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Optimal control of pretwisted rotating thin-walled beams via
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Pierangelo Masarati§
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Problems related to mathematical modeling and optimal active control of pretwisted adap-

tive blade are considered. The blade is modeled as a rotating thin-walled composite beam

embedded with anisotropic piezo-composite layers accounting for nonclassical effects, such as

transverse shear and warping inhibitions. The linear quadratic regulator feedback control

strategy is adopted to study the tailoring of piezo-actuators on vibration suppression. Control

authority of piezoelectrically induced transverse shear and bending coupling is highlighted.

Tailoring studies using the present model reveal that piezoelectrically induced transverse shear

plays an important role on control effectiveness. In addition, the relations between the con-

trol authority and the elastic couplings, piezoelectrically induced actuation couplings, pretwist

angle, size and position of piezo-actuators are investigated.

Nomenclature
ai j 1-D global stiffness coefficients

Ai j Local stretching stiffness quantities of a wall

AX
i Piezo-actuator coefficients

2b, 2d Width and depth of the box beam, see Fig. 2

bi j 1-D mass coefficients

bw External bimoment per unit span

Fw , a(s) Primary and secondary warping function, respectively

L Length of the beam, see Fig. 2

h(k) Thickness of the kth layer of a wall, see Eq. (15a)

Jmin Minimum cost function, see Eq. (37)

Ki j Local stiffness coefficients

∗Part of the manuscript was presented at 43r d European Rotorcraft Forum, September 12-15, 2017, Milano, Italy
†Assistant Professor, National Key Laboratory of Rotorcraft Aeromechanics, College of Aerospace Engineer, No.29 Yudao St., Nanjing, China.
‡Full Professor, National Key Laboratory of Rotorcraft Aeromechanics, College of Aerospace Engineer, No.29 Yudao St., Nanjing, China.
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mx , my , my External moments per unit span

Nl Number of the total layers in the wall, see Eq. (15a)

px , py , py External forces per unit span

P(y) Span distribution function, see Eq. (20)

R0 Hub radius, see Fig. 1

(s, y,n) Local coordinate system on the mid-line contour of the cross-section, see Fig. 2

(u0, v0,w0) Displacement components along x, y, z axes, see Fig. 2

Vi Voltage parameters, see Eq. (21)

(x, y, z) Rotating coordinate system at the blade root, see Fig. 1

(xp, yp, zp) Pretwist measurement coordinate system at the cross-section, see Fig. 2

αK , αM Stiffness and mass weighting coefficients in state weighting matrix Z in Eq. (33)

β(y) Pretwist angle

β0, γ0 Linear pretwist angle and presetting angle, see Eq. (38)

ρ(k) Mass density of the kth layer, see Eq. (15a)

ηi Control weighting coefficients, see Eq. (33)

ηp , ηs Position and size nondimensional parameters of piezo-actuator, see Eq. (42)

δ Variation operator

δp , δs 1 or 0 tracers

θh , θp Ply-angle of host structure and piezo-actuator, respectively

(θx, θz, φ) Rotations about the x, z and y axes, see Fig. 2

θFp , θWp Ply-angle of flange and web actuator-pairs, respectively

Ω Rotating speed

Û(), Ü(),()′ ∂()/∂t, ∂2()/∂t2, ∂()/∂y

XT Transpose of the matrix or vector X∮
c
,
∫ L

0 Integral along the cross-section and the span, respectively

I. Introduction
Because of the advantages with respect to weight criteria, specific high stiffness and elastic couplings, rotating

composite thin-walled structures have a wide range of applications in various engineering structures, e.g., wind turbines,

helicopter blades, and steam turbines. A large amount of work are devoted to the modeling and behavior investigation of

composite rotor blades [1–11]. Recently, the blade incorporating adaptive materials technology into the host structure
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are proposed for the design of new high performing blades [12–16]. In contrast to the passive control via tailoring

technology, in those featuring adaptive capabilities, the frequencies, mode shapes and damping can be tuned to avoid

structural resonance and to enhance dynamic response characteristics. Rafiee et al. [17] gave a comprehensive review of

scholarly articles about dynamics, vibration and control of rotating composite beams and blades as published in the past

