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Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, Italy

Riccardo Bevilacqua∗

Mechanical and Aerospace Department, University of Florida, Gainesville, FL

Abstract

Autonomous close proximity operations are an arduous and attractive problem
in space mission design. In particular, the estimation of pose, motion and
inertia properties of an uncooperative object is a challenging task because
of the lack of available a priori information. This paper develops a novel
method to estimate the relative position, velocity, angular velocity, attitude
and the ratios of the components of the inertia matrix of an uncooperative
space object using only stereo-vision measurements. The classical Extended
Kalman Filter (EKF) and an Iterated Extended Kalman Filter (IEKF) are
used and compared for the estimation procedure. In addition, in order to
compute the inertia properties, the ratios of the inertia components are
added to the state and a pseudo-measurement equation is considered in the
observation model. The relative simplicity of the proposed algorithm could
be suitable for an online implementation for real applications. The developed
algorithm is validated by numerical simulations in MATLAB using different
initial conditions and uncertainty levels. The goal of the simulations is to
verify the accuracy and robustness of the proposed estimation algorithm. The
obtained results show satisfactory convergence of estimation errors for all the
considered quantities. The obtained results, in several simulations, shows
some improvements with respect to similar works, which deal with the same
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problem, present in literature. In addition, a video processing procedure is
presented to reconstruct the geometrical properties of a body using cameras.
This inertia reconstruction algorithm has been experimentally validated at
the ADAMUS (ADvanced Autonomous MUltiple Spacecraft) Lab at the
University of Florida. In the future, this different method could be integrated
to the inertia ratios estimator to have a complete tool for mass properties
recognition.

Keywords: Pose and Inertia Estimation, Stereo-Vision, Autonomous Close
Proximity Operations, Resident Space Object, Video Processing.

1. Introduction

Over the past few decades, spacecraft autonomy has become a very im-
portant aspect in space mission design. In this paper, autonomous spacecraft
proximity operations are discussed with particular attention to the estimation
of position and orientation (pose), motion and inertia properties of an un-
cooperative object. The precise pose and motion estimation of an unknown
object, such as a Resident Space Object (RSO) or an asteroid has many
potential applications. In fact, it allows autonomous inspection, monitor-
ing and docking. However, dealing with an uncooperative space body is
a challenging problem because of the lack of available information about
the motion and the structure of the target. The interest of the main space
agencies, in these years, is focused on the gradual automation of the space
missions because of its large number of practical applications. In this way,
the high risks and costs deriving from the presence of humans on-board can
be significantly reduced. For example, in 2005, NASA sponsored the DART
(Demonstration for Autonomous Rendezvous Technology) Croomes (2006)
project to develop and demonstrate automated navigation and rendezvous for
a spacecraft. DARPA, in 2007, launched the Orbital Express mission Friend
(2008) aimed at developing an approach for autonomous satellites servicing
in orbit. Moreover, relative navigation between non-cooperative satellites can
become a powerful tool in missions involving objects that cannot provide
effective cooperative information, such as faulty or disabled satellite, space
debris, hostile spacecraft and asteroids. In particular, the precise pose and
motion estimation of an uncooperative object has possible applications in
the space debris removal field. Space debris includes all man-made defunct
objects, in Earth orbit or re-entering the atmosphere. The pose and the
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inertia matrix estimation is the first step to implement a system to recover
and remove elements harmful to operational and active satellites. Addition-
ally, the obtained algorithm can be installed on autonomous spacecraft for
close-proximity operations to asteroids or for rendezvous manoeuvres. In
this regard, for the near future, ESA is developing a mission for space debris
removal, e.DeOrbit Biesbroek et al. (2013) that plans to capture derelict
satellites adrift in orbit. No matter what technology will be used, the esti-
mation of the relative state will be a main technical challenge. This step
will be necessary for assessing the condition of a drifting object, left in an
uncertain state, and to approach it. Furthermore, the mission AIDA Galvez
et al. (2013), planned for the 2022, will be the first mission to demonstrate
asteroid impact hazard mitigation by using a kinetic impactor to deflect an
asteroid. To do this, an Asteroid rendezvous spacecraft is needed and it has
to precisely and autonomously estimate the relative state of the asteroid,
before and after the impact. Moreover, implementing autonomous robotic
systems able to perform autonomous inspection, docking, on-orbit servicing
and refueling, would represent a big step in the space operations field. All
these operations are nowadays performed by manned systems and the main
agencies are trying to automatize these processes. For this reason, this paper
wants to present algorithms enabling the knowledge of the relative state, in
particular, it focuses on the problem of how to estimate the relative state
and the inertia matrix of an unknown, uncooperative space object using only
stereoscopic measurements. This information is provided by two cameras. The
methodology developed to solve this problem has many potential applications
in other fields (iceberg-relative navigation Kimball (2011), biomedical appli-
cations Grasa et al. (2011), vision-based unmanned aerial vehicle navigation
Bryson and Sukkarieh (2007), etc.). Current literature addresses the problem
of relative state estimation with respect to an uncooperative object, assuming
partial knowledge of the geometry or feature points of the target Philip and
Ananthasayanam (2003). In other cases, multiple spacecraft or sensors with
high power consumption (3D-sensors Lichter and Dubowsky (2004), Lichter
and Dubowsky (2005) or LIDAR Shahid and Okouneva (2007), Fenton (2008))
are utilized to compensate for the lack of information. The algorithms exploit-
ing LIDAR have also the disadvantage of being computationally expensive.
In this sense, some recent works try to reduce the computational cost of this
kind of techniques Opromolla et al. (2015b) Liu et al. (2016). None of these
proposed algorithms has been physically implemented in a real application,
one main reason being their high computational cost. One of the main contri-
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bution in literature, addressing relative state estimation of an uncooperative
target is from Lichter Lichter and Dubowsky (2004), Lichter and Dubowsky
(2005). He solves the problem of estimating the relative pose, motion and
structure using a 3D vision sensor. This creates and processes point clouds
to reconstruct the geometric shape of the object. From this information, he
is able to extract a rough measurement of the centroid and rotation matrix.
Then, two Kalman Filters (translation and rotation) are used to estimate
the state and inertia properties. However, using 3D sensor involves more
power consumption, computational cost and data to manage. In 2013, Segal
and Gurfil presented a solution of the state estimation of a non-cooperative
spacecraft using an Iterated Extended Kalman Filter (IEKF) Segal et al.
(2011), Segal et al. (2014). Their approach was the baseline for this research.
They develop and utilize a translational-rotational coupled model to describe
the relative dynamics. Then, an IEKF is used to estimate the state. The
basic assumption is to have only stereoscopic measurements. However, they
do not estimate the inertia matrix, but they run N Kalman filters in parallel
and, at the end, they choose the best value for the inertia tensor according
to a Maximum A Posteriori (MAP) estimation. Thus, N filters must work
simultaneously for an interval of time t to estimate the state. Then, all the
estimated states are compared and the selected inertia matrix is the one that
provides better results in terms of state error. This method clearly cannot
be implemented on a real spacecraft because of the large computational cost
needed in problems without previous knowledge of geometry information.
Another method for the estimation of the inertia matrix was proposed in
Benninghoff and Boge (2015). They solve a constrained least squares problem
for the estimation of the center of mass and inertia properties. However, they
do not model the observations, assuming to know all the dynamical quantities
with noise. For this reason, the analyzed scenario is not very realistic. A very
interesting work was published by Tweddle Tweddle and Saenz-Otero (2014),
Tweddle (2013). Assuming a stationary leader, he developed a method to
estimate the state and structure of an unknown object using a smoothing
algorithm. Smoothing and Mapping (SAM) are commonly used for simultane-
ous localization and mapping (SLAM) problems. This method estimates the
complete ’robot’ trajectory in time and not only the current pose. The par-
ticular smoothing algorithm used by Tweddle is the Incremental Smoothing
Algorithm (iSAM) introduced by Kaess et al. Kaess et al. (2008), Kaess et al.
(2007). This method performs fast incremental updates to compute a full
map and trajectory of the object at any time. However, this method does not
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handle properly trajectory with loops, non-linear problems and it is used only
for offline implementations. In our work, a Kalman Filter has been selected
as estimator for its good computational performance. In fact, Strasdat et al.
(2010) clearly expresses how the smoothing algorithm is more accurate but also
less computationally efficient than the classical filters. Moreover, differently
from smoothing algorithms, filtering techniques can successfully deal with
problems involving high uncertainties. The assumption of an uncooperative
target has been carried out to have the possibility to apply the obtained
results to a wide number of applications. Uncooperative objects have no
target identifiers (such as optical feature points) and proximity sensors. This
makes the estimation more difficult and less accurate, but more applicable
to a vast range of in-space objects. With this assumption, it is possible to
expand the applicability of this work to asteroids and completely unknown
objects. Recent works by Dong Dong and Zhu (2016b), Dong and Zhu (2016a)
assess the problem of relative pose estimation of an uncooperative object.
However, they use a simple equation for the propagation of the state that
does not involve any inertia information.
Another aspect to take into account, when dealing with filtering procedure,
is that the initial condition of the relative state has to be accurate enough.
Several works are present in literature that address and try to solve this kind
of problem. In particular, in DAmico et al. (2014), the problem of estimating
the pose of a passive resident space object, without any a-priori knowledge
of its state, is solved. They use a mono camera setup and exploit computer
vision techniques. However, they also assume to have information about
the 3D geometrical model of the object. This is common in this kind of
algorithms but it is not an unrealistic assumption. In fact, some previous
partial information about resident space objects can be available in many real
cases. A similar approach was proposed by Opromolla et al. (2015a) in which,
instead, they exploit a LIDAR. In particular, they process the point cloud
obtained with the sensor, to initialize a template matching technique. Even
in this case, some information about the 3D model of the object is necessary.
Finally, it is worth to report Sharma et al. (2016) that offers a global overview
of the techniques used for initial pose estimation.
Since the inertia properties of a body influence the contact and impact dy-
namics, it is a crucial aspect to perform docking with the inspected object.
In Felicetti et al. (2014) the inertia matrix of the chaser-target system is
estimated but only after an initial docking. This is possible by applying a
sequence of small pulses. However, the estimation of the inertia matrix, in
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torque-free motion conditions, is a very difficult task and one of the open
points that this work tries to solve. Using a pseudo-measurement equation
in the observation model with an appropriate parametrization, the ratios
of the components of the inertia matrix can be recovered. The intended
advancements in the state of the art for relative state and inertia estimation
are:

• Improve the relative state estimation with respect to the works present
in the actual literature.

• Estimate the ratios of the inertia matrix components for a correct
relative dynamics propagation, exploiting a novel approach.

• Reconstruct the complete inertia matrix with an offline image processing
method.

The paper is organized as follows. Section 2 presents the description of the
used dynamical model. In section 3 the observation model is analyzed. In
Section 4 the formulation for the inertia ratios estimation is presented in
a detailed way. Section 5 describes the filtering procedures used for the
estimation. Section 6 is dedicated to the discussion of the main results. These
results are obtained through several numerical simulations. Section 7 presents
the details of the inertia reconstruction procedure via image processing. In
section 8 the conclusions and possible future developments are drawn.

2. Dynamical Model

Correct modeling of relative translational and rotational motion is essential
for autonomous missions. In literature, a large number of studies about
point-mass models for relative spacecraft translational motion can be found.
The most famous and used model is the one presented by Clohessy and
Wiltshire Clohessy (1960). The approximated linear equations allow a simpler
representation of the dynamical model, however introducing some limitations.
In particular, this model is valid for only circular target orbits and small
relative distance between the two spacecraft. A different non-linearized model
is here used to overcome the intrinsic constraints of the Clohessy-Wiltshire
approach.
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2.1. Reference Frames and Coordinate Systems

The location of a point in a three dimensional space must be specified with
respect to a reference system. Two objects are considered: a leader L and a
target T. In this paper, the leader is the inspecting spacecraft and the target
is the unknown, uncooperative object. The standard Earth-centered, inertial,
Cartesian right-hand reference frame is used. It is defined by the center of the
Earth, the Celestial North Pole and the point identifying the Vernal Equinox.
The corresponding coordinate system is indicated with the letter I and has its
origin at the Earth’s center. The fundamental plane is the equator, and the
positive X axis points in the vernal equinox direction. The Z axis points in the
direction of the North Pole. L is the local-vertical, local-horizontal Euler-Hill
(LVLH) coordinate system. It is fixed to the leader spacecraft’s center of
mass, the X unit vector directed radially outward along the direction from
the center of the Earth to the spacecraft, Z normal to the leader orbital plane,
and Y according to the right-hand rule. Finally T , a Cartesian right-hand
body-fixed coordinate system centered on the target spacecraft’s center of
mass. It is also assumed that this frame is coincident with the principal axis
of inertia. In this work, the frame L is assumed to be coincident with the
Cartesian right-hand body-fixed coordinate system attached to the leader
spacecraft’s center of mass. The used notation is now presented. The vector
ρ0 is the vector connecting the leader center of mass with the target center
of mass, expressed in the leader frame. Analogously, ρi can be defined as
the position vector, in the leader frame, between the leader center of mass
and the feature point Pi. In this paper, no previous knowledge of any feature
point is assumed. Consequently, ρ̇0 and ρ̇i are the translational velocities of
the target center of mass and of a generic feature point, expressed in L. The
relative angular velocity is expressed as ω. This vector is the difference of
the angular velocities of the leader and target respectively, expressed in the
leader frame:

ω = ωT |L − ωL|L (1)

The relative attitude is described using the rotation quaternion q = [q0, q1, q2, q3]T

where the first component is the scalar part and the other three are the vector
one.

