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Abstract. A plate model describing the statics and dynamics of a suspension

bridge is suggested. A partially hinged plate subject to nonlinear restoring
hangers is considered. The whole theory from linear problems, through non-

linear stationary equations, ending with the full hyperbolic evolution equation

is studied. This paper aims to be the starting point for more refined models.

1. Introduction. Due to the videos available on the web [34], the Tacoma Narrows
Bridge collapse is certainly the most impressive failure of the history of bridges.
But, unfortunately, it is not an isolated event, many other bridges collapsed in
the past, see [3, 15]. According to [14], around 400 recorded bridges failed for
several different reasons and the ones who failed after year 2000 are more than 70.
Strong aerodynamic instability is manifested, in particular, in suspension bridges
which usually have fairly long spans. Hence reliable mathematical models appear
necessary for a precise description of the instability and of the structural behavior
of suspension bridges under the action of dead and live loads.

On one hand, realistic models appear too complicated to give helpful hints when
making plans. On the other hand, simplified models do not describe with sufficient
accuracy the complex behavior of actual bridges. We refer to [10] for a survey of
some existing models.

A one-dimensional simply supported beam suspended by hangers was suggested
as a model for suspension bridges in [19, 27, 28]. It is assumed that when the
hangers are stretched there is a restoring force which is proportional to the amount
of stretching but when the beam moves in the opposite direction, the hangers slacken
and there is no restoring force exerted on it. If u = u(x, t) denotes the vertical
displacement of the beam (of length L) in the downward direction, the following
fourth order nonlinear equation is derived

utt + uxxxx + γu+ = f(x, t) , x ∈ (0, L) , t > 0 , (1)
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where u+ = max{u, 0}, γu+ represents the force due to the hangers, and f repre-
sents the forcing term acting on the bridge, including its own weight per unit length.
For time periodic f , McKenna-Walter [27] prove the existence of multiple periodic
solutions of (1). Moreover, in [28] they normalize (1) by taking γ = 1 and f ≡ 1:
then by seeking traveling waves u(x, t) = 1 + w(x− ct) they end up with the ODE

w′′′′(s) + kw′′(s) + ψ(w(s)) = 0 (s ∈ R, k = c2) ,

where

ψ(w) = [w + 1]+ − 1 , (2)

a term which takes into account both the restoring force due to the hangers and
external forces including gravity.

Soon after the Tacoma Narrows Bridge collapse [32, 34], three engineers were
assigned to investigate and report to the Public Works Administration. The Report
[4] considers ...the crucial event in the collapse to be the sudden change from a
vertical to a torsional mode of oscillation, see [32, p.63]. But if one views the bridge
as a beam as in (1), there is no way to highlight torsional oscillations. A model
suggested by McKenna [25] considers the cross section of the bridge as a rod, free
to rotate about its center which behaves as a forced oscillator subject to the forces
exerted by the two lateral hangers. After normalization, the force is taken again
as in (2). In order to smoothen the force by maintaining the asymptotically linear
behavior at 0, McKenna-Tuama [26] also consider ψ(w) = c(eaw−1) for some a, c >
0. Then, after adding some damping and forcing, [25, 26] were able to numerically
replicate in a cross section the sudden transition from standard and expected vertical
oscillations to destructive and unexpected torsional oscillations. More recently,
Arioli-Gazzola [5] reconsidered this model and studied its isolated version (energy
conservation) with nonlinear restoring forces due to the hangers: they were able
to display a sudden appearance of torsional oscillations. This phenomenon was
explained using the stability of a fixed point of a suitable Poincaré map. The full
bridge was then modeled in [5] by considering a finite number of parallel rods linked
to the two nearest neighbors rods with attractive linear forces representing resistance
to longitudinal and torsional stretching; this discretization of a suspension bridge
is justified by the positive distance between hangers. The sudden appearance of
torsional oscillations was highlighted also within the multiple rods model.

The nonlinear behavior of suspension bridges is by now well established, see e.g.
[7, 10, 17, 31]. After replacing the specific nonlinear term ψ(w) in (2) by a fairly
general superlinear term ψ(w), one sees that traveling waves of (1) display self-
excited oscillations, see [6, 12, 13]: the solution may blow up in finite time with
wide oscillations. So, a reliable model for suspension bridges should be nonlinear
and it should have enough degrees of freedom to display torsional oscillations. In this
respect, Lazer-McKenna [20, Problem 11] suggest to study the following equation

∆2u+ c2∆u+ ψ(u) = 0 in Rn (3)

where ψ is “like” ψ in (2). The purpose of the present paper is to set up the full
theory for (3) in a bounded domain (representing the roadway) and to study the
corresponding evolution problem similar to (1).

A long narrow rectangular thin plate hinged at two opposite edges and free on
the remaining two edges well describes the roadway of a suspension bridge which, at
the short edges, is supported by the ground. Let L denote its length and 2` denote
its width; a realistic assumption is that 2` ∼= L

100 . For simplicity, we take L = π so
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that, in the sequel,

Ω = (0, π)× (−`, `) ⊂ R2 .

Our purpose is to provide a reliable model and to study the corresponding Euler-
Lagrange equations. Since several energies are involved, we reach this task in several
steps. We first recall the derivation of the bending elastic energy of a deflected plate,
according to the Kirchhoff-Love [16, 22] theory. Then we consider the action of both
dead and live loads described by some forcing term f ; the equilibrium position of
the plate u is then the minimum of a convex energy functional and is the unique
solution of

∆2u = f(x, y) in Ω (4)

under suitable boundary conditions. We set up the correct variational formulation
of (4) (Theorem 3.1) and when f depends only on the longitude, f = f(x), we are
able to determine the explicit form of u by separating variables (Theorem 3.2). In
order to analyze the oscillating modes of the bridge, we also consider the eigenvalue
problem

∆2w = λw in Ω (5)

where λ is the eigenvalue and w = w(x, y) is the eigenfunction. We characterize
in detail the spectrum and the corresponding eigenfunctions (Theorem 3.4). The
eigenvalues exhibit some weakness on the long edges and manifest a tendency to
display a torsional component, see Figure 3.

Then we introduce into the model the elastic restoring force due to the hangers
which is confined in a proper subset ω of Ω such as two small rectangles close to
the horizontal edges, see Figure 1. The restoring force h = h(x, y, u) is superlinear

Figure 1. The plate Ω and its subset ω (dark grey) where the
hangers act.

with respect to u, which yields a superquadratic potential energy
∫
ω
H(x, y, u). A

particular form of h is suggested to describe the precise behavior of hangers, see
(15) below. The equilibrium position is then given by the unique solution of

∆2u+ h(x, y, u) = f(x, y) in Ω . (6)

Finally, if the force f is variable in time, so is the the equilibrium position and
also the kinetic energy of the structure comes into the energy balance. This leads
to the fourth order wave equation

utt + ∆2u+ h(x, y, u) = f(x, y, t) in Ω× (0, T ) (7)

where (0, T ) is an interval of time. Well-posedness of an initial-boundary-value-
problem is shown in Theorem 3.6. Our future target is to reproduce within our plate
model the same oscillating behavior visible at the Tacoma Bridge [34]. This paper
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should be considered as a first necessary step in order to reach more challenging
results.

This paper is organized as follows. In Section 2 we describe the physical model and
we derive the PDE’s which have to be solved. In Section 3 we state our main results:
existence, uniqueness, and qualitative behavior of the solutions of the PDE’s. The
remaining sections of the paper are devoted to the proofs of these results.

2. The physical model.

2.1. A linear model for a partially hinged plate. The bending energy of the
plate Ω involves curvatures of the surface. Let κ1 and κ2 denote the principal cur-
vatures of the graph of a smooth function u representing the vertical displacement
of the plate in the downward direction, then a simple model for the bending energy
of the deformed plate Ω is

EB(u) =
E d3

12(1− σ2)

∫
Ω

(
κ2

1

2
+
κ2

2

2
+ σκ1κ2

)
dxdy (8)

where d denotes the thickness of the plate, σ the Poisson ratio defined by σ = λ
2(λ+µ)

and E the Young modulus defined by E = 2µ(1 + σ), with the so-called Lamé
constants λ, µ that depend on the material. For physical reasons it holds that
µ > 0 and usually λ > 0 so that

0 < σ <
1

2
. (9)

Moreover, it always holds true that σ > −1 although some exotic materials have a
negative Poisson ratio, see [18]. For metals the value of σ lies around 0.3, see [22,
p.105], while for concrete 0.1 < σ < 0.2.

For small deformations the terms in (8) are taken as approximations being purely
quadratic with respect to the second order derivatives of u. More precisely, for small
deformations u, one has

(κ1 + κ2)2 ≈ (∆u)2 , κ1κ2 ≈ det(D2u) = uxxuyy − u2
xy ,

and therefore

κ2
1

2
+
κ2

2

2
+ σκ1κ2 ≈

1

2
(∆u)2 + (σ − 1) det(D2u).

Then, if f denotes the external vertical load (both dead and live) acting on the
plate Ω and if u is the corresponding (small) deflection of the plate in the vertical
direction, by (8) we have that the total energy ET of the plate becomes

ET (u) = EB(u)−
∫

Ω

fu dxdy (10)

=
E d3

12(1− σ2)

∫
Ω

(
1

2
(∆u)

2
+ (σ − 1) det(D2u)

)
dxdy −

∫
Ω

fu dxdy.

By replacing the load f with Ed3

12(1−σ2)f and up to a constant multiplier, the energy

ET may be written as

ET (u) =

∫
Ω

(
1

2
(∆u)2 + (1− σ)(u2

xy − uxxuyy)− fu
)
dxdy . (11)

Note that for σ > −1 the quadratic part of the functional (11) is positive. This vari-
ational formulation appears in [8], while a discussion for a boundary value problem
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for a thin elastic plate in a somehow old fashioned notation is made by Kirchhoff [16],
see also [11, Section 1.1.2] for more details and references.

The unique minimizer u of ET , satisfies the Euler-Lagrange equation (4). We
now turn to the boundary conditions to be associated to (4). We seek the ones
representing the physical situation of a plate modeling a bridge. Due to the con-
nection with the ground, the plate Ω is assumed to be hinged on its vertical edges
and hence

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0 ∀y ∈ (−`, `) . (12)

The deflection of the fully hinged rectangular plate Ω (that is u = uνν = 0 on ∂Ω)
under the action of a distributed load has been solved by Navier [30] in 1823, see also
[23, Section 2.1]. The general problem of a load on the rectangular plate Ω with two
opposite hinged edges was considered by Lévy [21], Zanaboni [35], and Nadai [29],
see also [23, Section 2.2] for the analysis of different kinds of boundary conditions
on the remaining two edges y = ±`. In the plate Ω, representing the roadway of a
suspension bridge, the horizontal edges y = ±` are free and the boundary conditions
there become (see e.g. [33, (2.40)])

uyy(x,±`)+σuxx(x,±`) = 0 , uyyy(x,±`)+(2−σ)uxxy(x,±`) = 0 ∀x ∈ (0, π) .
(13)

In Section 3.1 we show how these boundary conditions arise. Note that free bound-
aries yield small stretching energy for the plate; this is the reason why we take c = 0
in (3).