decades. Because piezoelectric materials have a series of desirable characteristics, such as self-sensing, fast response

and covering a broad range of frequencies, they are excellent candidates for the role of sensors and actuators, especially

for the single crystal piezoceramics that can induce an order of magnitude larger than other piezoceramics [18]. In

the last decades, piezoelectric fiber composite material, such as active fiber composite (AFC) [19] and macro fiber

composite (MFC) [20] are introduced to overcome the drawbacks of the traditional monolithic piezoelectric materials,

e.g., brittleness in nature, difficulty for embedding in curved surfaces. The significant benefits of piezoelectric composite

materials, especially the widely used MFCs, are the orthotropic and anisotropic actuation capabilities, which allow more

dirct and independent control of twist, bending, and extension [21].

In the existing literature, a lot publications on modeling or studying adaptive thin-walled structure activated via the

piezoelectric patches [22–35]. Among them, Librescu and Song [22, 30] developed an adaptive thin-walled structure

theory based on the assumption of the directions of piezoelectric patches are along the span; based on this model, Na

et al. further considered the tapered cross-section [23], nonuniform effects [24] and active control of the thin-walled

beam when implementing various modern control strategies [25, 26, 29]; Chandiramani et al. studied the optimal

control of a rotating composite thin-walled beams via the piezoelectric patches [31] and further considered the variation

of the electric field along the span [32]; Chattopadhyay et al. [33, 34] presented numerical results for the composite

box-beam blade with self-sensing piezoelectric actuators, showing the nonlinear trade off between power consumption

and vibration reduction; Wang et al. [35] extended the rotating thin-walled beam model developed by Libresu and

Song via taking the anisotropic piezo-composite material into accounted and gave a comprehensive study allowing

to get a better insight into the influence of piezoelectrically induced extension, transverse shear, twist, warping and

bending actuations. Nevertheless, the literature devoted to the active control effectiveness of the rotating blades via the

piezoelectrically induced actuation couplings is scarce. In other words, the influence of the synergistic effect on control

authority when simultaneously implementing the elastic tailoring and the piezoelectric actuations tailoring is still not

very clear. Thus, the objective of the present paper is trying to supply some pertinent information for this problem. In

fact, a comprehensive study about the piezoelectrically induced actuation couplings on control effectiveness is a difficult

task since the influences of a lot design factors should be taken into accounted, e.g., presetting and pretwist angles,

elastic couplings, geometry of the blade, applied control strategy, voltages requirement, rotating speed, hub radius, sizes,

positions and number of the piezo-actuators.

In this paper, based on the pretwisted adaptive rotating blade model developed in Ref. [35], the control authority

on vibration suppression is investigated when implementing the Linear Quadratic Regular (LQR) optimal control
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strategy to balance the control effectiveness and control energy consumption. The Extended Galerkin’s Method (EGM)

is used to semi-discretize the governing equation of the system for numerical study. The control effectiveness by

piezoelectrically induced transverse shear is highlighted. The relations between the control authority and the elastic

couplings, piezoelectrically induced actuation couplings, pretwist angle, size and position of piezo-actuators are

investigated.

II. Basic assumptions and kinematics

A. Basic assumptions

The adaptive rotating blade that fixed on a rigid hub as shown in Fig. 1 is modeled as a fiber-reinforced composite

thin-walled box beam bounded or embedded with anisotropic piezoelectric composite materials. Toward the modeling

of the flexible rotating thin-walled beam structure, following assumptions are adopted [30, 35]:

1) the rotating speed is assumed as constant;

2) the cross-section is assumed preserved during deformation, but it allows warping out;

3) in additional to the primary warping on the mid-line contour, the off mid-line contour warping (referred to

secondary warping) is also considered;

4) the transverse shear effect is taken into account;

5) the linear piezoelectric constitutive relationship is adopted for both fiber-reinforced and piezoelectric composite

materials.

The mathematical modeling of the rotating thin-walled beam is actually based on the refined adaptive thin-walled beam

theory developed in Ref. [35], in which the high speed rotation induced effects, such as centrifugal stiffening, Coriolis

effect and tennis-racket effect [36] are specifically highlighted.
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Fig. 1 A schematic description of the adaptive blade.
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Fig. 2 Geometry of the pretwisted beam with a rectangular cross-section.