2.2. Process Model

Once the fundamental parameters are defined, the problem is formulated,
starting from the dynamical or process model. The classical formulation for

7



Figure 1: Leader - Target Coordinate System
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the dynamical model in a Kalman Filter dealing with non-linear equations is:

ẋ = f(x) + w(t) (2)

where x is the state vector, f(x) is a non-linear function describing the process
and w is a random zero-mean white noise. In our case, the state vector is
defined as:

x = [ρT , ρ̇T , ωT , qT , Pi
T ]T (3)

This is a 13 + 3N elements vector where N is the number of feature points.
At this point the dynamical model can be described. The model derived
in Gurfil and Kholshevnikov (2006) is here presented. Considering rigid
bodies, the relative dynamics is described using a set of non-linear differential
equations. The translational and rotational behavior are decoupled. According
to Newton’s Second Law, under the assumptions of no external or internal
forces except gravity, spherical bodies, no tidal forces, attractor’s mass much
larger than the orbiting body’s mass, the equations of motion of the Keplerian
two-body problem can be written as:

r̈ + µ
r

r3
= 0 (4)

where r = [x, y, z]T is the position vector in the I frame, µ is the Earth’s
gravitational constant and r = ||r||. This equation of motion can be written
for both leader and target, replacing r with rL and rT , the positions of the
leader and the target in the I frame.

r̈L + µ
rL
rL3

= 0 (5)

r̈T + µ
rT
rT 3

= 0 (6)

the relative position vector between the leader and the target can be defined
as ρ|I = rT − rL. Subtracting eq. (5) from eq. (6) yields:

ρ̈|I =
µ(rL + ρ)

|| rL + ρ ||3
+ µ

rL
rL3

(7)

The relative acceleration can also be expressed as:

ρ̈|I =
d2ρ

dt2
+ 2ωL|I ×

dρ

dt
+

dωL|I
dt
× ρ+ ωL|I × (ωL|I × ρ) (8)
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Being, by assumption, ωL|I , the angular velocity of frame L with respect to
I, normal to the orbital plane, leads to

ωL|I = [0, 0, ϑ̇L]T (9)

Knowing that
ρ = [x, y, z]T (10)

substituting eqs. (7), (9) and (10) into eq. (8) the following equations are
obtained:

ẍ− 2ϑ̇Lẏ − ϑ̈Ly − ϑ̇2
Lx =

µ(rL + x)

[(rL + x)2 + y2 + z2]
3
2

+
µ

rL2
(11)

ÿ + 2ϑ̇Lẋ+ ϑ̈Lx− ϑ̇2
Ly = − µy

[(rL + x)2 + y2 + z2]
3
2

(12)

z̈ = − µz

[(rL + x)2 + y2 + z2]
3
2

(13)

ϑ̇L and ϑ̈L are the orbital angular velocity and acceleration of the leader and
are equal to

ϑ̇L =

√
µ

aL3(1− eL2)3
(1 + eL cosϑL)2 (14)

ϑ̈L =
−2ṙLϑ̇L
rL

(15)

This set of non-linear ordinary differential equations describes the relative
translational dynamics between two objects in space, orbiting around a planet
under the Newton’s Law assumptions. Analogously, a model that describes
the rotational motion of the target relative to the leader is illustrated. To
parametrize the relative attitude, it has been decided to use a rotation matrix
D which performs the transformation from the body fixed frame T , relative to
the target, to the body fixed frame L, relative to the leader. The components
of this matrix are combinations of relative quaternions q0, q1, q2, q3. Knowing
the rotation matrix D, the relative angular velocity in both target and leader
frames can be calculated.

ω|L = DωT |T − ωL|L (16)
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Combining the Euler equations for both leader and target, the relative rota-
tional dynamics can be expressed as Segal and Gurfil (2009):

IL
dω

dt

∣∣∣∣
L

L

= ILDI−1
T [NT − ωT |T × ITωT |T ]− ILωL|L×

ωL|L − [NL − ωL|L × ILωL|L]

(17)

Where NT and NL are the external torques on the target and leader. Only
in the previous expressions, the symbol a|N indicates that the quantity ’a’ is
evaluated in the N frame, on the other hand, (db

dt
)|M indicates the derivative

of the quantity ’b’ in the M frame. The relative attitude kinematics is given
by:

q̇ =
1

2
Qω (18)

with

Q(q) =


−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0


The motion of the feature points can be defined in different ways. In particular,
if the motion is expressed in the leader frame:

Ṗ
i

T |L = D Ṗ
i

T |T + ω ×Pi
T |L = ω ×Pi

T |L (19)

However, the dynamics of the feature points is simpler if expressed in
the target frame. In fact, due to the rigid body assumption, a feature point
cannot change its relative position with respect to the target center of mass.
This leads to:

Ṗ
i

T |T = 0 (20)

Considering that the center of mass dynamics is described by eqs. (11) to (13),
the position of a single feature point can be described as follows:

ρi = ρ0 + Pi
T |L (21)

In this way, the motion of a feature point is given by the superposition of the
rotational and translational dynamics. Using this formulation, for each time
step, it is only necessary to integrate the position of the center of mass and
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add the contribution due to the rotation of the feature points. This aspect
is very important from the computational point of view, for the sake of an
online implementation. An important assumption inherently made herein
is that the orbit of the leader is completely known. In a real application,
the goodness of the leader orbit estimation will influence the accuracy of the
relative motion.

3. Observation Model

The purpose of this section is to describe the observation model that allows
to obtain information from the collected stereoscopic images. Suppose to have
two cameras in a stereo configuration mounted on the leader spacecraft L as
in fig. 2 The center of projection of the right camera is assumed to coincide

Figure 2: Camera Configuration

with the center of mass of the leader. This is also the origin of the Cartesian
right-hand camera coordinate system [X, Y, Z] as defined in section 2.1. The
left camera is separated by a baseline b from the right camera. Using a
pinhole camera model and exploiting the perspective projection model, a
point in a 3D frame is described in the 2D image plane. With this method all
the selected and tracked feature points are expressed in the 2D camera plane.
For the vector ρi connecting the leader center of mass and a generic feature
point, assuming to have a focal length f equal to 1, the following expressions
are derived: For the right camera

uR(i) = f
xi
yi

vR(i) = f
zi
yi

(22)
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and for the left camera

uL(i) = f
xi − b
yi

vL(i) = f
zi
yi

(23)

where ρi = [xi, yi, zi] is expressed in the camera frame. Equations (22) and (23)
represent the 2D projections of a generic 3D point expressed by [xi,yi,zi].
We can also define wR = [uR vR] and wL = [uL vL]. Further information
can be recovered from the acquired images, exploiting the optical flow. A
formulation of the relation between the 3D motion and the optical flow is
derived in Heeger and Jepson (1992). This relationship is expressed by the
following equations:

ẇR i =

[
1

yi
A(wR i) B(wR i)

][
ρ̇0

ω

]
(24)

and

ẇL i =

[
1

yi
A(wL i) B(wL i)

][
ρ̇0

ω

]
(25)

with

A =

[
1 0 w1

0 1 w2

]
(26)

and

B =

[
−w1w2 1 + w1

2 −w2

−1− w2
2 w1w2 w1

]
(27)

where w1 and w2 are the first and the second component of the vector wR

or wL. It is important to underline that, in reality, cameras collect images
at a given sampling frequency. Using two subsequent frames, the optical
flow can be estimated and the image velocity computed. However, in the
here discussed observation model, it is assumed that the information about
the image velocity is recovered at each time step exploiting only information
about relative linear and angular velocity at that instant of time. Dealing
with real images a proper algorithm, computing the optical flow, has to be
used. Another problem is to determine the different location of the same
point in the left and right image plane respectively. The resulting difference
is called disparity and it is defined as:

di = uL − uR (28)
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The disparity allows to reconstruct information about the depth. The human
brain does something similar, interpreting the difference in retinal position
Qian (1997). In stereo vision applications, this can be performed exploiting
the so called triangulation. A set of feature points is chosen and they are
assumed to be always in the view of the cameras. Therefore, according to
our assumptions, the initial set of points is always traceable. At each time
step, the discrete measurement vector provided by the cameras is:

Zi = [wRi, wLi, ẇRi, ẇLi, di] (29)

Therefore, the observation equation is:

Zi = h(x) + v(t) (30)

with v random zero-mean white noise and h(x), the observation model, given
by:

h(x) =



xi
yi
zi
yi
xi−b
yi
zi
yi

xi−b
yi
− zi

yi[
1
yi
A(wR i) B(wR i)

][
ρ̇0

ω

]
[

1
yi
A(wL i) B(wL i)

][
ρ̇0

ω

]


(31)

4. Inertia Ratios Estimation

For the presented model, an a priori knowledge of the target inertia matrix
is necessary. This is not a realistic assumption since we are dealing with
a completely unknown and uncooperative space object. To overcome this
contradiction, an estimation of the basic inertia properties is necessary. A
torque free motion is assumed. In this condition, the inertia matrix is not
fully observable. In fact, only two of three degrees of freedom are observable
Tweddle (2013). Thus, two parameters are sufficient to represent the inertia
matrix. With a parametrized inertia matrix, the motion can be propagated
in the correct way. In fact, in torque free motion, eq. (17) can be properly
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propagated using the components of the inertia matrix scaled with any scale
factor. However, no geometrical or mass properties can be recovered. A
proper parametrization of the inertia matrix is necessary. Tweddle, in his
work Tweddle (2013), proposed a smart inertia parametrization. In particular:

k1 = ln

(
Ix
Iy

)
k2 = ln

(
Iy
Iz

)
(32)

We decided to exploit Tweedle’s idea, but including this parametrization in
a filtering procedure that is more computationally efficient with respect to
a smoothing algorithm. This formulation relies on the minimum number of
parameters, equal to the number of degrees of freedom. k1 and k2 do not have
any additional constraints. The inertia ratios have to be greater than zero
and they can be each value up to infinity. This is a consistent parametrization
because the natural logarithm has the same validity domain. Using this
parametrization, the target inertia matrix can be normalized as:

IT =

 IxIy 0 0

0 1 0
0 0 Iz

Iy

 =

ek1 0 0
0 1 0
0 0 e−k2

 (33)

At this point, these two parameters must be estimated by the filter. Therefore,
a new augmented state can be defined as:

x = [ρT , ρ̇T , ωT , qT , Pi
T , k1, k2]T (34)

Also the dynamical model is different. In fact, the parametrized inertia matrix
will substitute the previous value of the target inertia matrix in the rotational
dynamics expression. Additionally, two equations for k1 and k2 are considered.

∂k1

∂t
= 0 (35)

∂k2

∂t
= 0 (36)

Equation (35) and (36) are valid under the assumption of rigid body motion
and without considering any mass variation. In order to improve the conver-
gence of the filter a pseudo measurement constraint can be added. This is
inserted in the observation considering a null output. In this way, no addi-
tional measurements are formally considered. With this equality constraint,
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the value of the inertia matrix can be forced to converge to the correct value.
In particular:

0 = ω̇T + IT
−1(ωT × ITωT ) (37)

This is the new pseudo measurement. It is the classical Euler equation for
the rotational dynamics of the target. As already said, this equation does not
add any physical measurement and has to be inserted to the already present
observation equations eq. (31). In particular:

h(x) =



xi
yi
zi
yi
xi−b
yi
zi
yi

xi−b
yi
− zi

yi[
1
yi
A(wR i) B(wR i)

][
ρ̇0

ω

]
[

1
yi
A(wL i) B(wL i)

][
ρ̇0

ω

]
ω̇T + IT

−1(ωT × ITωT )


(38)

A fundamental aspect to take into account is that in the pseudo measurement
equation, the target angular acceleration is present. Information about this
quantity has to be recovered from the actual measurement. However, with
knowledge of ωL, ω̇L and ω, there is not an analytical expression independent
on IT to compute ω̇T . This implies that the angular acceleration of the target
has to be measured. With the knowledge of the optical flow, the value of ω
at each time step can be recovered. Then, a numerical differentiation can be
performed to find the relative angular acceleration. Dealing with derivative
of a quantity affected by errors is common in many scientific fields. For
this reason, several methods to compute numerical derivative of noisy data
exist. In our work, since no real measurements are available, the value of ω̇
is obtained by adding noise to the quantity available from the real dynamical
model. The noise is modeled as a zero-mean Gaussian with standard deviation
of 10−4rad/s2. This value can be obtained selecting the proper numerical
differentiation algorithm as presented in Listmann and Zhao (2013).
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5. Filtering Procedure

5.1. Extended Kalman Filter

The Kalman Filter was firstly developed by Rudolf E. Kalman in 1960’s
Kalman (1960). Kalman proposed a recursive solution to the discrete-data
linear filtering problem. This set of mathematical equations provides a
solution to this kind of problem in a very computationally efficient way. This
is one of the reasons why it was used several times in real applications, such
as the Apollo navigation computer McGee and Schmidt (1985). One of the
most widely used approaches is the Extended Kalman Filter (EKF). This
procedure was introduced by Maybeck Maybeck (1982) in the early 1980’s.
The EKF is a way to overcome the problems arising from the approximation
of the system dynamics with a linear model. The general idea is to use a
non-linear description of the system model and linearize this model about the
state estimation for each time step. In this way, as soon as a new estimate
is predicted, a linearized, more accurate state trajectory is available in the
estimation process. Remembering that the linearisation process involves the
assumption of small deviations from the reference trajectory, this can be
ensured by incorporating this updating of the reference trajectory in the
estimation process. Let’s assume that our process is governed by a non-linear
stochastic differential equation. This equation can be expressed in non-linear
state-space as:

ẋ = f(x) + w (39)

where x is the state vector, f(x) is a non-linear function describing the model,
depending on the state and w is a random zero-mean white noise. The related
power spectral density matrix is given by:

Q = E[wwT ] (40)

In the same way, a measurement equation can be defined as a non-linear
function as:

z = h(x) + v (41)

and
R = E[vvT ] (42)

with v being the measurement noise. The non-linear function h(x) relates the
state x to the measurement z. As already said, the system and the measure-
ment equations are non-linear. This implies that a first-order approximation
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has to be used in the continuous Riccati equations for the systems dynamics
matrix F and the measurement matrix H respectively. These two matrices
are the Jacobian of partial derivatives of f and h with respect to x:

F =
∂f(x)

∂x

∣∣∣∣
x=x̂

(43)

H =
∂h(x)

∂x

∣∣∣∣
x=x̂

(44)

The fundamental matrix for the discrete Riccati equations is approximated
by the Taylor-series expansion for eF∆t and can be expressed as:

Φk = I + F∆t+
F 2∆t2

2!
+

F 3∆t3

3!
+ ... (45)

where ∆t is the sampling time. In general, the Taylor-series expansion is
approximated with only the first two terms:

Φk = I + F∆t (46)

In fig. 3, a scheme of the filtering procedure is presented.

5.2. Iterated Extended Kalman Filter

The presented Extended Kalman Filter, is a widely used, powerful esti-
mation method. As already said, it is used in applications with a behavior
described by non-linear models. However, there are some real cases in which
also the measurement equation can be highly non-linear. In the Maybeck
work Maybeck (1982), there is also a reference to an Iterated Extended Kalman
Filter (IEKF). With this method, for each time step, local iterations and
re-linearisation are performed on the updated reference state. In this way, at a
fixed time k, the new state update is computed and it is used as a better state
estimate for evaluating h and computing the Jacobian H. Also in this case, a
simple scheme is presented in fig. 4. The described algorithm outperforms
the simple EKF re-computing, iteratively, h and H to obtain a better state
estimate x̂(k + 1|k + 1). This, of course, leads to have better estimation
also in the future steps. Despite the iterative cycle, the filter maintains its
simplicity and computational efficiency.
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Figure 3: Extended Kalman Filter Flowchart

6. Numerical Simulations

In this section, an evaluation of the performance and robustness of the
filter is performed through a Monte-Carlo analysis. A satellite and an object
in low Earth orbit are considered. In particular, the leader orbit is known.
It is assumed that the orbit of the leader has eccentricity eL = 0.05, semi-
major axis aL = 7170 km, inclination iL = 15 deg, argument of the perigee
ω = 340 deg and right ascension of ascending node Ω = 0 deg. According to
our parametrization, the leader inertia is

IL =

0.83 0 0
0 1 0
0 0 1.083

 kg m2 (47)

In addition, two parallel cameras, in a stereo configuration and pointing
in the same direction are mounted on the leader spacecraft. The baseline
between the cameras is assumed equal to 1m. These conditions are chosen
similarly to the Segal’s work Segal et al. (2014), in order to have a possible
comparison. Moreover, only five feature points are supposed to be measured
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Figure 4: Iterated Extended Kalman Filter Flowchart

instead of the ten chosen by Segal. This is an extreme case, in fact, more
than five points are usually visible and detectable. However, this condition
may occur when the object is not properly illuminated or if it is too bright.
Additionally, considering only a small number of points, the robustness and
convergence of the filter are tested also with poor available measurements.
The detected features are assumed to be spread over the body according to
a uniform Gaussian white noise bounded between 1.5m and −1.5m. After
defining the initial condition for the leader orbit, the state vector has to be
initialized. The initial state vector is:

x0 = [ρ0, ρ̇0, ω, q0, PT
i, k1, k2] (48)

This vector will be defined for each simulation. At this point, the filter
parameters have to be selected. In particular, the covariance matrices Q,
R, P have to be chosen. R represents the measurement noise and it can be
determined whenever the sensor accuracy is given. In the following simulations,
the noise of the measurements are modeled as a zero-mean Gaussian with
standard deviation of 10−5radians. This can be a reasonable value for real
cameras. In particular, according to Barron et al. (1994) the correct value
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of noise introduced by the optical sensors can be quantified in 1 pixel. This
value is also used in other works, such as Soatto et al. (1996) and Soatto
and Perona (1997). However, this pixel information has to be translated
into some meaningful quantity. We used the value of 10−5 radians, as in the
paper by Segal and Gurfil to be as consistent as possible with their work.
This is necessary to compare the obtained results. No justification is given
in the aforementioned reference on that value. An information about the
relationship between pixel and radians is given by the angular resolution.
This quantity depends on the camera setup. It is possible to assume to have
a noise mean standard deviation of 1 pixel and therefore a pixel size of 10−5

rad. This fits some cameras specification already adopted on past missions
Keller et al. (2009). Q, the process covariance matrix, has to be selected to
ensure the convergence of the filter. Finally, the initial value of P, the error
covariance matrix, represents the uncertainties in the initial estimation of the
state. For each time step, the quaternion is normalized. According to the
IEKF formulation, after the initial condition initialization, the predicted value
of the state has to be computed using the dynamical model. The function
ode45 is used in MATLAB to integrate the set of dynamical equations, for
the state, for each time step. Then, a centered difference method is used to
compute the Jacobian of the process model. With this value, the transition
matrix is computed and the new error covariance is predicted. At this point,
a while cycle is used to implement the iterative procedure of the Iterated
Extended Kalman Filter. A tolerance equal to 0.01 and a maximum number
of iterations equal to 10 is used. The threshold indicates the percentage
variation of the state vector norm with respect to the previous step. For the
observation model, the equations are solved and linearized with the same
approximate method. Finally, the filter innovation, innovation covariance
and gain are iteratively computed and state and covariance are updated.
Note that the quaternions are additively updated, imposing a normalization
constraint. In our simulations, a time step of 1 second is used and the total
time of the simulation is 100 seconds. The computed errors are defined as:

eρ =
√

(ρx − ρx)
2 + (ρy − ρy)

2 + (ρz − ρz)
2 (49)

with eρ being the error of the estimation of the center of mass. In this notation,
ρ denotes the estimated value of ρ. In the same way the relative translational
velocity error can be defined:

eρ̇ =
√

(ρ̇x − ρ̇x)
2 + (ρ̇y − ρ̇y)

2 + (ρ̇z − ρ̇z)
2 (50)
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And the relative angular velocity error:

eω =
√

(ωx − ωx)2 + (ωy − ωy)2 + (ωz − ωz)2 (51)

For k1 and k2 the error is simply:

ek1 =
√

(k1 − k1)2 ek2 =
√

(k2 − k2)2 (52)

The attitude error is defined in a different way. Recalling the definition of
the inverse of a quaternion:

q−1 =
q∗

||q||2
(53)

where q∗ is the conjugate of q, the error quaternion is equal to:

qe = q⊗ q−1 (54)

The symbol ⊗ is defined as the product of two quaternions. Finally, the
attitude estimation error can be defined as in Markley and Mortari (2000):

eθ = 2 cos−1(qe0) (55)

where, in our notation, qe0 is the scalar part of the error quaternion. In the
following examples, the performance of the filter is analyzed.