Summarizing, the whole set of boundary conditions for a rectangular plate Ω =
(0, π) × (−`, `) modeling a suspension bridge is (12)-(13) and the boundary value
problem reads

∆2u = f in Ω

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0 for y ∈ (−`, `)
uyy(x,±`) + σuxx(x,±`) = 0 for x ∈ (0, π)

uyyy(x,±`) + (2− σ)uxxy(x,±`) = 0 for x ∈ (0, π) .

(14)

2.2. A nonlinear model for a dynamic suspension bridge. Assume that the
bridge is suspended by hangers whose action is concentrated in the union of two
thin strips parallel to the two horizontal edges of the plate Ω, i.e. in a set of the
type ω := (0, π)× [(−`,−`+ ε) ∪ (`− ε, `)] with ε > 0 small.

In order to describe the action of the hangers we introduce a continuous function
g : R→ R satisfying

g ∈ C1(0,+∞), g(s) = 0 for any s ≤ 0, g′(0+) > 0, g′(s) ≥ 0 for any s > 0 .

Then, the restoring force due to the hangers takes the form

h(x, y, u) = Υ(y)g(u+ γx(π − x)) (15)

where Υ is the characteristic function of (−`,−` + ε) ∪ (` − ε, `) and γ > 0. This
choice of h is motivated by the fact that the action of the hangers is larger around
the central part of the bridge x = π/2, than on its sides x = 0 and x = π where the
bridge is supported. This parabolic behavior is quite visible in certain bridges such
as the Deer Isle Bridge, see Figure 2.

More generally we may consider a force h satisfying the following assumptions:

h : Ω× R→ R is a Carathéodory function, (16)
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Figure 2. The Deer Isle Bridge.

s 7→ h(·, ·, s) is nondecreasing in R , ∃s ∈ R , h(·, ·, s) = 0 , (17)

and h is locally Lipschitzian with respect to s, i.e.

LI := sup
(x,y)∈Ω, s1,s2∈I, s1 6=s2

∣∣∣∣h(x, y, s1)− h(x, y, s2)

s1 − s2

∣∣∣∣ < +∞ (18)

for any bounded interval I ⊂ R.
The force h admits a potential energy given by

∫
Ω
H(x, y, u) dxdy where we put

H(x, y, s) :=
∫ s
s
h(x, y, τ)dτ for any s ∈ R. The total static energy of the bridge is

obtained by adding this potential energy to the elastic energy of the plate (11):

ET (u) =

∫
Ω

(
1

2
(∆u)2 + (1− σ)(u2

xy − uxxuyy) +H(x, y, u)− fu
)
dxdy . (19)

The Euler-Lagrange equation is obtained by minimizing this convex functional:
∆2u+ h(x, y, u) = f in Ω

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0 for y ∈ (−`, `)
uyy(x,±`) + σuxx(x,±`) = 0 for x ∈ (0, π)

uyyy(x,±`) + (2− σ)uxxy(x,±`) = 0 for x ∈ (0, π) .

(20)

Finally, assume that the external force also depends on time, f = f(x, y, t). If m
denotes the mass of the plate, then the corresponding deformation u has a kinetic
energy given by the integral

m

2|Ω|

∫
Ω

u2
t dxdy .

By the time scaling t 7→
√
m|Ω|−1t, we can set m|Ω|−1 = 1. This term should be

added to the nonlinear static energy (19):

Eu(t) :=

∫
Ω

1

2
u2
t dxdy +

∫
Ω

(
1

2
(∆u)2+(1− σ)(u2

xy−uxxuyy)+H(x, y, u)−fu
)
dxdy .

(21)
This represents the total energy of a nonlinear dynamic bridge. As for the action,
one has to take the difference between kinetic energy and potential energy and
integrate on an interval [0, T ]:

A(u) :=

∫ T

0

[∫
Ω

1

2
u2
t dxdy

]
dt

−
∫ T

0

[∫
Ω

(
1

2
(∆u)2 + (1− σ)(u2

xy − uxxuyy) +H(x, y, u)− fu
)
dxdy

]
dt .
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The equation of the motion of the bridge is obtained by taking critical points of the
functional A:

utt + ∆2u+ h(x, y, u) = f in Ω× (0, T ) .

Due to internal friction, we add a damping term and obtain

utt+δut+∆2u+h(x, y, u)=f in Ω×(0, T )

u(0, y, t)=uxx(0, y, t)=u(π, y, t)=uxx(π, y, t)=0 for (y, t)∈(−`, `)×(0, T )

uyy(x,±`, t)+σuxx(x,±`, t)= 0 for (x, t)∈(0, π)×(0, T )

uyyy(x,±`, t)+(2− σ)uxxy(x,±`, t)=0 for (x, t)∈(0, π)×(0, T )

u(x, y, 0)=u0(x, y) , ut(x, y, 0)=u1(x, y) for (x, y)∈Ω

(22)

where δ is a positive constant. Notice that this equation also arises in different
contexts, see e.g. [9, equation (17)], and is sometimes called the Swift-Hohenberg
equation.

3. Main results. Our first purpose is to minimize the energy functional ET , de-
fined in (11), on the space

H2
∗ (Ω) :=

{
w ∈ H2(Ω); w = 0 on {0, π} × (−`, `)

}
.

We also define

H(Ω) := the dual space of H2
∗ (Ω)

and we denote by 〈·, ·〉 the corresponding duality. Since we are in the plane, H2
∗ (Ω) ⊂

C0(Ω) so that the condition on {0, π}×(−`, `) introduced in the definition of H2
∗ (Ω)

is satisfied pointwise and

Lp(Ω) ⊂ H(Ω) ∀1 ≤ p ≤ ∞ . (23)

If f ∈ L1(Ω) then the functional ET is well-defined in H2
∗ (Ω), while if f ∈ H(Ω)

we need to replace
∫

Ω
fu with 〈f, u〉 although we will not mention this in the sequel.

The first somehow standard statement is the connection between minimizers of the
energy function ET and solutions of (14). It shows that the variational setting is
correct and it allows to derive the boundary conditions.

Theorem 3.1. Assume (9) and let f ∈ H(Ω). Then there exists a unique u ∈
H2
∗ (Ω) such that∫
Ω

[∆u∆v + (1− σ)(2uxyvxy − uxxvyy − uyyvxx)] dxdy = 〈f, v〉 ∀v ∈ H2
∗ (Ω) ;

(24)
moreover, u is the minimum point of the convex functional ET . Finally, if f ∈ L2(Ω)
then u ∈ H4(Ω), and if u ∈ C4(Ω) then u is a classical solution of (14).

Since we have in mind a long narrow rectangle, that is `� π, it is reasonable to
assume that the forcing term does not depend on y. So, we now assume that

f = f(x) , f ∈ L2(0, π). (25)

In this case, we may solve (14) following [23, Section 2.2] although the boundary
conditions (13) require some additional effort. A similar procedure can be used
also for some forcing terms depending on y such as e±yf(x) or yf(x), see [23]. We



5886 ALBERTO FERRERO AND FILIPPO GAZZOLA

extend the source f as an odd 2π-periodic function over R and we expand it in
Fourier series

f(x) =

+∞∑
m=1

βm sin(mx) , βm =
2

π

∫ π

0

f(x) sin(mx) dx , (26)

so that {βm} ∈ `2 and the series converges in L2(0, π) to f . Then we define the
constants

A = A(m, `) :=
σ

1− σ
βm
m4

(1 + σ) sinh(m`)− (1− σ)m` cosh(m`)

(3 + σ) sinh(m`) cosh(m`)− (1− σ)m`
, (27)

B = B(m, `) := σ
βm
m4

sinh(m`)

(3 + σ) sinh(m`) cosh(m`)− (1− σ)m`
, (28)

and we prove

Theorem 3.2. Assume (9) and that f satisfies (25)-(26). Then the unique solution
of (14) is given by

u(x, y) =

+∞∑
m=1

[
βm
m4

+A cosh(my) +Bmy sinh(my)

]
sin(mx)

where the constants A and B are defined in (27) and (28).

When ` → 0, the plate Ω tends to become a one dimensional beam of length
π. We wish to analyze the behavior of the solution and of the energy in this limit
situation. To this end, we re-introduce the constants appearing in (10) that were
normalized in (11). Let f ∈ L2(Ω) be as in (25) and let u` be a solution of the
problem

E d3

12(1−σ2)∆2u` = f in Ω

u`(0, y) = u`xx(0, y) = u`(π, y) = u`xx(π, y) = 0 for y ∈ (−`, `)

u`yy(x,±`) + σu`xx(x,±`) = 0 for x ∈ (0, π)

u`yyy(x,±`) + (2− σ)u`xxy(x,±`) = 0 for x ∈ (0, π)

(29)

whose total energy is given by (10). Obviously, u` = 12(1−σ2)
Ed3 u, where u is the unique

solution of (14) found in Theorem 3.2. If we view the plate as a parallelepiped-
shaped beam (0, π)× (−`, `)× (−d/2, d/2) we are led to the problem

EIψ′′′′ = 2`f in (0, π) , ψ(0) = ψ′′(0) = ψ(π) = ψ′′(π) = 0 . (30)

Here the forcing term 2`f represents a force per unit of length and I = d3`
6 =∫

(−`,`)×(−d/2,d/2)
z2dydz is the moment of inertia of the section of the beam with

respect to its middle line parallel to the y-axis. Then (30) reduces to Ed3

12 ψ
′′′′ = f ,

the function ψ is independent of ` but the corresponding total energy of the beam
depends on `:

ET (ψ) =
E d3`

12

∫ π

0

ψ′′(x)2dx− 2`

∫ π

0

f(x)ψ(x) dx = −

(
6π

E d3

+∞∑
m=1

β2
m

m4

)
` . (31)

Then we prove
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Theorem 3.3. Assume (9) and let f ∈ L2(Ω) be a vertical load per unit of surface
depending only on x, see (25)-(26). Let u` and ψ be respectively as in (29) and
(30). Then

lim
`→0

sup
(x,y)∈Ω

∣∣u`(x, y)− ψ(x)
∣∣ = 0 and ET (u`) = ET (ψ) + o(`) as `→ 0 ,

(32)
where ET (u`) is given by (10) and ET (ψ) is given by (31).