B. Kinematics

The rotating axis system (x, y, z) that located at the blade root with an offset R0 from the rotation axis O is adopted

to describe the deformation of the blade, see Figs. 1 and 2. The unit vectors of the (x, y, z) frame coordinate is defined as

(i, j,k). In addition, the other two surface coordinate systems attached on the cross-section are defined, i.e., pretwist

measurement (xp, y, zp) and cross-section displacement description (s, y,n), see Fig. 2. Note that, coordinate system

(s, y,n) is on the mid-line contour of the cross-section, while the coordinate systems (xp, y, zp) and (x, y, z) are related

by the following transformation


x(s, y) = xp(s) cos β(y) + zp(s) sin β(y),

z(s, y) = −xp(s) sin β(y) + zp(s) cos β(y),
(1)

where β(y) denotes the pretwist angle.

It is beneficial to express the position vector R of an arbitrary point belonging to the deformed beam, measured from

the fixed origin O (coinciding with the center of the hub), described in the rotating coordinate system (x, y, z), viz.,

R = R0 + r + D, (2)

where R0, r and D denote the position vector of the beam root point o (hub periphery), the undeformed position vector

of the measured point, and its displacement vector, respectively. Their explicit expressions are

R0 = R0j, r = xi + yj + zk, D = ui + vi + wk, (3)
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where the components u, v and w in the displacement vector D are [37]

u(x, y, z, t) =u0(x, t) +
[
z(s) + n

d x
d s

]
sin φ(y, t) −

[
x(s) − n

d z
d s

]
[1 − cos φ(y, t)] , (4a)

v(x, y, z, t) =v0(y, t) +
[
x(s) − n

d z
d s

]
θz(y, t) +

[
z(s) + n

d x
d s

]
θx(y, t) − [Fw(s) + na(s)] φ′(y, t), (4b)

w(x, y, z, t) =w0(y, t) −
[
x(s) − n

d z
d s

]
sin φ(y, t) −

[
z(s) + n

d x
d s

]
[1 − cos φ(y, t)]. (4c)

u0(y, t), v0(y, t), w0(y, t), φ(y, t), θx(y, t), θz(y, t) in Eq. (4) represent the 1-D displacement measures as shown in Fig. 2,

and are the basic unknown of the problem. The primary warping function Fw(s) and the secondary warping function

na(s) are defined as

Fw(s) =
∫ s

0
[z

d x
d x
− x

d z
d s
− ψ(s)] d s, na(s) = −n(z

d z
d s
+ x

d x
d s
). (5)

As for the expression of the torsional function ψ(s), one can refer to Refs. [38].

Based on the constant angular speed assumption, i.e., Ω = Ωk, the velocity vector of the arbitrary measured point

can be given as:

ÛR(x, y, z) = Ûu(x, y, z)i − [R0 + y + v(x, y, z)]Ωi + Ûv(x, y, z)j + [x + u(x, y, z)]Ωj + Ûwk. (6)

C. Strains

The strains that contribute to the potential energy are presented.

Spanwise strain

εyy(n, s, y, t) = ε0
yy(s, y, t) + nε1

yy(s, y, t), (7)

where ε0
yy denotes the axial strain associated with the primary warping and ε1

yy denotes a measure of curvature associated

with the secondary warping, viz.,

ε0
yy =

[
v′0 + xθ ′z + zθ ′x − Fwφ

′′
]
+

1
2

[
(u′0)

2 + (w′0)
2 + (x2 + z2)φ′2

]
+ u′0φ

′(z cos φ − x sin φ) − w′0φ
′(x cos φ + z sin φ),

(8a)

ε1
yy = −

d z
d s

θ ′z +
d x
d s

θ ′x − aφ′′ + φ′
[
u′0

(
d x
d s

cos φ +
d z
d s

sin φ
)
+ w′0

(
d z
d s

cos φ −
d x
d s

sin φ
)
+ rnφ′

]
. (8b)

Tangential shear strain:

γsy(s, y, t) = γ0
sy(s, y, t) + ψ(s)φ

′(y, t) + 2nφ′, (9)

6



where

γ0
sy =

d x
d s

(
θz + u′0 cos φ − w′0 sin φ

)
+

d z
d s

(
θx + u′0 sin φ + w′0 cos φ

)
. (10)

Transverse shear stain:

γny =
d x
d s

(
θx + u′0 sin φ + w′0 cos φ

)
−

d z
d s

(
θz + u′0 cos φ − w′0 sin φ

)
. (11)

D. Constitutive relations

The fiber-reinforced composite material constituting the host structure and the piezo-composite material (e.g.