6.1. Case A - with pseudo-measurement constraint

For this simulation, the eq. (37) is applied in the observation model as
pseudo-measurement constraint. In the first case scenario, the filter is tested
with the following initial conditions:

• ρ0 = [10, 60, 10] m

• ρ̇0 = [0.01, −0.0225, −0.01] m/s

• ω0 = [−0.1, −0.1, 0.034] deg/s

• q0 = [0, 0, 0, 1]

The components of the covariance matrix are chosen to represent a realistic
situation. In fact, for a space debris capture mission, it is realistic to assume
to have partial information about the target position, velocity and attitude.
Again, the values of the initial covariance recall the ones used in Segal et al.
(2014). In particular, P is a diagonal matrix composed by:
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• σρ2 = [1, 1, 1] m2;

• σρ̇2 = [1, 1, 1] m2/s2;

• σω2 = [1, 1, 1] deg2/s2;

• σq2 = [1, 1, 1, 1] · 10−5;

• σP 2 = [1, 1, 1] m2;

• σI2 = [1, 1].

For this case, 100 simulations are considered. The mean relative errors after
10 seconds are evaluated according to eqs. (49) to (52) and (55). The results
are analyzed using histograms figs. 11 to 16. In this work, both EKF and
IEKF are used. However, only the results corresponding to the IEKF are
here reported. The IEKF can present, in some applications, a less robust
behavior with respect to its non-iterative form. In this case, the two methods
were almost equal in terms of robustness. This is the main reason why
results referred to the EKF are not presented. Please note that this work
does not want to offer a complete and satisfactory analysis on the compared
performance of the two filters. For sake of simplicity, simulations referring
only to the best-performing method are discussed. Additional work and
research has to be carried out to state a conclusive analysis of robustness
assessment of the presented filters in different operational conditions. In
particular, how different factors, such as the target dynamics, could affect the
overall robustness of the filtering procedure have to be further analyzed.

The presented results show robust convergence in all the analyzed simula-
tions. Figure 5 displays how the position error quickly converges, also in the
case of a large initial error. Consistently with the work by Segal, the steady
state error of the relative position of the center of mass remains significant
(0.5m). This happens even if a low value for the noise associated to the
optical measurements is adopted. Very good results are obtained for the
relative angular and translational velocity in fig. 6 and fig. 7. This is probably
connected to the fact that the optical flow equation is exploited. For the
relative attitude, fig. 8 shows poor convergence of the relative angle error.
The error tends to remain close to the initial value. The two inertia ratios
have good convergence thanks to the imposed equality constraint, as reported
in fig. 9 and fig. 10. In table 1, the results for are summarized. Table 1 shows
the mean errors around its steady state value. This first case is comparable
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Table 1: State Errors - Case A

Percentiles ρ [m] ρ̇ [m/s] ω [deg/s] θ [deg] k1 [−] k2 [−]

50 0.51 0.0062 0.0035 0.49 0.067 0.037
70 0.64 0.0067 0.0036 0.61 0.13 0.051
90 0.73 0.0073 0.0039 0.77 0.24 0.23
100 0.90 0.011 0.0043 0.87 0.53 0.23

to the Segal’s simulation Segal et al. (2014). Despite the different method
to compute the inertia properties, the initial conditions and the filtering
procedure are similar. The error of the relative position, translational velocity
and attitude is comparable to the one obtained to Segal. However, in this
work, better performance are obtained in terms of relative angular velocity.
Moreover, the inertia ratios are estimated with the same filtering procedure,
allowing for an online implementation. As already said, this was not possible
in the Segal’s work.
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Figure 5: Relative Position Error- Case A
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Figure 9: k1 Inertia Ratio Error - Case A
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Figure 10: k2 Inertia Ratio Error - Case A
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Figure 16: k2 Inertia Ratio Error Histogram - Case A

6.2. Case B - without pseudo-measurement constraint

In this case, the equality constraint is removed. The Case A initial
conditions are applied. For the covariance matrix, a smaller value is assumed
for the inertia ratios:

• σρ2 = [1, 1, 1] m2

• σρ̇2 = [1, 1, 1] m2/s2

• σω2 = [1, 1, 1] deg2/s2

• σq2 = [1, 1, 1, 1] · 10−5

• σP 2 = [1, 1, 1] m2

• σI2 = [1, 1]/2.

The filter keeps being robust under these new conditions too, and converges
in most of the simulations. The position and translational velocity error
trends do not change. In fact, the rotational dynamics does not affect the
translation. The angular velocity and attitude errors trends are comparable
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to the Case A outputs. The small values for the angular velocity are the
reason for these similarities. From the presented results, the inertia ratios
errors seem to converge to zero. However, this is only due to the fact that
the initial covariance is small. In fact, looking at the trend of the error in
fig. 17 and fig. 18, it is clear how the error tends to be constant. This means
that the estimated inertia ratios remain constant and do not converge. In
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Figure 17: k1 Inertia Ratio Error - Case B

table 2, the error results are summarized.

Table 2: State Errors - Case B

Percentiles ρ [m] ρ̇ [m/s] ω [deg/s] θ [deg] k1 [−] k2 [−]

50 0.51 0.0081 0.0058 0.59 0.33 0.35
70 0.6 0.009 0.0059 0.74 0.6 0.55
90 0.77 0.011 0.0063 0.88 1.4 1.6
100 0.96 0.013 0.0069 1.2 3.2 2.6
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Figure 18: k2 Inertia Ratio Error - Case B

6.3. Case C - without constraint, high angular velocity

So far, only small values for the relative angular velocity have been
considered. In this simulation, the performance of the filter without equality
constraint is evaluated in a case with larger initial relative angular velocity.
In particular:

• ρ0 = [10, 60, 10] m

• ρ̇0 = [0.01, −0.0225, −0.01] m/s

• ω0 = [−1, −1, 0.934] deg/s

• q0 = [0, 0, 0, 1]

The value of ω0 is obtained increasing the value of ωT . The covariance matrix
is, as before:

• σρ2 = [1, 1, 1] m2

• σρ̇2 = [1, 1, 1] m2/s2
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• σω2 = [1, 1, 1] deg2/s2