Theorem 3.3 states that, when ` → 0, the solution and the energy of the plate
are “almost the same” as for the beam. However, one cannot neglect the o(`) term
if one wishes to display torsional oscillations.

Next, we study the oscillating modes of the rectangular plate; we consider the
eigenvalue problem

∆2w = λw in Ω

w(0, y) = wxx(0, y) = w(π, y) = wxx(π, y) = 0 for y ∈ (−`, `)
wyy(x,±`) + σwxx(x,±`) = 0 for x ∈ (0, π)

wyyy(x,±`) + (2− σ)wxxy(x,±`) = 0 for x ∈ (0, π) .

(33)

Similar to (24), problem (33) admits the following variational formulation: a non-
trivial function w ∈ H2

∗ (Ω) is an eigenfunction of (33) if∫
Ω

[∆w∆v + (1− σ)(2wxyvxy − wxxvyy − wyyvxx)− λwv] dxdy = 0

for all v ∈ H2
∗ (Ω). In such a case we say that λ is an eigenvalue for problem (33).

In Section 7 we prove that for all ` > 0 and σ ∈ (0, 1
2 ) there exists a unique

µ1 ∈ (1− σ, 1) such that√
1− µ1

(
µ1 + 1− σ

)2
tanh(`

√
1− µ1) =

√
1 + µ1

(
µ1 − 1 + σ

)2
tanh(`

√
1 + µ1) .

(34)
The number λ = µ2

1 is the least eigenvalue.

Theorem 3.4. Assume (9). Then the set of eigenvalues of (33) may be ordered in
an increasing sequence {λk} of strictly positive numbers diverging to +∞ and any
eigenfunction belongs to C∞(Ω). The set of eigenfunctions of (33) is a complete
system in H2

∗ (Ω).
Moreover, the least eigenvalue of (33) is λ1 = µ2

1, where µ1 ∈ (1 − σ, 1) is the
unique solution of (34); the least eigenvalue µ2

1 is simple and the corresponding
eigenspace is generated by the positive eigenfunction{

cosh(
√

1 + µ1`)

µ1 − 1 + σ
cosh(

√
1− µ1y) +

cosh(
√

1− µ1`)

µ1 + 1− σ
cosh(

√
1 + µ1y)

}
sinx

defined for any (x, y) ∈ Ω.

In fact, we obtain a stronger statement describing the whole spectrum and char-
acterizing the eigenfunctions, see Theorem 7.6 in Section 7. In Proposition 7.7 we
also show that if ` is small enough (` ≤ 0.44), then the first two eigenvalues are
simple. In Figure 3 we display the qualitative behavior of the first two “longitudi-
nal” eigenfunctions and of the first two “torsional” eigenfunctions. It appears that
the maximum and minimum of these eigenfunctions are attained on the boundary
and that every mode has a tendency to display a torsional behavior: as expected,
the “weak” part of the plate are the two long free edges. Note also that in the limit
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Figure 3. Qualitative behavior of some eigenfunctions of (33).

case σ = 0, excluded by assumption (9), the first eigenvalue is λ1 = 1 and the first
eigenfunction is sinx.

We now turn to the nonlinear model. With a simple minimization argument one
can prove

Theorem 3.5. Assume (9), (16)-(18) and let f ∈ H(Ω); then there exists a unique
weak solution u ∈ H2

∗ (Ω) of (20). This solution is the unique minimizer of the
problem

min
v∈H2

∗(Ω)
ET (v)

where ET is the nonlinear static energy defined in (19).

Since the proof of Theorem 3.5 is standard, we omit it.
Our last result proves well-posedness for the evolution problem (22). If T > 0 we

say that

u ∈ C0([0, T ];H2
∗ (Ω)) ∩ C1([0, T ];L2(Ω)) ∩ C2([0, T ];H(Ω)) (35)

is a solution of (22) if it satisfies the initial conditions and if

〈u′′(t), v〉+ δ(u′(t), v)L2 + (u(t), v)H2
∗

+ (h(·, ·, u(t)), v)L2 = (f(t), v)L2

∀v ∈ H2
∗ (Ω) , ∀t ∈ (0, T ) .

(36)

If T = +∞ then the interval [0, T ] should be read as [0,+∞). Then we have

Theorem 3.6. Assume (9), (16)-(18). Let T > 0 (including the case T = +∞),
let f ∈ C0([0, T ];L2(Ω)) and let δ > 0; let u0 ∈ H2

∗ (Ω) and u1 ∈ L2(Ω). Then

(i) there exists a unique solution of (22);
(ii) if f ∈ L2(Ω) is independent of t, then T = +∞ and the unique solution u of

(22) satisfies

u(t)→ u in H2
∗ (Ω) and u′(t)→ 0 in L2(Ω) as t→ +∞

where u is the unique solution of the stationary problem (20).

4. Proof of Theorem 3.1. Let D2w denote the Hessian matrix of a function
w ∈ H2(Ω). Thanks to the Intermediate Derivatives Theorem, see [1, Theorem
4.15], the space H2(Ω) is a Hilbert space if endowed with the scalar product

(u, v)H2 :=

∫
Ω

(
D2u ·D2v + uv

)
dxdy for all u, v ∈ H2(Ω) .
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On the closed subspace H2
∗ (Ω) we may also define a different scalar product.

Lemma 4.1. Assume (9). On the space H2
∗ (Ω) the two norms

u 7→ ‖u‖H2 , u 7→ ‖u‖H2
∗

:=

[∫
Ω

[
(∆u)2 + 2(1− σ)(u2

xy − uxxuyy)
]
dxdy

]1/2

are equivalent. Therefore, H2
∗ (Ω) is a Hilbert space when endowed with the scalar

product

(u, v)H2
∗

:=

∫
Ω

[∆u∆v + (1− σ)(2uxyvxy − uxxvyy − uyyvxx)] dxdy . (37)

Proof. We first get rid of the L2-norm. Take any u ∈ H2
∗ (Ω) so that u ∈ C0(Ω) and

for all (x, y) ∈ Ω we have

|u(x, y)| =
∣∣∣∣∫ x

0

ux(t, y)dt

∣∣∣∣ ≤ ∫ π

0

|ux(t, y)|dt ≤
√
π

[∫ π

0

(ux(t, y))2dt

] 1
2

≤
√
π

[
−
∫ π

0

uxx(t, y)u(t, y)dt

] 1
2

≤
√
π

[∫ π

0

(uxx(t, y))2dt

] 1
4
[∫ π

0

(u(t, y))2dt

] 1
4

where we used an integration by parts and twice Hölder’s inequality. This inequality,
readily yields ‖u‖L2 ≤ C‖D2u‖L2 for some C > 0 and proves that the H2(Ω)-norm
is equivalent to the norm u 7→ ‖D2u‖L2 on the space H2

∗ (Ω). Next, we notice that

(1− σ)‖D2u‖2L2 ≤ ‖u‖2H2
∗

=

∫
Ω

[u2
xx + u2

yy + 2(1− σ)u2
xy + 2σuxxuyy]dxdy

≤ (1 + σ)‖D2u‖2L2

so that the norms u 7→ ‖D2u‖L2 and H2
∗ (Ω) are equivalent. These two equivalences

prove the lemma.

By combining Lemma 4.1 with the Lax-Milgram Theorem, we infer that for any
f ∈ H(Ω) there exists a unique u ∈ H2

∗ (Ω) satisfying (24). This proves the first
part of Theorem 3.1.

Our next purpose is to study the regularity of the just found solution of (24).

Lemma 4.2. Assume (9) and 1 < p < ∞; let f ∈ Lp(Ω) and let u ∈ H2
∗ (Ω) be a

(weak) solution of (14). Then u ∈ W 4,p(Ω) and there exists a constant C(`, σ, p)
depending only on `, σ and p such that

‖u‖W 4,p ≤ C(`, σ, p)‖f‖Lp . (38)

Proof. By (23) and Lemma 4.1, the assumptions make sense. The next step is to
show that the boundary conditions satisfy the complementing conditions, see [2,
p.633] for the definition. On the vertical edges we have Navier boundary conditions
for which this property is well-known, see [11, Section 2.3]. On the horizontal
edges, the polynomials R2 → R in the variables α, β associated to the boundary
conditions (13) are independent of x and y and read B1(α, β) = σα2 + β2 and
B2(α, β) = (2− σ)α2β + β3. Let ν = (ν1, ν2) denote the unit normal to ∂Ω and let
τ = (τ1, τ2) be any vector tangent to ∂Ω so that ν1 = τ2 = 0 and ν2 = sign y while
τ1 is arbitrary. Then B1(τ+tν) = t2 +στ2

1 and B2(τ+tν) = (sign y)t[t2 +(2−σ)τ2
1 ];

therefore

B1(x, y, τ + tν) = 2i|τ1|t+ (σ + 1)τ2
1 mod (t− i|τ |)2 ,

B2(x, y, τ + tν) = (sign y)
[
−(σ + 1)τ2

1 t+ 2i|τ1|3
]

mod (t− i|τ |)2 .
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Since σ 6= 1, the polynomials

B̃1(t) := 2i|τ1|t+ (σ + 1)τ2
1 and B̃2(t) := (sign y)

[
−(σ + 1)τ2

1 t+ 2i|τ1|3
]

are linearly independent: indeed,

− (sign y)(σ + 1)|τ1|
2i

B̃1(t) = (sign y)

[
−(σ + 1)τ2

1 t+ i
(σ + 1)2|τ1|3

2

]
with (σ+1)2

2 6= 2. This proves that also (13) satisfies the complementing conditions.
The lack of smoothness of ∂Ω is not a serious difficulty. By odd extension, we can

view the problem in Ω as the restriction of a problem in (−π, 2π) × (−`, `). Then
classical elliptic local regularity results [2, Theorem 15.1] yield (38). We also refer
to [24] for more general regularity results in nonsmooth domains.