MFC [39]) playing the role of actuator can both be modeled using the linear piezoelectric constitutive equation [35, 37].

The stress resultants and stress couples can reduce to the following expressions



Nyy

Nys

Lyy

Lsy


=



K11 K12 K13 K14

K21 K22 K23 K24

K41 K42 K43 K44

K51 K52 K53 K54





ε0
yy

γ0
ys

φ′

ε1
yy


−



Ñyy

Ñsy

L̃yy

L̃sy


, (12)

and

Nyn =

(
A44 −

A45
2

A55

)
γyn. (13)

The explicit expressions of the local stiffness coefficients Ki j and the stretching stiffness quantities Ai j are given in

Ref. [37]. While the piezoelectrically induced stress resultant components Ñyy , Ñsy and stress couple components L̃yy ,

L̃sy are given in Refs. [35, 40].

III. Formulation of the governing system
The governing equations and the associated boundary conditions are derived from Hamilton’s principle. This can be

stated as ∫ t1

t0

[δT + δWe − δU] d t = 0, (14)

where the kinetic energy T , the elastic energy U and the virtual work of the external loads on the blade We can be given

as

T =
1
2

∫ L

0

∮
c

Nl∑
k=1

∫
h(k)

ρ (k)( ÛR · ÛR) d n d s d y, (15a)
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U =
1
2

∫ L

0

∮
c

[
Nyyε

0
yy + Nysγ

0
sy + Lyyε

1
yy + Lsyφ

′ + Nnyγny

]
d s d y, (15b)

We =

∫ L

0

[
pxu0 + pyv0 + pzw0 + mxθx + (my + bw ′)φ + mzθz

]
d y. (15c)

In Eqs. (14) and (15), t0 and t1 denote two arbitrary motions of time; ρ(k) denotes the mass density of the kth layer; Nhp

is the total number of the layers; L is the length of the blade; px , py , pz , mx , my , mz and bw are the external excitation

per unit span length; while δ and ( )′ denote the variation operator and ∂()/∂y, respectively.

For the general case of ply-up configuration, the system exhibits a complete coupling between the various modes,

that is, warping (primary and secondary), bending (flapping and lagging), transverse shearing (chordwise and flapwise),

twist and extension. In engineering applications, special lay-up configuration is normally adopted to design particular

couplings [41]. Here, circumferentially uniform stiffness (CUS) configuration [42] is considered. For the pretwisted

thin-walled beam with rectangular cross-section as shown in Fig. 2, CUS configuration implies the ply-angle distribution

θ(zp) = θ(−zp) of the top and bottom walls and θ(xp) = θ(−xp) of the left and right walls. Indicated in Ref. [35],

this configuration will decouple the system into two independent subsystems, i.e., one governs the flapping-lagging

coupling motion (u0 − w0 − θx − θz) and the other governs the twist-extension coupling motion (v0 − φ). The present

article is focused on the former subsystem considering the fact that the active twist control of the more straightforward

twist-extension subsystem has been widely investigated, e.g., Refs. [12, 35].

After a lengthy variation process of Eq. (14), the governing equations expressed in terms of displacement quantities

by ignoring the immaterial nonlinear terms are

δu0 : a34θ
′′
x + a44(u′′0 + θ

′
z) + px + b1Ω

2[R(y)u′0]
′ − b1[ Üu0 − 2ΩÛv0

::::
−Ω2u0] + δpA

Qx
1 V1P′(y) = 0, (16a)

δw0 : a25θ
′′
z + a55(w

′′
0 + θ

′
x) + b1Ω

2[R(y)w′0]
′ − b1 Üw0 + pz + δpA

Qz
3 V3P′(y) = 0, (16b)

