.0474 52.0660

59.3935 −0.0474 −475.37 −119.2

−0.0474 52.0660 −69.1 −439.88

]
]
]

]

.

(37)

So we have

𝐾 = [
12.2533 −76.2536

12.5628 −75.1691
] . (38)

When 𝑘 = 50, we make 𝑓(𝑘) = 10. Then the residual signal
is shown in Figure 2. In addition, the threshold is selected as
𝐽th = sup

𝑓(𝑘)=0
E{∑
200

𝑘=0
𝑟𝑇(𝑘)𝑟(𝑘)}

1/2

, and accordingly, it can
be obtained that 𝐽th = 5.9642 in Figure 3. It can be clearly
observed that the fault can be detected in 10 time steps after its
occurrence and the designed observer can detect the system
fault effectively when it occurs.

5. Conclusion

In this paper, we have considered the fault detection problem
for a class of wireless networked control systems with ran-
domly occurring uncertainties and time delays. A fault detec-
tion observer has been designed such that the fault detection
dynamics is exponentially stable in the mean square and, at
the same time, the error between the residual signal and the
fault signal is made as small as possible. Sufficient conditions
have been established via intensive stochastic analysis for
the existence of the desired fault detection observer, and
then the explicit expression of the desired observer gain
has been derived by means of the feasibility of certain
matrix inequality. Finally, simulation results demonstrate the
effectiveness of proposed method.
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Figure 3: Fault detection with stochastic uncertainties and time
delays.
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