Finally, we show that smooth weak solutions and classical solutions coincide.
Note first that, for all u ∈ H2

∗ (Ω) we have

u(0, y) = u(π, y) = uy(0, y) = uy(π, y) = uyy(0, y) = uyy(π, y) = 0 (39)

for any y ∈ (−`, `). Then, by adapting the Gauss-Green formula∫
Ω

∆u∆v dx dy =

∫
Ω

∆2uv dx dy +

∫
∂Ω

[
∆u vν − v (∆u)ν

]
ds

to our situation, and with some integration by parts, we obtain that if u ∈ C4(Ω)∩
H2
∗ (Ω) satisfies (24), then∫

Ω

(∆2u− f)v dxdy +

∫ `

−`
[uxx(π, y)vx(π, y)− uxx(0, y)vx(0, y)] dy (40)

+

∫ π

0

{
[uyyy(x,−`) + (2− σ)uxxy(x,−`)] v(x,−`)

− [uyy(x,−`) + σuxx(x,−`)] vy(x,−`)
}
dx (41)

+

∫ π

0

{
[uyy(x, `) + σuxx(x, `)] vy(x, `)

− [uyyy(x, `) + (2− σ)uxxy(x, `)] v(x, `)
}
dx = 0 (42)

for any v ∈ H2
∗ (Ω). If we choose v ∈ C2

c (Ω) in (40), then all the boundary terms
vanish and we deduce that ∆2u = f in Ω. Hence we may drop the double integral in
(40). By arbitrariness of v, the coefficients of the terms vx(π, y), vx(0, y), v(x,−`),
vy(x,−`), vy(x, `), and v(x, `) must vanish identically and we obtain (12)-(13); this
conclusion may also be reached with particular choices of v but we omit here the
tedious computations.

We have so proved that if u ∈ C4(Ω) ∩H2
∗ (Ω) satisfies (24) then it is a classical

solution of (14). For the converse implication let u ∈ C4(Ω) be a classical solution of
(14) and let v ∈ H2

∗ (Ω). Then (40) holds true and, exploiting (39) and integrating
by parts, we also recover the validity of (24) for all v ∈ H2

∗ (Ω).

5. Proof of Theorem 3.2. Consider the function

φ(x) :=

+∞∑
m=1

βm
m4

sin(mx) (43)
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and note that it solves the ODE

φ′′′′(x) = f(x) in (0, π) , φ(0) = φ′′(0) = φ(π) = φ′′(π) = 0 .

Moreover, φ′′ ∈ H2(0, π) is given by

φ′′(x) = −
+∞∑
m=1

βm
m2

sin(mx) (44)

and the series (44) converges in H2(0, π) and, hence, uniformly.
We now introduce the auxiliary function v(x, y) := u(x, y)−φ(x); if u solves (14),

then v satisfies 

∆2v = 0 in Ω

v = vxx = 0 on {0, π} × (−`, `)

vyy + σvxx = −σφ′′ on (0, π)× {−`, `}

vyyy + (2− σ)vxxy = 0 on (0, π)× {−`, `} .

(45)

We seek solutions of (45) by separating variables, namely we seek functions Ym =
Ym(y) such that

v(x, y) =

+∞∑
m=1

Ym(y) sin(mx)

solves (45). Then

∆2v(x, y) =

+∞∑
m=1

[Y ′′′′m (y)− 2m2Y ′′m(y) +m4Ym(y)] sin(mx)

and the equation in (45) yields

Y ′′′′m (y)− 2m2Y ′′m(y) +m4Ym(y) = 0 for y ∈ (−`, `) . (46)

The solutions of (46) are linear combinations of the functions cosh(my), sinh(my),
y cosh(my) and y sinh(my) but, due to the symmetry of Ω and to the uniqueness of
the solution v to (45), we know that Ym is even with respect to y. Hence, we seek
functions Ym of the form

Ym(y) = A cosh(my) +Bmy sinh(my) (47)

where A = A(m, `) and B = B(m, `) are constants to be determined by imposing
the boundary conditions in (45) and the coefficient m is highlighted on the term
y sinh(my) for later simplifications. By differentiating we obtain

Y ′m(y) = m[(A+B) sinh(my) +Bmy cosh(my)] , (48)

Y ′′m(y) = m2[(A+ 2B) cosh(my) +Bmy sinh(my)] ,

Y ′′′m (y) = m3[(A+ 3B) sinh(my) +Bmy cosh(my)] .

The two boundary conditions on (0, π)× {−`, `}, see (45), become respectively

+∞∑
m=1

[Y ′′m(±`)− σm2Ym(±`)] sin(mx) = −σφ′′(x) ,

+∞∑
m=1

[Y ′′′m (±`)− (2− σ)m2Y ′m(±`)] sin(mx) = 0
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for all x ∈ (0, π), and, by (44),

Y ′′m(`)− σm2Ym(`) = σ
βm
m2

, Y ′′′m (`)− (2− σ)m2Y ′m(`) = 0 ,

the condition for y = −` being automatically fulfilled since Ym is even. By plugging
these information into the explicit form (48) of the derivatives we find the system (1− σ) cosh(m`)A+

(
2 cosh(ml) + (1− σ)m` sinh(m`)

)
B = σ βm

m4

(1− σ) sinh(m`)A+
(

(1− σ)m` cosh(m`)− (1 + σ) sinh(m`)
)
B = 0 ,

and we finally obtain (27)-(28).

6. Proof of Theorem 3.3. Let u ∈ H2
∗ (Ω) be the solution of (14), see Theorem

3.2. By (27)-(28) we have

|A cosh(my)| ≤ C βm
m3

and Bmy sinh(my) ≤ C βm
m3

for any y ∈ (−`, `), ` ∈ (0, 1) and m ≥ 1 for some constant C > 0 depending on σ
but independent of y, ` and m. Moreover we also have

lim
`→0

A(m, `) =
σ2

1− σ2

βm
m4

, lim
`→0

B(m, `) =
σ

2(1 + σ)

βm
m4

for any m ∈ N .

(49)
This implies that for any N ∈ N

lim sup
`→0

sup
(x,y)∈Ω

∣∣∣∣u(x, y)− 1

1− σ2
φ(x)

∣∣∣∣
≤ lim sup

`→0
sup

y∈(−`,`)

+∞∑
m=1

∣∣∣∣A cosh(my)− σ2

1− σ2

βm
m4

+Bmy sinh(my)

∣∣∣∣
≤ lim
`→0

N∑
m=1

[ ∣∣∣∣A− σ2

1− σ2

βm
m4

∣∣∣∣ cosh(m`) +
σ2

1− σ2

βm
m4

(cosh(m`)− 1)

+Bm` sinh(m`)

]
+ C

+∞∑
m=N+1

βm
m3
≤ C

+∞∑
m=N+1

βm
m3

.

Letting N → +∞, we obtain

lim
`→0

sup
(x,y)∈Ω

∣∣∣∣u(x, y)− 1

1− σ2
φ(x)

∣∣∣∣ = 0 . (50)

Let us now recall a well-known result about Fourier series which will be repeatedly
used in the sequel.

Lemma 6.1. Let {am}, {bm} ∈ `2 and let

a(x) =

+∞∑
m=1

am sin(mx) , b(x) =

+∞∑
m=1

bm sin(mx) .

Then a, b ∈ L2(0, π) and∫ π

0

a(x)b(x) dx =
π

2

+∞∑
m=1

ambm ,

∫ π

0

a(x)2 dx =
π

2

+∞∑
m=1

a2
m .
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By differentiating the solution u we find

uxx(x, y) = −
+∞∑
m=1

[
βm
m2

+Am2 cosh(my) +Bm3y sinh(my)

]
sin(mx) ,

uyy(x, y) =

+∞∑
m=1

m2[(A+ 2B) cosh(my) +Bmy sinh(my)] sin(mx) ,

uxy(x, y) =

+∞∑
m=1

m2[(A+B) sinh(my) +Bmy cosh(my)] cos(mx) ,

and therefore

∆u(x, y) =

+∞∑
m=1

[
−βm
m2

+ 2Bm2 cosh(my)

]
sin(mx) .

Then, by Lemma 6.1, we obtain∫
Ω

|∆u|2 =
π

2

+∞∑
m=1

∫ `

−`

[
−βm
m2

+ 2Bm2 cosh(my)

]2

dy (51)

= π

+∞∑
m=1

[
β2
m

m4
`+ 2B2m4`− 4

Bβm
m

sinh(m`) +B2m3 sinh(2m`)

]
.

Moreover, Lemma 6.1 also yields∫
Ω

uxxuyy = −π
2

+∞∑
m=1

∫ `

−`
[βm +Am4 cosh(my) +Bm5y sinh(my)] (52)

× [(A+ 2B) cosh(my) +Bmy sinh(my)] dy

= −π
+∞∑
m=1

[
βm

m [(A+B) sinh(m`) +Bm` cosh(m`)] + B(2A+B)m3

4 m` cosh(2m`)

+( 2A2+2AB−B2

8 + B2

4 m
2`2)m3 sinh(2m`) + A(A+2B)

2 m4`− B2

6 m
6`3
]

and∫
Ω

u2
xy =

π

2

+∞∑
m=1

m4

∫ `

−`
[(A+B) sinh(my) +Bmy cosh(my)]2 dy (53)

= π

+∞∑
m=1

m3
[

2A2+2AB+B2

8 sinh(2m`) + B(2A+B)
4 m` cosh(2m`) + B2

4 m
2`2 sinh(2m`)

+B2

6 m
3`3 − (A+B)2

2 m`
]
.

Finally, by (26) and a further application of Lemma 6.1,∫
Ω

fu =
π

2

+∞∑
m=1

βm

∫ `

−`

[
βm

m4 +A cosh(my) +Bmy sinh(my)
]
dy (54)

= π

+∞∑
m=1

βm

[
βm

m4 `+ A−B
m sinh(m`) +B` cosh(m`)

]
.
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Since u solves (14), the corresponding energy is given by (11) and hence collecting
(51)-(54) we obtain

ET (u)=π

+∞∑
m=1

{
− β2

m`

2m4
+
σ + 1

2
B2m4`− σβm(A+B)

m
sinh(m`) +

B2m3

2
sinh(2m`)

− σβmB` cosh(m`) +
1− σ

2

[
A(A+B)m3 sinh(2m`)+B2m5`2 sinh(2m`)

+B(2A+B)m4` cosh(2m`)
]}

=:

+∞∑
m=1

a(m, `) .

With a direct computation one can see that by (27) and (28) we get

|a(m, `)|
`

≤ C β
2
m

m3
for any ` ∈ (0, 1) and m ≥ 1

for some constant C > 0 depending on σ but independent of ` and m.
This implies that for any N ∈ N we have

N∑
m=1

a(m, `)

`
−

+∞∑
m=N+1

C
β2
m

m3
≤

+∞∑
m=1

a(m, `)

`
≤

N∑
m=1

a(m, `)

`
+

+∞∑
m=N+1

C
β2
m

m3
.