δθx : a33θ
′′
x + a34(u′′0 + θ

′
z) − a25θ

′
z − a55(w

′
0 + θx) + mx − b4 Üθx − b6 Üθz

− 2Ωb4 Ûφ
:::::

+Ω2(b4θx + b6θz) + δpA
Mx
1 V1P′(y) − AQz

3 V3P(y) = 0,
(16c)

δθz : a22θ
′′
z + a25(w

′′
0 + θ

′
x) − a34θ

′
x − a44(u′0 + θz) + mz − b5 Üθz − b6 Üθx − 2Ωb6 Ûφ

:::::

+Ω2(b5θz + b6θx) + δpA
Mz
3 V3P′(y) − AQx

1 V1P(y) = 0.
(16d)

The associated boundary conditions at the blade root y = 0 are

u0 = w0 = θx = θz = 0, (17)
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and at the blade tip y = L are

δu0 : a24(L)θ ′z + a34(L)θ ′x + a44(L)(u′0 + θz) + a45(L)(w′0 + θx) + δs
[
A

Qx
1 V1 cos β(L) +AQz

3 V3 sin β(L)
]
= 0,

(18a)

δw0 : a25(L)θ ′z + a35(L)θ ′x + a45(L)(u′0 + θz) + a55(L)(w′0 + θx) + δs
[
A

Qz
3 V3 cos β(L) − AQx

1 V1 sin β(L)
]
= 0,

(18b)

δθx : a23(L)θ ′z + a33(L)θ ′x + a34(L)(u′0 + θz) + a35(L)(w′0 + θx) + δs
[
AMx

1 V1 cos β(L) − AMz
3 V3 sin β(L)

]
= 0,

(18c)

δθz : a22(L)θ ′z + a23(L)θ ′x + a24(L)(u′0 + θz) + a25(L)(w′0 + θx) + δs
[
AMz

3 V3 cos β(L) +AMx
1 V1 sin β(L)

]
= 0.

(18d)

In these equations

R(y) = R0(L − y) +
1
2
(L2 − y2), (19)

ai j(y), bi j(y) and AX
i are the stiffness, mass and piezo-actuator coefficients, respectively. Their explicit expressions are

given in Refs. [37] and [40], respectively. P(y) denotes the span location of the piezo-actuator as shown in Fig. 1

P(y) = H(y − y1) − H(y − y2), (20)

where H(·) is Heaviside’s distribution. For the cases (i) the actuator is spread over the entire beam span and (ii) the

actuator is a single patch, the traces have to be taken as (i) δp = 0 and δs = 1 and (ii) δp = 1 and δs = 0, respectively.

In fact, the piezo-actuators can be split into two individual actuator-pairs, viz., flange-actuator-pair (top and bottom)

and web-actuator-pair (left and right) as shown in Fig. 3. Voltage parameters V1 and V3 that contributed by the

flange-actuator-pair and the web-actuator-pair are defined in sequence as

V1 =
VT − VB

2
, V3 =

VL − VR

2
, (21)

where VT , VB, VL and VR are the voltages applied on the top, bottom, left and right walls, respectively, see Fig. 3. Note

that, the terms in the governing equations (16) associated with (i) the centrifugal acceleration, (ii) the Coriolis and (iii)

the centrifugal-rotatory effects are underscored by (i) a solid line ( ), (ii) a wavy line (
::::
) and (iii) two superposed

solid lines ( ), respectively. One can refer to, e.g., Refs. [8, 36, 41] for more details of thesis high rotating speed

induced effects.
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Fig. 3 Piezo-actuator configuration.

In addition, a special case, the untwisted rotor blade with host structure fiber orientation along the span (θh = 90◦)

is highlighted. It can be verified that the stiffness coefficients a23, a24, a25, a34, a35, a45 and the mass coefficient b6

all equal to zero in the governing equations (16) and the associated natural boundary conditions (18). As a result, the

flapping and the lagging motions can be completely decoupled, i.e., the governing equations for lagging motion are

δu0 : a44(u′′0 + θ
′
z) + px + b1Ω

2[R(y)u′0]
′ − b1[ Üu0 −Ω

2u0] + δpA
Qx
1 V1P′(y) = 0, (22a)