• σq2 = [1, 1, 1, 1] · 10−5

• σP 2 = [1, 1, 1] m2

• σI2 = [1, 1]/2

Table 3: State Errors - Case C

Percentiles ρ [m] ρ̇ [m/s] ω [deg/s] θ [deg] k1 [−] k2 [−]

50 0.53 0.01 0.012 1.8 0.035 0.021
70 0.64 0.013 0.013 2 0.043 0.024
90 0.76 0.017 0.014 2.2 0.069 0.032
100 0.94 0.02 0.016 2.5 0.15 0.043

Table 3 shows how the estimation of the relative position and translational
velocities is slightly affected by the change in the angular velocity. The
relative angular velocity and primarily the relative attitude are badly affected
by this change. In fact, in this case, the error in the estimation of the inertia
matrix strongly affects the dynamical model propagation. Therefore, the
incorrect inertia ratios lead to a decay in the estimation performance for
angular velocity and attitude. However, using a larger value for the target
angular velocity implies better results in the inertia ratios estimation also
without the equality constraint imposed with the pseudo measurement and
therefore, without exploiting any numerical derivation. Figure 19 and fig. 20
show the converging trend of the inertia ratios: This is justified by the fact
that, with a larger angular velocity, the filtering process better performs in
the estimation of the inertia components. Hence, the dynamical model and
the measurement equations of the angular velocity, force the inertia ratios to
converge to a ’consistent’ and exact value. This estimation can be obtained,
in torque free motion conditions, only parameterizing the inertia matrix in a
proper way, without using any numerical derivation.

7. Inertia Reconstruction

In the previous section, the estimation process of the inertia ratios has been
shown. However, the inertia parameters, with small relative angular velocity,
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Figure 19: k1 Inertia Ratio Error - Case C
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Figure 20: k2 Inertia Ratio Error- Case C
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are correctly recovered only if information about the angular acceleration
of the target is provided. This implies to numerically derive the available
measures of the angular velocity. Numerical derivatives of a quantity that
is usually noisy, can introduce instabilities and produce inaccurate results.
Moreover, only the inertia ratios are obtained. With these quantities, no
information about the actual mass distribution can be retrieved. In this
section, a method to recover all the inertia components is described, without
relying on any numerical method. A video and image process to recover mass
properties is presented. This method is not computationally efficient and,
in our application, relies on free and not optimized video/image processing
software. The main idea is to collect a video or images of the observed
body. From this set of images, a point cloud can be constructed according to
video processing algorithms. Once a point cloud is available, a triangulate
mesh can be built. The mesh gives us information about the geometry of
the object. At this point, an assumption has to be done. In fact, knowing
the geometry, the unknown density properties of the object do not allow
a complete reconstruction of the mass properties of the body. However,
generalizing the problem, the density can be assumed constant. In our case,
for sake of simplicity, a value of 1 g

cm3 is used. This value can be easily
modified, according to the application. This is a strong assumption and can
be acceptable only in very few cases. This procedure has been experimentally
validate at the University of Florida to demonstrate the validity of this method
also with complex geometries. A very simple experimental setup is used. The
video of a 3-DOF simulator (fig. 21) are collected using a Sony HandyCam
HDR-CX110. The obtained images are imported with VisualSFM Wu (2011)
and the point cloud is extracted. Then, with MeshLab Cignoni et al. (2008)
a mesh is created. This mesh is exported to MATLAB (fig. 22) and the mass
properties are recovered. The computer used for the video processing mounts
an Intel Xeon E5-2609 2.5 Ghz 10Mb cache Ivy Bridge Processor, 16Gb DDR3
SDRAM and a PNY Quadro K620 2Gb Video Card. The obtained results
show how the volume of the object can be reconstructed with this procedure.
In particular, the resulting errors of the component of the inertia matrix are
always lower than 20% with respect to the reference value. This is obtained
using a CAD model of the 3-DOF simulator, imposing the same constant
density.
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Figure 21: 3-DOF Simulator

Figure 22: MATLAB mesh
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8. Conclusion

This work proposes a new algorithm for estimating the pose, motion and
inertia properties of an unknown, uncooperative space object. The presented
results show how the algorithm, exploiting the equality constraint, allows for
a precise estimation of the complete relative state and the inertia components.
Moreover a quick convergence and a satisfactory accuracy are guaranteed. Sev-
eral simulations are presented to demonstrate the robustness of the algorithm
with different covariance matrix values and initial conditions. Moreover, it has
been shown how the inertia components, in the filtering process, can converge
without the equality constraint but only with a sufficiently high value for the
target angular velocity. In most of the cases, the presented algorithm shows
better results with respect to similar works. A novel approach to estimate the
inertia components with very limited computational burden is proposed. In
addition, it has been shown how the inertia properties can be reconstructed
with a video processing procedure. In fact, the geometrical properties of
a body can be reconstructed collecting multiple frames in time; the mass
properties of the observed object can be then reconstructed under a uniform
density distribution assumption. The step further in the research asks for the
experimental campaign to validate the promising obtained numerical results
and to tune the algorithms.

References

Barron, J.L., Fleet, D.J., Beauchemin, S.S., 1994. Performance of optical flow
techniques. International journal of computer vision 12, 43–77.

Benninghoff, H., Boge, T., 2015. Rendezvous involving a non-cooperative,
tumbling target - estimation of moments of inertia and center of mass of an
unknown target, in: International Symposium on Space Flight Dynamics.

Biesbroek, R., Soares, T., Husing, J., Innocenti, L., 2013. The e. deorbit cdf
study: A design study for the safe removal of a large space debris, in: ESA
Special Publication, p. 79.

Bryson, M., Sukkarieh, S., 2007. Building a robust implementation of bearing-
only inertial slam for a uav. Journal of Field Robotics 24, 113–143.

37



Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia,
G., 2008. Meshlab: an open-source mesh processing tool, in: Eurographics
Italian Chapter Conference, The Eurographics Association. pp. 129–136.

Clohessy, W.H., W., 1960. Terminal guidance system for satellite rendezvous
.

Croomes, S., 2006. Overview of the dart mishap investigation results. NASA
Report , 1–10.

DAmico, S., Benn, M., Jørgensen, J.L., 2014. Pose estimation of an unco-
operative spacecraft from actual space imagery. International Journal of
Space Science and Engineering 2, 171–189.

Dong, G., Zhu, Z., 2016a. Incremental inverse kinematics based vision servo
for autonomous robotic capture of non-cooperative space debris. Advances
in Space Research 57, 1508–1514.

Dong, G., Zhu, Z.H., 2016b. Autonomous robotic capture of non-cooperative
target by adaptive extended kalman filter based visual servo. Acta Astro-
nautica 122, 209–218.

Felicetti, L., Sabatini, M., Pisculli, A., Gasbarri, P., Palmerini, G.B., 2014.
Adaptive thrust vector control during on-orbit servicing, in: Proceedings
of AIAA SPACE 2014 Conference and Exposition, paper AIAA-2014-4341,
San Diego.