Letting `→ 0 we obtain

N∑
m=1

lim
`→0

(
a(m, `)

`

)
−

+∞∑
m=N+1

C
β2
m

m3
≤ lim inf

`→0

+∞∑
m=1

a(m, `)

`

≤ lim sup
`→0

+∞∑
m=1

a(m, `)

`
≤

N∑
m=1

lim
`→0

(
a(m, `)

`

)
+

+∞∑
m=N+1

C
β2
m

m3
.

Letting N → +∞, by (49), we deduce that

lim
`→0

ET (u)

`
= lim
`→0

+∞∑
m=1

a(m, `)

`
=

+∞∑
m=1

lim
`→0

a(m, `)

`
= − π

2(1− σ2)

+∞∑
m=1

β2
m

m4

and, in turn,

ET (u) = −

(
π

2(1− σ2)

+∞∑
m=1

β2
m

m4

)
`+ o(`) as `→ 0 . (55)

Consider now u` and ψ as in (29) and (30); recall that u` = 12(1−σ2)
Ed3 u where u

solves (14) and that ψ = 12
Ed3φ. Then, from (50) we deduce the first of (32). Since

u` solves (29), the corresponding energy is given by (10) and hence, by (55) and

the identity u` = 12(1−σ2)
Ed3 u, we obtain

ET (u`) =
12(1− σ2)

E d3

∫
Ω

[
1

2
(∆u)2 + (σ − 1)det(D2u)− fu

]
dxdy

=
12(1− σ2)

E d3
ET (u) =

12(1− σ2)

E d3

[
−

(
π

2(1− σ2)

+∞∑
m=1

β2
m

m4

)
`+ o(`)

]
and the second of (32) follows.
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7. Proof of Theorem 3.4. By Lemma 4.1 the bilinear form (37) is continuous
and coercive; standard spectral theory of self-adjoint operators then shows that the
eigenvalues of (33) may be ordered in an increasing sequence of strictly positive
numbers diverging to +∞ and that the corresponding eigenfunctions form a com-
plete system in H2

∗ (Ω). The eigenfunctions are smooth in Ω: this may be obtained
by making an odd extension as in Lemma 4.2 and with a bootstrap argument. This
proves the first part of Theorem 3.4.

Take an eigenfunction w of (33) and consider its Fourier expansion with respect
to the variable x:

w(x, y) =

+∞∑
m=1

hm(y) sin(mx) for (x, y) ∈ (0, π)× (−`, `) . (56)

Since w ∈ C∞(Ω), the Fourier coefficients hm = hm(y) are smooth functions and
solve the ordinary differential equation

h′′′′m (y)− 2m2h′′m(y) + (m4 − λ)hm(y) = 0 (57)

for some λ > 0. The eigenfunction w in (56) satisfies (12), while by imposing (13)
we obtain the boundary conditions on hm

h′′m(±`)− σm2hm(±`) = 0 , h′′′m(±`) + (σ − 2)m2h′m(±`) = 0 . (58)

Put µ =
√
λ > 0 and consider the characteristic equation α4−2m2α2 +m4−µ2 = 0

related to (57). By solving this algebraic equation we find

α2 = m2 ± µ . (59)

Three cases have to be distinguished.
• The case 0 < µ < m2. By (59) we infer

α = ±β or α = ±γ with
√
m2 − µ =: γ < β :=

√
m2 + µ . (60)

Hence, possible nontrivial solutions of (57)-(58) have the form

hm(y) = a cosh(βy) + b sinh(βy) + c cosh(γy) + d sinh(γy) (a, b, c, d ∈ R) . (61)

By computing the derivatives of hm and imposing the conditions (58) we find the
two systems (β2 −m2σ) cosh(β`)a+ (γ2 −m2σ) cosh(γ`)c = 0

(β3 −m2(2− σ)β) sinh(β`)a+ (γ3 −m2(2− σ)γ) sinh(γ`)c = 0 , (β2 −m2σ) sinh(β`)b+ (γ2 −m2σ) sinh(γ`)d = 0

(β3 −m2(2− σ)β) cosh(β`)b+ (γ3 −m2(2− σ)γ) cosh(γ`)d = 0 .

(62)

There exists a nontrivial solution hm of (57) of the form (61) if and only if there
exists a nontrivial solution of at least one of the two systems (62). The first system
in (62) admits a nontrivial solution (a, c) if and only if

(β2 −m2σ)(γ3 −m2(2− σ)γ) cosh(β`) sinh(γ`)

= (γ2 −m2σ)(β3 −m2(2− σ)β) sinh(β`) cosh(γ`) .

By (60), this is equivalent to

γ

(γ2 −m2σ)2
tanh(`γ) =

β

(β2 −m2σ)2
tanh(`β) . (63)

Recalling that both β and γ depend on µ, we prove
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Lemma 7.1. Assume (9). For any m ≥ 1 there exists a unique µ = µm ∈ (0,m2)
such that (63) holds; moreover we also have µm ∈ ((1− σ)m2,m2).

Proof. Consider the function ηm(t) := t
(t2−m2σ)2 · tanh(`t) for any t ∈ [0,+∞) \

{
√
σm}. Then

η′m(t) =
(−3t2 −m2σ) sinh(`t) cosh(`t) + `t(t2 −m2σ)

(t2 −m2σ)3 cosh2(`t)
∀t ∈ [0,+∞) \ {

√
σm} .

For any t >
√
σm we have

η′m(t) <
−3t2 sinh(`t) cosh(`t) + `t3

(t2 −m2σ)3 cosh2(`t)
< − 2`t3

(t2 −m2σ)3 cosh2(`t)
< 0 .

This shows that ηm is decreasing in (
√
σm,+∞) and, if β > γ >

√
σm then

ηm(β) < ηm(γ) so that (63) cannot hold. We have proved that if γ and β satisfy
(63) then necessarily γ ∈ [0,

√
σm).

Since β =
√

2m2 − γ2, identity (63) is equivalent to√
2m2 − γ2 (γ2 −m2σ)2

[(2− σ)m2 − γ2]2
tanh(`

√
2m2 − γ2) = γ tanh(`γ) . (64)

Then we define

gm(t) :=

√
2m2 − t2 (m2σ − t2)2

[(2− σ)m2 − t2]2
tanh(`

√
2m2 − t2) ∀t ∈ [0,

√
σm] .

The function t 7→ [m2σ−t2]/[(2−σ)m2−t2] is nonnegative and decreasing and hence
so is its square. It then follows that gm is decreasing in [0,

√
σm] and gm(

√
σm) = 0.

On the other hand, the map t 7→ t tanh(`t) is increasing in [0,
√
σm] and vanishes

at t = 0. This proves that there exists a unique γm ∈ (0,
√
σm) satisfying (64). The

statements of the lemma now follow by putting µm = m2 − γ2
m.

In the next result we prove that the sequence {µm} found in Lemma 7.1 is in-
creasing.

Lemma 7.2. Assume (9). For any m ≥ 1, let µm be as in Lemma 7.1. Then
µm < µm+1 for all m ≥ 1.

Proof. By (60), the equation (63) reduces to

Φ(m,µ) :=

√
m2 − µ
m2 + µ

(
µ+ (1− σ)m2

µ− (1− σ)m2

)2
tanh(`

√
m2 − µ)

tanh(`
√
m2 + µ)

= 1 . (65)

We consider Φ as a function defined in the region of the plane {(m,µ) ∈ R2; (1 −
σ)m2 < µ < m2}. In this region, the three maps

(m,µ) 7→

√
m2 − µ
m2 + µ

, (m,µ) 7→
(
µ+ (1− σ)m2

µ− (1− σ)m2

)2

, (m,µ) 7→ tanh(`
√
m2 − µ)

tanh(`
√
m2 + µ)

,

are all positive, strictly increasing with respect to m, and strictly decreasing with
respect to µ. Therefore, the function m 7→ µm, implicitly defined by Φ(m,µm) = 1,
is strictly increasing.

Similarly, the second system in (62) has nontrivial solutions (b, d) if and only if

(β2 −m2σ)(γ3 −m2(2− σ)γ) sinh(β`) cosh(γ`)

= (γ2 −m2σ)(β3 −m2(2− σ)β) cosh(β`) sinh(γ`) .
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By (60), this is equivalent to

β

(β2 −m2σ)2
coth(`β) =

γ

(γ2 −m2σ)2
coth(`γ) . (66)

Recalling that both β and γ depend on µ, we prove

Lemma 7.3. Assume (9). Then there exists a unique µ = µm ∈ (0,m2) satisfying
(66) if and only if

`m
√

2 coth(`m
√

2) >

(
2− σ
σ

)2

. (67)

Moreover in such a case we have µm ∈ ((1− σ)m2,m2).

Proof. The function ηm(t) := t
(t2−m2σ)2 · coth(`t) is strictly decreasing for t ∈

(
√
σm,+∞) because it is the product of two positive and strictly decreasing func-

tions. In particular, if β > γ >
√
σm then ηm(β) < ηm(γ) so that (66) cannot hold.

This proves that if γ and β satisfy (66) then necessarily γ ∈ (0,
√
σm).

By (60) identity (66) is equivalent to√
2m2 − γ2 (γ2 −m2σ)2

[(2− σ)m2 − γ2]2
coth(`

√
2m2 − γ2) = γ coth(`γ) . (68)

Then we define

gm(t) =

√
2m2 − t2 (m2σ − t2)2

[(2− σ)m2 − t2]2
coth(`

√
2m2 − t2) ∀t ∈ [0,

√
σm] . (69)

We have

g′m(t) =
`t(m2σ − t2)2

[(2− σ)m2 − t2]2 sinh2(`
√

2m2 − t2)
(70)

− 8(1−σ)m2(2m2 − t2) + (m2σ−t2)[(2− σ)m2−t2]√
2m2 − t2 [(2− σ)m2−t2]3

(m2σ − t2)t coth(`
√

2m2−t2)

<
t(m2σ−t2)2 [(2− σ)m2−t2][`

√
2m2−t2 − sinh(`

√
2m2 − t2) cosh(`

√
2m2−t2)]√

2m2−t2[(2− σ)m2 − t2]3 sinh2(`
√

2m2 − t2)

which is negative for any t ∈ (0,
√
σm). Therefore gm is decreasing in (0,

√
σm)

with gm(0) =
√

2m( σ
2−σ )2 coth(`m

√
2) and gm(

√
σm) = 0. On the other hand, the

map t 7→ t coth(`t) is increasing in (0,
√
σm) and tends to 1/` as t → 0+. This

proves that there exists a unique γm ∈ (0,
√
σm) satisfying (68) if and only if (67)

holds. The proof of the lemma now follows by putting µm = m2 − (γm)2.