δθz : a22θ
′′
z − a44(u′0 + θz) + mz − b5 Üθz +Ω

2b5θz + δpA
Mz
3 V3P′(y) − AQx

1 V1P(y) = 0, (22b)

with the natural boundary conditions as

δu0 : a44(u′0 + θz) + δsA
Qx
1 V1 = 0, (23a)

δθz : a22θ
′
z + δsA

Mz
3 V3 = 0; (23b)

while the governing equations for flapping motion are

δw0 : a55(w
′′
0 + θ

′
x) + b1Ω

2[R(y)w′0]
′ − b1 Üw0 + pz + δpA

Qz
3 V3P′(y) = 0, (24a)

δθx : a33θ
′′
x − a55(w

′
0 + θx) + mx − b4 Üθx +Ω

2b4θx + δpA
Mx
1 V1P′(y) − AQz

3 V3P(y) = 0, (24b)

with the natural boundary conditions are

δw0 : a55(w
′
0 + θx) + δsA

Qz
3 V3 = 0, (25a)

10



δθx : a33θ
′
x + δsA

Mx
1 V1 = 0. (25b)

IV. Solution methodology

A. The Extend Galerkin’s Method

The Extend Galerkin’s Method (EGM) [43] is applied to discretize the system for numerical study. The basic idea

of EGM is to select the appropriate shape functions that exactly satisfy only the geometric boundary conditions. The

residual terms resulting from the non-fulfillment of natural boundary conditions are then minimized in the Galerkin

sense [44]. We assume

u0(y, t) = ΨT
u (y)qu(t), w0(y, t) = ΨT

w(y)qw(t), θx(y, t) = ΨT
x (y)qx(t), θz(y, t) = ΨT

z (y)qz(t), (26)

where the shape functions ΨT
u (y), ΨT

w(y), ΨT
x (y) and ΨT

z (y) are required to fulfill the geometric boundary conditions.

Thus the discretized forms of the system when ignoring the Coriolis terms which are immaterial for small thickness

ratio blade [45] follow as

MÜq + [K +Ω2K̂]q +A1V1 +A3V3 = Q, (27)

where

q =
{
qT
u qT

w qT
x qT

z

}T
. (28)

The expressions for mass matrix M, stiffness matrix K, dynamical stiffness matrix K̂, piezo-actuator vector Ai and

external excitation vector Q are given in appendix of Ref. [35].

B. Linear quadratic regulator optimal control

One important target of the piezo-actuators is to suppress the vibration of the blade. To achieve this target, linear

quadratic regulator (LQR) optimal control based on the use of a full state feedback scheme is adopted. Therefore,

Eq. (27) can be cast in state-space form as

Ûx(t) = Ax(t) + BQ(t) − BA1V1(t) − BA3V3(t), (29)

where

x(t) =


qT (t)

ÛqT (t)

 , A =


0 I

−M−1K 0

 , B =


0

M−1

 . (30)

Note that the LQR control provides sort of a benchmark, an ideal optimal value which cannot be obtained in practical

applications because the state x is not available and needs to be reconstructed using a state estimator that degrades the

11



quality of the regulator. Within the LQR control algorithm, minimizing the response of the closed-loop rotating blade

system and the piezo-actuator control effort at the same time, the following cost function is adopted

J =
1
2

∫ t f

t0

(
xTZx + ViRiVi

)
d t, (31)

where t0 and t f denote the present and the final time, respectively. The state weighting matrix Z and the control

weighting scalar Ri should be positive semidefinite and positive definite, respectively. According to Ref. [46], following

Z =


αKK 0

0 αMM

 , Ri = ηiAi
TK−1Ai, (i = 1,3) (32)

are adopted for to make a trade off between control effectiveness and additional energy consumption, namely of

minimizing the response with that of minimizing the control effort. The stiffness and mass weighting coefficients αK

and αM in Eq. (32) are non-negative scalars, while the control weighting coefficients ηi are positive scalars. The matrix

Z actually represents the sum of the system kinetic and potential energies in the sense of

1
2

∫ t f

t0

xTZ d t =
1
2

∫ t f

t0

[
αM ÛqTM Ûq + αKqTKq

]
d t . (33)

Thus the feedback control law that minimizes the value of the cost is

Vi(t) = −Gix(t), (i = 1,3) (34)

where

Gi = −R−1Ai
TBTPi, (35)

is the optimal gain matrix, while Pi is the positive-definite solution to the following steady-state Riccati equation

Z + PiA + ATPi − RiPiBAiAi
TBTPi = 0. (36)

The associated minimum solution of the cost function Jmin can be given as

Jmin =
1
2

xT (t0)Pix(t0). (37)
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V. Numerical study and discussion
The geometric specifications and the material properties of the host structure of the thin-walled box beam used in

numerical study are shown in Table 1. While the material properties of the piezo-actuators are specified in Table 2.