Fenton, R.C., 2008. A LADAR-Based Pose Estimation Algorithm for Deter-
mining Relative Motion of a Spacecraft for Autonomous Rendezvous and
Dock. ProQuest.

Friend, R.B., 2008. Orbital express program summary and mission overview,
in: SPIE Defense and Security Symposium, International Society for Optics
and Photonics. pp. 695803–695803.

Galvez, A., Carnelli, I., Michel, P., Cheng, A., Reed, C., Ulamec, S., Biele,
J., Zbrll, P., Landis, R., 2013. Aida: The asteroid impact & deflection
assessment mission, in: European Planetary Science Congress, EPSC2013-
1043.

38



Grasa, O.G., Civera, J., Montiel, J., 2011. Ekf monocular slam with relocal-
ization for laparoscopic sequences, in: Robotics and Automation (ICRA),
2011 IEEE International Conference on, IEEE. pp. 4816–4821.

Gurfil, P., Kholshevnikov, K.V., 2006. Manifolds and metrics in the relative
spacecraft motion problem. Journal of guidance, control, and dynamics 29,
1004–1010.

Heeger, D.J., Jepson, A.D., 1992. Subspace methods for recovering rigid mo-
tion i: Algorithm and implementation. International Journal of Computer
Vision 7, 95–117.

Kaess, M., Ranganathan, A., Dellaert, F., 2007. isam: Fast incremental
smoothing and mapping with efficient data association, in: Robotics and
Automation, 2007 IEEE International Conference on, IEEE. pp. 1670–1677.

Kaess, M., Ranganathan, A., Dellaert, F., 2008. isam: Incremental smoothing
and mapping. Robotics, IEEE Transactions on 24, 1365–1378.

Kalman, R.E., 1960. A new approach to linear filtering and prediction
problems. Journal of Fluids Engineering 82, 35–45.

Keller, H., Barbieri, C., Lamy, P., Rickman, H., Rodrigo, R., Wenzel, K.P.,
Sierks, H., A’Hearn, M., Angrilli, F., Angulo, M., et al., 2009. 14-osiris: The
scientific camera system onboard rosetta, in: ROSETTA ESA’s Mission
to the Origin of the Solar System. Springer Science+ Business Media, pp.
315–382.

Kimball, P., 2011. Iceberg-relative navigation for autonomous underwater
vehicles. phd. Stanford University, Stanford, CA 8, 2011.

Lichter, M.D., Dubowsky, S., 2004. State, shape, and parameter estimation
of space objects from range images, in: Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004 IEEE International Conference on, IEEE. pp.
2974–2979.

Lichter, M.D., Dubowsky, S., 2005. Shape, motion, and parameter estimation
of large flexible space structures using range images, in: Robotics and
Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International
Conference on, IEEE. pp. 4476–4481.

39



Listmann, K.D., Zhao, Z., 2013. A comparison of methods for higher-order
numerical differentiation, in: Control Conference (ECC), 2013 European,
IEEE. pp. 3676–3681.

Liu, L., Zhao, G., Bo, Y., 2016. Point cloud based relative pose estimation of
a satellite in close range. Sensors 16, 824.

Markley, F.L., Mortari, D., 2000. Quaternion attitude estimation using vector
observations. Journal of the Astronautical Sciences 48, 359–380.

Maybeck, P.S., 1982. Stochastic models, estimation, and control. volume 3.
Academic press.

McGee, L.A., Schmidt, S.F., 1985. Discovery of the kalman filter as a practical
tool for aerospace and industry .

Opromolla, R., Fasano, G., Rufino, G., Grassi, M., 2015a. A model-based
3d template matching technique for pose acquisition of an uncooperative
space object. Sensors 15, 6360–6382.

Opromolla, R., Fasano, G., Rufino, G., Grassi, M., 2015b. Uncooperative pose
estimation with a lidar-based system. Acta Astronautica 110, 287–297.

Philip, N., Ananthasayanam, M., 2003. Relative position and attitude esti-
mation and control schemes for the final phase of an autonomous docking
mission of spacecraft. Acta Astronautica 52, 511–522.

Qian, N., 1997. Binocular disparity and the perception of depth. Neuron 18,
359–368.

Segal, S., Carmi, A., Gurfil, P., 2011. Vision-based relative state estimation
of non-cooperative spacecraft under modeling uncertainty, in: Aerospace
Conference, 2011 IEEE, IEEE. pp. 1–8.

Segal, S., Carmi, A., Gurfil, P., 2014. Stereovision-based estimation of relative
dynamics between noncooperative satellites: Theory and experiments.
Control Systems Technology, IEEE Transactions on 22, 568–584.

Segal, S., Gurfil, P., 2009. Effect of kinematic rotation-translation coupling on
relative spacecraft translational dynamics. Journal of Guidance, Control,
and Dynamics 32, 1045–1050.

40



Shahid, K., Okouneva, G., 2007. Intelligent lidar scanning region selection
for satellite pose estimation. Computer Vision and Image Understanding
107, 203–209.

Sharma, S., et al., 2016. Comparative assessment of techniques for initial
pose estimation using monocular vision. Acta Astronautica 123, 435–445.

Soatto, S., Frezza, R., Perona, P., 1996. Motion estimation via dynamic
vision. IEEE Transactions on Automatic Control 41, 393–413.

Soatto, S., Perona, P., 1997. Recursive 3-d visual motion estimation using
subspace constraints. International Journal of Computer Vision 22, 235–259.

Strasdat, H., Montiel, J., Davison, A.J., 2010. Real-time monocular slam:
Why filter?, in: Robotics and Automation (ICRA), 2010 IEEE International
Conference on, IEEE. pp. 2657–2664.

Tweddle, B.E., 2013. Computer vision-based localization and mapping of
an unknown, uncooperative and spinning target for spacecraft proximity
operations. PhD, Massachusetts Institute of Technology, Cambridge, MA .

Tweddle, B.E., Saenz-Otero, A., 2014. Relative computer vision-based navi-
gation for small inspection spacecraft. Journal of Guidance, Control, and
Dynamics , 1–9.

Wu, C., 2011. Visualsfm: A visual structure from motion system. URL:
http://homes. cs. washington. edu/˜ ccwu/vsfm 9.

41


	FronteRivista
	VPesce_ASR
	Introduction
	Dynamical Model
	Reference Frames and Coordinate Systems
	Process Model

	Observation Model
	Inertia Ratios Estimation
	Filtering Procedure
	Extended Kalman Filter
	Iterated Extended Kalman Filter

	Numerical Simulations
	Case A - with pseudo-measurement constraint
	Case B - without pseudo-measurement constraint
	Case C - without constraint, high angular velocity

	Inertia Reconstruction
	Conclusion