Note also that (67) holds if and only if m is large enough, that is,

∃mσ ≥ 1 such that (67) holds if and only if m ≥ mσ . (71)

In particular, if `
√

2 coth(`
√

2) > ( σ
2−σ )2 then mσ = 1. We now prove that the

sequence {µm}, found in Lemma 7.3, is increasing.

Lemma 7.4. Assume (9). For any m ≥ 1, let µm as in the statement of Lemma
7.3. Then µm < µm+1 for any m ≥ mσ, see (71).
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Proof. Let m ≥ mσ; by Lemma 7.3 we know that µm < m2 and µm+1 > (1−σ)(m+
1)2. Therefore, we may restrict our attention to the case where (1− σ)(m+ 1)2 <
m2 and µm, µm+1 ∈ ((1 − σ)(m + 1)2,m2) since otherwise the statement follows
immediately. For

(m,µ) ∈ A := {(m,µ) ∈ R2; m ≥ mσ, (1− σ)(m+ 1)2 < µ < m2} ,

consider the functions

Γ(m,µ) :=

√
µ+m2 [µ− (1− σ)m2]2

[µ+ (1− σ)m2]2
coth(`

√
µ+m2) ,

K(m,µ) :=
√
m2 − µ coth(`

√
m2 − µ) .

On the interval µ < s < µ
1−σ , both the positive maps

s 7→
√
µ+ s [µ− (1− σ)s]2

[µ+ (1− σ)s]2
and s 7→ coth(`

√
µ+ s)

have strictly negative derivatives. Moreover, if gm is as in (69), then Γ(m,µ) =

gm(
√
m2 − µ) and (70) proves that µ 7→ Γ(m,µ) has strictly positive derivative.

Summarizing,

∂Γ

∂m
(m,µ) < 0 and

∂Γ

∂µ
(m,µ) > 0 ∀(m,µ) ∈ A . (72)

It is also straightforward to verify that

∂K

∂m
(m,µ) > 0 and

∂K

∂µ
(m,µ) < 0 ∀(m,µ) ∈ A . (73)

Finally, put

Ψ(m,µ) :=
K(m,µ)

Γ(m,µ)
∀(m,µ) ∈ A . (74)

The function m 7→ µm is implicitly defined by Ψ(m,µm) = 1, see (66) and (60). By
(72)-(73) we infer

∂Ψ

∂m
(m,µ) > 0 and

∂Ψ

∂µ
(m,µ) < 0 ∀(m,µ) ∈ A .

This proves that the map m 7→ µm is strictly increasing.

We finally compare µm with µm.

Lemma 7.5. Assume (9). Let µm and µm be, respectively, as in Lemmas 7.1 and
7.3. Then for any m ≥ mσ we have µm < µm.

Proof. Let Φ and Ψ be as in (65) and (74); then Φ(m,µ) < Ψ(m,µ) for all
(m,µ) ∈ A. Since µm is implicitly defined by Ψ(m,µm) = 1, we have Φ(m,µm) < 1.
Moreover, in Lemma 7.2 we saw that µ 7→ Φ(m,µ) is strictly decreasing. Hence,
Φ(m,µm) < 1 = Φ(m,µm) implies µm < µm.

• The case µ = m2. By (59) we infer that possible nontrivial solutions of
(57)-(58) have the form

hm(y) = a cosh(
√

2my) + b sinh(
√

2my) + c+ dy (a, b, c, d ∈ R) .
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By differentiating hm and by imposing the boundary conditions (58) we get (2− σ) cosh(
√

2m`)a− σc = 0

σ sinh(
√

2m`)a = 0 , (2− σ) sinh(
√

2m`)b− σ`d = 0
√

2mσ cosh(
√

2m`)b+ (σ − 2)d = 0 .

(75)

The first system in (75) has the unique solution a = c = 0 under the assumption
(9). The second system in (75) admits a nontrivial solution (b, d) if and only if

tanh(
√

2m`) =

(
σ

2− σ

)2 √
2m` . (76)

By (9) the equation tanh(s) =
(

σ
2−σ

)2

s admits a unique solution s > 0. But if

m∗ := s/`
√

2 is not an integer, then (76) admits no solution. If m∗ ∈ N, then the
second system in (75) admits a nontrivial solution (b, d) 6= (0, 0) whenever m = m∗.
If m ∈ N does not satisfy (76), then the second system in (75) only admits the
trivial solution b = d = 0.
• The case µ > m2. By (59) we infer that

α = ±β or α = ±iγ with
√
µ−m2 = γ < β =

√
µ+m2 . (77)

Therefore, possible nontrivial solutions of (57) have the form

hm(y) = a cosh(βy) + b sinh(βy) + c cos(γy) + d sin(γy) (a, b, c, d ∈ R) .

Differentiating hm and imposing the boundary conditions (58) yields the two sys-
tems: (β2 −m2σ) cosh(β`)a− (γ2 +m2σ) cos(γ`)c = 0

(β3 −m2(2− σ)β) sinh(β`)a+ (γ3 +m2(2− σ)γ) sin(γ`)c = 0 ,
(78)

 (β2 −m2σ) sinh(β`)b− (γ2 +m2σ) sin(γ`)d = 0

(β3 −m2(2− σ)β) cosh(β`)b− (γ3 +m2(2− σ)γ) cos(γ`)d = 0 .
(79)

Due to the presence of trigonometric sine and cosine, for any integer m there
exists a sequence ζmk ↑ +∞ such that ζmk > m2 for all k ∈ N and such that if
µ = ζmk for some k then one of the above systems admits a nontrivial solution.

Not only the above arguments prove all the statements of Theorem 3.4, but they
also prove the following result.

Theorem 7.6. Assume (9) and consider the eigenvalue problem (33). Then:
(i) for any m ≥ 1 there exists a sequence of eigenvalues λk,m ↑ +∞ such that

λk,m > m4 for all k ≥ 1; the corresponding eigenfunctions are of the kind[
a cosh

(
y

√
λ

1/2
k,m +m2

)
+ b sinh

(
y

√
λ

1/2
k,m +m2

)
+c cos

(
y

√
λ

1/2
k,m −m2

)
+ d sin

(
y

√
λ

1/2
k,m −m2

)]
sin(mx)

for suitable constants a, b, c, d, depending on m and k;
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(ii) if the unique positive solution m of (76) is an integer m∗ ∈ N, then λ = m4
∗

is an eigenvalue with corresponding eigenfunction[
σ` sinh(

√
2m∗y) + (2− σ) sinh(

√
2m∗`) y

]
sin(m∗x) ;

(iii) for any m ≥ 1, there exists an eigenvalue λm ∈ ((1 − σ)2m4,m4) with
corresponding eigenfunction(√λm − (1− σ)m2

) cosh
(
y
√
m2 +

√
λm

)
cosh

(
`
√
m2 +

√
λm

)
+
(√

λm + (1− σ)m2
) cosh

(
y
√
m2 −

√
λm

)
cosh

(
`
√
m2 −

√
λm

)
 sin(mx) ;

(iv) for any m ≥ 1, satisfying (67), there exists an eigenvalue λm ∈ (λm,m
4)

with corresponding eigenfunction(√λm − (1− σ)m2
) sinh

(
y
√
m2 +

√
λm
)

sinh
(
`
√
m2 +

√
λm
)

+
(√
λm + (1− σ)m2

) sinh
(
y
√
m2 −

√
λm
)

sinh
(
`
√
m2 −

√
λm
)
 sin(mx) ;

(v) There are no eigenvalues other than the ones characterized in (i)− (iv).

Note that the eigenfunctions in (iii) are even with respect to y whereas the
eigenfunctions in (iv) are odd. In the next result we give a precise description of
the first two eigenvalues when ` is small enough.

Proposition 7.7. Assume (9) and consider the eigenvalue problem (33). If ` ≤ 1
5

then the first two eigenvalues are simple and they coincide with the numbers λ1, λ2

defined by Lemma 7.1. Therefore,

(1− σ)2 < λ1 < 1 < 16(1− σ)2 < λ2 < 16 . (80)

Proof. By (9) we know that (67) may hold only if `m
√

2 coth(`m
√

2) > 9. In turn,
since ` ≤ 1

5 , this necessarily yields m > 31. From Theorem 7.6 we readily obtain
(80). In order to prove the statement it is therefore enough to show that all the
other eigenvalues found in Theorem 7.6 are larger than or equal to 16 for ` ≤ 1

5 .

We start by showing that for ` ≤ 1
5 the numbers µ corresponding to the case

µ > m2 are larger than or equal to 4. We take m = 1 since if m ≥ 2 we immediately
obtain µ > 4 and we are done.

When m = 1 system (78) admits a nontrivial solution if and only if

(β2−σ)(γ3+(2−σ)γ) cosh(β`) sin(γ`)+(γ2+σ)(β3−(2−σ)β) sinh(β`) cos(γ`) = 0 .

This may happen only if the two terms sin(γ`) and cos(γ`) have opposite sign: this
yields

γ

5
≥ γ` > π

2
=⇒ γ >

5π

2
=⇒ µ > 1 +

(
5π

2

)2

> 4 .
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Consider now the system (79) with m = 1. Put

h(µ, σ, `) := (µ+ 1− σ)2
√
µ− 1 sinh(`

√
µ+ 1) cos(`

√
µ− 1)

− (µ− 1 + σ)2
√
µ+ 1 sin(`

√
µ− 1) cosh(`

√
µ+ 1)

so that, by (77), (79) admits a nontrivial solution if and only if

h(µ, σ, `) = 0. (81)

We prove that µ ≥ 4 by showing that

h(µ, σ, `) > 0 ∀µ ∈ (1, 4) , σ ∈
(

0,
1

2

)
, ` ∈

(
0,

1

5

]
. (82)

It is readily verified that hσ(µ, σ, `) < 0 so that (82) is satisfied provided that

h

(
µ,

1

2
, `

)
> 0 ∀µ ∈ (1, 4) , ` ∈

(
0,

1

5

]
. (83)

By differentiating we obtain

h`

(
µ,

1

2
, `

)
=
µ

2

[
4
√
µ2 − 1 cosh(`

√
µ+ 1) cos(`

√
µ− 1)

−(4µ2 − 3) sinh(`
√
µ+ 1) sin(`

√
µ− 1)

]
and by the inequality s cosh s > sinh s, valid for any s > 0, we get

h`

(
µ,

1

2
, `

)
>
µ

2
`
√
µ− 1 cos(`

√
µ− 1) sinh(`

√
µ+ 1)×

×
[

4

`2
− (4µ2 − 3)

tan(`
√
µ− 1)

`
√
µ− 1

]
.