The details of the lay-up configurations of the blade are listed in Table 3. Validations of the present thin-walled beam

model have been performed in Refs. [35, 40]. Note that, in this numerical study, unless otherwise stated, the following

assumptions are adopted.

1) The linear pretwist angle

β(y) = γ0 − β0
y

L
(38)

is accounted. In addition, the presetting angle γ0 = β0 is further assumed to make the pretwist angle at the beam

tip equal to zero. As a result, Eq. (38) can be further expressed as

β(y) =
L − y

L
β0. (39)

2) The piezo-actuators are assumed bonded outside the host structure.

3) Radius of the hub is assumed as R0 = 0.1L and the constant rotating speed is assumed as Ω = 1000 rpm.

Table 1 Material properties (Graphite-Epoxy) and geometric specifications of the host structure

Material Value Geometric Value
E11 206.8 × 109 N ·m−2 Width (2ba) 0.254 m
E22 = E33 5.17 × 109 N ·m−2 Depth (2da) 0.0681 m
G13 = G23 2.55 × 109 N ·m−2 Hub radius (R0) 0.2032 m
G12 3.10 × 109 N ·m−2 Number of layers 6
µ12 = µ13 = µ23 0.25 Layer thickness 0.0017 m
ρ 1.528 × 103 Kg ·m−3 Length (L) 2.032 m

aThe length is measured on the mid-line contour.

Table 2 Material properties of piezo-actuator [47]

E11 31.28 × 109 N ·m−2 d11 386.63 × 10−12 m · V−1

E22 = E33
∗ 17.05 × 109 N ·m−2 d12 = d13

∗ −175.50 × 10−12 m · V−1

G12 = G13
∗ = G23

∗ 5.12 × 109 N ·m−2 ρ 5.1159 × 103 Kg ·m−3

µ12 = µ13
∗ = µ23

∗ 0.303 Number of layers 1
Electrode spacing [48] 0.4318 mm Thickness [48] 0.1905 mm

∗ The value is assumed by the author.
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Table 3 CUS lay-up configurations of the thin-walled box beam

Flanges Webs

Layer Material Top Bottom Left Right

CUS (1-6) Host structure [θh]6 [θh]6 [θh]6 [θh]6

CUS (7) Piezo-actuator [θFp ] [θFp ] [θWp ] [θWp ]

A. Study of piezo-actuator coefficients

Since the values of the piezo-actuator coefficients in the present system are proportional to the circumference size [35,

40], we assume the piezo-actuators are spread over the entire cross-section to obtain the maximum piezoelectrically

induced actuations. Fig. 4 highlights the influences contributed by the additional mass and stiffness of the piezo-actuators

on frequencies. Fig. 4a plots frequencies of the first four modes as a function of the host structure ply-angle θh,

comparing the solution without the effects of mass and stiffness of the piezo-actuator (indicated by solid lines) and the

solution with them (indicated by dashed lines). It can be found that ignoring them solely results in less than 6% error

considering in conjunction with the results as shown in Fig. 4b. As a result, since the main objective of the present

investigation is to highlight the control authority via tailoring the piezo-composite layers, the effect of mass and stiffness

of the piezo-actuators can be safely ignored here for simplification [44].
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Fig. 4 The influences of mass and stiffness of the piezo-actuators.