Since the map x 7→ tan x
x is increasing in (0, π/2) and `

√
µ− 1 <

√
3/5, we have

that

h`

(
µ,

1

2
, `

)
>
µ

2
`
√
µ− 1 cos(`

√
µ− 1) sinh(`

√
µ+ 1)

(
100− 61 · tan(

√
3/5)√

3/5

)
> 0

for 1 < µ < 4 and ` ≤ 1
5 so that (83) follows and completes the proof in the case

µ > m2.

By (9) the equation tanh(s) =
(

σ
2−σ

)2

s admits a unique positive solution s > 8.

Hence, if µ = m2 is the square root of an eigenvalue, then by (76) we have

m =
s

`
√

2
> 20

√
2 =⇒ µ > 800 .

We have so shown that, in any case, µ > 4; hence, λ > 16.

If ` ≤ 0.44, (67) implies m > 14. Moreover, numerical computations show that
(82), and hence Proposition 7.7, are true for all ` ≤ 0.44.

8. Proof of Theorem 3.6. In order to prove existence of solutions of (22), we
perform a Galerkin-type procedure directly on the nonlinear problem (22). Unique-
ness of solutions of (22) is obtained from suitable estimates coming from an energy
identity. We start by proving global existence for solutions of (22).

Lemma 8.1. Assume (9), let T ∈ (0,+∞), δ > 0, f ∈ C0([0, T ];L2(Ω)) and let h
satisfy (16)-(18); let u0 ∈ H2

∗ (Ω) and u1 ∈ L2(Ω). Then (22) admits a solution.
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Proof. We divide the proof in several steps.

Step 1. We construct a sequence of solutions of approximated problems in finite
dimensional spaces. By Theorem 3.4 we may consider an orthogonal complete sys-
tem {wk}k≥1 ⊂ H2

∗ (Ω) of eigenfunctions of (33) such that ‖wk‖L2 = 1. Let {λk}k≥1

be the corresponding eigenvalues and, for any k ≥ 1, put Wk := span{w1, . . . , wk}.
For any k ≥ 1 let

uk0 :=

k∑
i=1

(u0, wi)L2wi =

k∑
i=1

λ−1
i (u0, wi)H2

∗
wi and uk1 =

k∑
i=1

(u1, wi)L2 wi

so that uk0 → u0 in H2
∗ (Ω) and uk1 → u1 in L2(Ω) as k → +∞. For any k ≥ 1 we

seek a solution uk ∈ C2([0, T ];Wk) of the variational problem{
(u′′(t), v)L2 + δ(u′(t), v)L2 + (u(t), v)H2

∗
+ (h(·, ·, u(t)), v)L2 = (f(t), v)L2

u(0) = uk0 , u′(0) = uk1 .

(84)

for any v ∈ Wk and t ∈ (0, T ). If we write uk in the form uk(t) =

k∑
i=1

gki (t)wi and

we put gk(t) := (gk1 (t), . . . , gkk(t))T then the vector valued function gk solves{
(gk(t))′′ + δ(gk(t))′ + Λkg

k(t) + Φk(gk(t)) = Fk(t) ∀t ∈ (0, T )

gk(0) = ((u0, w1)L2 , . . . , (u0, wk)L2)T , (gk)′(0) = ((u1, w1)L2 , . . . , (u1, wk)L2)T

(85)
where Λk := diag(λ1, . . . , λk), Φk : Rk → Rk is the map defined by

Φk(y1, . . . , yk) :=

(h(·, ·, k∑
j=1

yjwj

)
, w1

)
L2
, . . . ,

(
h
(
·, ·,

k∑
j=1

yjwj

)
, wk

)
L2

T

and Fk(t) := ((f(t), w1)L2 , . . . , (f(t), wk)L2)T ∈ C0([0, T ];Rk).
From (18) we deduce that Φk ∈ Liploc(Rk;Rk) and hence (85) admits a unique

local solution. We have shown that the function uk(t) =
∑k
j=1 g

k
j (t)wj belongs

to C2([0, τk);H2
∗ (Ω)) is a local solution in some maximal interval of continuation

[0, τk), τk ∈ (0, T ], of the problem{
u′′k(t) + δu′k(t) + Luk(t) + Pk(h(·, ·, uk(t))) = Pk(f(t)) for any t ∈ [0, τk)

uk(0) = uk0 , u′k(0) = uk1
(86)

where L : H2
∗ (Ω) → H(Ω) is implicitly defined by 〈Lu, v〉 := (u, v)H2

∗
for any

u, v ∈ H2
∗ (Ω) and Pk : H2

∗ (Ω)→Wk is the orthogonal projection onto Wk.

Step 2. In this step we prove a uniform bound on the sequence {uk}.
Testing (86) with u′k(t) and integrating over (0, t) we obtain

‖uk(t)‖2H2
∗

+ ‖u′k(t)‖2L2 + 2

∫
Ω

H(x, y, uk(x, y, t)) dxdy = ‖uk0‖2H2
∗

+ ‖uk1‖2L2 (87)

+ 2

∫
Ω

H(x, y, uk0(x, y)) dxdy − 2δ

∫ t

0

‖u′k(s)‖2L2ds+ 2

∫ t

0

(f(s), u′k(s))L2ds

for any t ∈ [0, τk).
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The embedding H2
∗ (Ω) ⊂ C0(Ω) yields a constant C > 0 such that

‖v‖C0(Ω) ≤ C‖v‖H2
∗(Ω) for any v ∈ H2

∗ (Ω) . (88)

Since ‖uk0‖H2
∗
≤ ‖u0‖H2

∗
, by (17) and (88) we deduce that

∫
Ω
H(x, y, uk0(x, y)) dxdy

is bounded with respect to k. Hence, by Hölder and Young inequalities and the fact
that δ > 0, we obtain

‖uk(t)‖2H2
∗

+ ‖u′k(t)‖2L2 ≤ C for any t ∈ [0, τk) and k ≥ 1 (89)

for some constant C independent of k ≥ 1 and t ∈ (0, τk). This uniform estimate
shows that the solution uk is globally defined in [0, T ] and that the sequence {uk}
is bounded in C0([0, T ];H2

∗ (Ω)) ∩ C1([0, T ];L2(Ω)).

Step 3. We prove that {uk} admits a strongly convergent subsequence in the space
C0([0, T ];H2

∗ (Ω)) ∩ C1([0, T ];L2(Ω)).
In what follows, any subsequence of {uk} will be denoted in the same way. By

(89) we deduce that {uk} is bounded and equicontinuous in C0([0, T ];L2(Ω)) and
moreover for any t ∈ [0, T ], {uk(t)} is precompact in L2(Ω) thanks to the compact
embedding H2

∗ (Ω) ⊂ L2(Ω).
By applying the Ascoli-Arzelà Theorem to the sequence {uk} we deduce that, up

to subsequences, there exists u ∈ C0([0, T ];L2(Ω)) such that uk → u strongly in
C0([0, T ];L2(Ω)).

For any n > m ≥ 1 define un,m := un − um, un,m0 = un0 − um0 , un,m1 := un1 − um1
so that{

u′′n,m + δu′n,m + Lun,m + Pn

(
h(·, ·, un)

)
− Pm

(
h(·, ·, um)

)
= (Pn − Pm)(f)

un,m(0) = un,m0 , u′n,m(0) = un,m1 .

(90)

By compactness it follows that, up to subsequences, Pn

(
h(·, ·, un)

)
→ h(·, ·, u) in

C0([0, T ];L2(Ω)) as n→ +∞. Moreover Pnf → f in C0([0, T ];L2(Ω)) as n→ +∞.
Hence, as n,m→∞,

Ψn,m := −Pn
(
h(·, ·, un)

)
+Pm

(
h(·, ·, um)

)
+(Pn−Pm)f → 0 in C0([0, T ];L2(Ω)) .

Testing (90) with u′n,m and integrating over (0, t), up to enlarging n, we obtain

‖u′n,m(t)‖2L2 + ‖un,m(t)‖2H2
∗

= ‖un,m1 ‖2L2 + ‖un,m0 ‖2H2
∗
− 2δ

∫ t

0

‖u′n,m(s)‖2L2ds+ 2

∫ t

0

(Ψn,m(s), u′n,m(s))L2ds

≤ ‖un,m1 ‖2L2 + ‖un,m0 ‖2H2
∗

+ T
2δ‖Ψn,m‖2C0([0,T ];L2) → 0 as n,m→∞

for any t ∈ [0, T ]. This shows that {uk} is a Cauchy sequence in the space
C0([0, T ];H2

∗ (Ω)) ∩ C1([0, T ];L2(Ω)). But we have seen before that uk → u in
C0([0, T ];L2(Ω)) so that u belongs to the same space and, up to subsequences,

uk → u in C0([0, T ];H2
∗ (Ω)) ∩ C1([0, T ];L2(Ω)) as k → +∞ ,

thus completing the proof of the claim.

Step 4. We take the limit in (86) and we prove the existence of a solution of (22).
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Let ϕ ∈ C∞c (0, T ), let v ∈ H2
∗ (Ω) and let vk = Pkv. Then by (86) we have that

for any k ≥ 1

−
∫ T

0

(u′k(t), vk)L2 ϕ′(t) dt

=

∫ T

0

[
−δ(u′k(t), vk)L2 − (uk(t), vk)H2

∗
− (h(·, ·, uk(t)), vk)L2 + (f(t), vk)L2

]
ϕ(t) dt .

Letting k → +∞ we obtain that u′′ ∈ C0([0, T ];H(Ω)) and u solves the equation
u′′ = −Lu − δu′ − h(·, ·, u) + f . Moreover uk0 = uk(0) → u(0) in H2

∗ (Ω) and
uk1 = u′k(0) → u′(0) in L2(Ω) so that u(0) = u0 and u′(0) = u1. We proved that u
is a solution of (22).

In the next lemma we provide an energy identity for the nonlinear problem (22)
and, by exploiting it, we show uniqueness of the solution.

Lemma 8.2. Assume (9), let T ∈ (0,+∞), δ > 0, f ∈ C0([0, T ];L2(Ω)) and let
h satisfy (16)-(18); let u0 ∈ H2

∗ (Ω) and u1 ∈ L2(Ω). Then (22) admits a unique
solution u which, moreover, satisfies the following identity

‖u′(t)‖2L2 + ‖u(t)‖2H2
∗

+ 2δ

∫ t

0

‖u′(s)‖2L2ds+ 2

∫
Ω

H(x, y, u(x, y, t)) dxdy (91)

= ‖u1‖2L2 + ‖u0‖2H2
∗

+ 2

∫
Ω

H(x, y, u0(x, y)) dxdy + 2

∫ t

0

(f(s), u′(s))L2ds

for any t ∈ [0, T ].

Proof. We first consider the case where h ≡ 0: the existence of a solution of (22) is
a consequence of Lemma 8.1. Let us prove uniqueness. Take two solutions u1, u2

of (22) and their difference v = u1 − u2. Consider the function ṽ(t) =
∫ t

0
v(s) ds so

that ṽ ∈W 1,∞(0, T ;H2
∗ (Ω)) ∩W 2,∞(0, T ;L2(Ω)) and{

ṽ′′(t) + δṽ′(t) + Lṽ = 0

ṽ(0) = ṽ′(0) = 0 .

We use ṽ′ ∈ L∞(0, T ;H2
∗ (Ω)) as a test function to obtain after integration over

(0, t)

‖ṽ′(t)‖2L2 + ‖ṽ(t)‖2H2
∗

= −2δ

∫ t

0

‖ṽ′(s)‖2L2ds ≤ 0 .

from which it immediately follows that ṽ = 0 and hence v = 0. This proves unique-
ness of the solution of (22) under the assumption h ≡ 0: let u be the unique solution
of (22). By the proof of Lemma 8.1 we infer that the sequence {uk} introduced in the
Galerkin procedure, converges itself, without extracting a subsequence, strongly to
u in C0([0, T ];H2

∗ (Ω))∩C1([0, T ];L2(Ω)). Applying (87) in our situation we obtain

‖uk(t)‖2H2
∗
+‖u′k(t)‖2L2 +2δ

∫ t

0

‖u′k(s)‖2L2ds=‖uk0‖2H2
∗
+‖uk1‖2L2 +2

∫ t

0

(f(s), u′k(s))L2ds

for any t ∈ [0, T ]. Letting k → +∞ and exploiting the strong convergence of {uk},
we infer that

‖u′(t)‖2L2 +‖u(t)‖2H2
∗
+2δ

∫ t

0

‖u′(s)‖2L2ds=‖u1‖2L2 +‖u0‖2H2
∗
+2

∫ t

0

(f(s), u′(s))L2ds

(92)
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for all t ∈ [0, T ].
Consider now the case where h 6≡ 0 and let us first prove (91). Since u ∈

C0([0, T ];H2
∗ (Ω)) and H2

∗ (Ω) ⊂ C0(Ω) then u ∈ C0(Ω× [0, T ]) and hence by (16)-
(18) we deduce that h(·, ·, u) ∈ C0([0, T ];L2(Ω)). Then by (92) we obtain

‖u′(t)‖2L2 + ‖u(t)‖2H2
∗

+ 2δ

∫ t

0

‖u′(s)‖2L2ds (93)

= ‖u1‖2L2 + ‖u0‖2H2
∗

+ 2

∫ t

0

(h(·, ·, u(s)), u′(s))L2ds+ 2

∫ t

0

(f(s), u′(s))L2ds

It remains to show that∫ t

0

(h(·, ·, u(s)), u′(s))L2ds=

∫
Ω

H(x, y, u(x, y, t)) dxdy−
∫

Ω

H(x, y, u0(x, y)) dxdy .

(94)

For proving this it is sufficient to construct the sequence uk(t) :=

k∑
j=1

(u(t), wj)L2wj

where {wj} is the orthogonal complete system introduced in the proof of Lemma
8.1. For any k ≥ 1 we have that uk ∈ C2([0, T ];H2

∗ (Ω)) and hence (94) trivially
holds with uk in place of u. Letting k → +∞ and exploiting the fact that uk → u
in C0([0, T ];H2

∗ (Ω)) ∩ C1([0, T ];L2(Ω)) the identity (94) also holds for u.
Finally we prove uniqueness of solutions of (22). Let u, v two solutions of (22)

and define w := u− v. Then w solves the problem{
w′′(t) + δw′(t) + Lw(t) = h(·, ·, v(t))− h(·, ·, u(t)) in [0, T ]

w(0) = 0 , w′(0) = 0 .

Let I ⊂ R be an interval satisfying ‖u‖C0(Ω×[0,T ]), ‖v‖C0(Ω×[0,T ]) ∈ I. Applying

(93) to w and using (18) we obtain

‖w′(t)‖2L2 + ‖w(t)‖2H2
∗
≤
√

2`πLIC

(∫ t

0

‖w(s)‖2H2
∗
ds+

∫ t

0

‖w′(s)‖2L2ds

)
where C is the constant defined in (88). Standard Gronwall estimates then implies
w ≡ 0 thus completing the proof of the lemma.

In the last part of this section we consider problem (22) with f ∈ L2(Ω) indepen-
dent of t. We want to study the behavior of the solution u(·, t) of (22) as t→ +∞:
its global existence and uniqueness is an easy consequence of Lemmas 8.1 and 8.2.
Consider the energy function

Eu(t) :=
1

2
‖u′(t)‖2L2 +

1

2
‖u(t)‖2H2

∗
− (f, u(t))L2 +

∫
Ω

H(x, y, u(x, y, t)) dxdy .

By (91) we have that

Eu(t)=
1

2
‖u1‖2L2 +

1

2
‖u0‖2H2

∗
+

∫
Ω

H(x, y, u0(x, y)) dxdy − (f, u0)L2−δ
∫ t

0

‖u′(s)‖2L2ds

so that Eu is nonincreasing in [0,+∞) and in particular it is bounded from above.
On the other hand by Hölder and Young inequalities, continuous embedding

H2
∗ (Ω) ⊂ L2(Ω), (17) it follows the existence of two constants C1, C2 > 0 such that

C1(‖u′(t)‖2L2 + ‖u(t)‖2H2
∗
) ≤ Eu(t) + C2‖f‖2L2 for any t > 0 .
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Then

sup
t≥0

(
‖u(t)‖H2

∗
+ ‖u′(t)‖L2 + ‖u′′(t)‖H

)
< +∞ . (95)

This bound allows us to study the long-time behavior of the global solution.

Lemma 8.3. Assume (9), let f ∈ L2(Ω), h satisfy (16)-(18) and δ > 0; let u0 ∈
H2
∗ (Ω) and u1 ∈ L2(Ω). Then the unique global solution u of (22) satisfies:

u(t)→ u in H2
∗ (Ω) and u′(t)→ 0 in L2(Ω) as t→ +∞

where u is the unique solution of the stationary problem (20).

Proof. By (93) and boundedness of Eu we have that
∫ +∞

0
‖u′(s)‖2L2ds < +∞ and

hence there exists a sequence tn ↑ +∞ such that

lim
n→+∞

∫ tn+1

tn

‖u′(s)‖2L2ds = 0 and lim
n→+∞

(‖u′(tn)‖L2 + ‖u′(tn + 1)‖L2) = 0 .

(96)

For any v ∈ H2
∗ (Ω) we then have

lim
n→+∞

∫ tn+1

tn

〈u′′(s), v〉 ds = lim
n→+∞

[(u′(tn + 1), v)L2 − (u′(tn), v)L2 ] = 0 . (97)

Note that (96) and (97) yield

lim
n→+∞

∫ tn+1

tn

[
〈u′′(s), v〉+ δ(u′(s), v)L2

]
ds = 0 ∀v ∈ H2

∗ (Ω)

which, in turn, implies that

∀v ∈ H2
∗ (Ω) ∃tvn ∈ (tn, tn+1) such that lim

n→+∞

[
〈u′′(tvn), v〉+δ(u′(tvn), v)L2

]
= 0 .

Fix v ∈ H2
∗ (Ω) and note that, by (95), the sequence {u(tvn)} is bounded in H2

∗ (Ω)
so that

u(tvn) ⇀ uv ∈ H2
∗ (Ω)

up to a subsequence. In turn, by compact embedding, u(tvn) → uv in L2(Ω). Take
a function w ∈ H2

∗ (Ω) such that w 6= v and consider the corresponding sequence
{twn }. Then u(twn ) ⇀ uw in H2

∗ (Ω) and u(twn ) → uw in L2(Ω). By (93), Hölder
inequality and Fubini-Tonelli Theorem, we obtain

‖u(tvn)− u(twn )‖2L2 =

∫
Ω

∣∣∣∣∣
∫ twn

tvn

u′(s)ds

∣∣∣∣∣
2

≤ |twn − tvn|
∫ twn

tvn

‖u′(s)‖2L2ds ≤
1

δ
|Eu(tvn)− Eu(twn )| → 0

as n→ +∞, showing that the limit uv is independent of v, let us simply denote it
by u. Summarizing, we have proved that

∀v ∈ H2
∗ (Ω) (u, v)H2

∗
+ (h(·, ·, u), v)L2 − (f, v)L2

= lim
n→+∞

[
〈u′′(tvn), v〉+δ(u′(tvn), v)L2+(u(tvn), v)H2

∗
+(h(·, ·, u(tvn)), v)L2−(f, v)L2

]
=0 .

This shows that u is the unique solution to (20).
By subtracting the weak form of (20) from (36) we obtain

〈u′′(t), v〉+ δ(u′(t), v)L2 + (u(t)− u, v)H2
∗

+ (h(·, ·, u(t))− h(·, ·, u), v)L2 = 0
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for all v ∈ H2
∗ (Ω). In fact, (95) enables us to take v = v(t) := u(t) − u as test

function; then, integrating by parts over (tn, tn + 1) and using (17) and (96), we
infer that

lim
n→+∞

∫ tn+1

tn

‖u(s)− u‖2H2
∗
ds = 0 .

By combining this fact with (96) we infer that there exists tn ∈ [tn, tn+1] such that

u(tn)→ u in H2
∗ (Ω) , u′(tn)→ 0 in L2(Ω)

and therefore

lim
n→+∞

Eu(tn) = ET (u) = I := min
v∈H2

∗(Ω)
ET (v) .

But t 7→ Eu(t) is decreasing so that, in fact, we also have limt→+∞ Eu(t) = I.
Moreover Eu(t) = 1

2‖u
′(t)‖2L2 +ET (u(t)) ≥ 1

2‖u
′(t)‖2L2 +I and passing to the limit

as t→ +∞ we infer

I = lim
t→+∞

Eu(t) ≥ I + lim sup
t→+∞

1

2
‖u′(t)‖2L2 .

This proves that u′(t)→ 0 in L2(Ω) as t→ +∞. In turn, this implies that

lim
t→+∞

ET (u(t)) = lim
t→+∞

Eu(t)− lim
t→+∞

1

2
‖u′(t)‖2L2 = I = ET (u) .

Direct methods of calculus of variations then allow to conclude that u(t) → u in
H2
∗ (Ω), on the whole flow.

The proof of Theorem 3.6 follows from Lemmas 8.1, 8.2, 8.3.
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