The piezo-actuator coefficients induced by flange-actuator-pair and web-actuator-pair are illustrated in Fig. 5 by solid

and dashed lines, respectively. It can be found that transverse shear coefficients AQx
1 (chordwise) and AQz

3 (flapwise)

in Fig. 5a show a anti-symmetric dependence centered around θp = 90◦, while bending coefficients AMx
1 (flapwise)

and AMz
3 (chordwise) in Fig. 5b present the symmetric property. In addition, the pure bending actuation points
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(AQx
1 = A

Qz
3 = 0) are indicated by 4 in Fig. 5a, while the pure transverse shear actuation points (AMx

1 = A
Qz
3 = 0)

are specified by ◦ in Fig. 5b.

In a nutshell, when θFp = θWp = 90◦, piezo-actuators will produce the maximum piezoelectrically induced bending

moment and the associated shear actuations are immaterial. Nevertheless, when the piezo-actuators provide maximum

piezoelectrically induced transverse shears at θFp = θWp ≈ 53◦ or 127◦ (indicated by × in Fig. 5a), the system is also

controlled by adequate bending actuations.
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Fig. 5 Piezo-actuator coefficients as a function piezo-actuator ply-angle

B. Discussion of control weighting coefficients

Considering the fact that flange and web actuator-pairs are the individual actuators, the design of the associated

control system can be implemented separately. The main task of the LQR controller design is determining the weighting

coefficients αK , αM and ηi in Eq. (32). Recalling the state weighting matrix Z presenting in Eq. (33), two combinations

of αK and αM are accounted, i.e., αK = αM = 1 for representing the total energy of the system and αK = 0, αM = 1 for

representing the kinetic energy only. Fig. 6 depicts damping ratios of the first four modes as a function of ηi for the two

selected αK and αM combinations. It can be found that damping ratios decrease with the increase of ηi . In other words,

smaller control weighting coefficient ηi results higher control gain, producing greater damping ratios, implying higher

voltage supplement of the control system. Therefore, the control weighting coefficients η1 = η3 = 5 are adopted for a

trade off between control effectiveness and voltage supplements. In addition, on the perspective of active control of

vibration suppression, it is reasonable to consider the system kinetic energy only, namely of that weighting coefficients

combination αM = 0 and αM = 1 is selected for the following investigation.

In order to guarantee the accuracy of the calculation for the first four modes, adequate numbers of modes Nmode

should be accounted in the numerical study. Fig. 7 further depicts the first four damping ratios for selected Nmode. It can
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Fig. 6 Damping ratios of the first four modes versus ηi; β0 = 0◦, θh = 90◦, θFp = θWp = 60◦

be identified that, generally, at least first six modes and first seven modes should be adopted for flange-actuator-pair in

Fig. 7a and web-actuator-pair in Fig. 7b, respectively. In a nutshell, first seven modes (Nmode = 7) are accounted in the

present numerical calculation after a careful examination for various host structure and piezo-actuator configurations.
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Fig. 7 Damping ratios of the first four modes versus Nmode; β0 = 0◦, θh = 90◦

C. Host structure study

Influences of elastic tailoring on control authority are highlighted in Figs. 8 and 9. Actually, elastic tailoring in

the present structure mainly denotes the tailoring of the bending–transverse shear couplings, namely of chordwise

bending-flapwise transverse shear coupling and flapwise bending-chordwise transverse shear coupling [38]. Figs. 8 and

9 plot damping ratios induced by flange and web actuator-pairs in sequence as a function of host structure ply-angle for
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selected typical actuation cases. It can be found that the control authorities contributed by piezoelectrically induced

transverse shear are more sensitive to the elastic coupling compared to that contributed by piezoelectrically induced

bending. In addition, in contrast to the symmetric property around θh = 90◦ of the damping ratios produced by pure

bending actuations as shown in Figs. 8a and 9a, damping ratios induced by pure transverse shear actuations present

non-symmetric property, especially for modes 1, 3 in Fig. 8b and modes 2, 4 in Fig. 9b. This result implies that positive

or negative bending–transverse shear couplings have significant effects only on control authority induced by transverse

shear actuations, considered in conjunction with the facts that the system has positive flapwise bending-chordwise

transverse shear elastic coupling and negative chordwise bending-flapwise transverse shear elastic coupling in the

domain 0◦ < θh < 90◦, while has the exactly opposite elastic coupling cases in the domain 90◦ < θh < 180◦ [35].
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Fig. 8 Damping ratios induced by flange-actuator-pair versus host structure ply-angle θh; β0 = 0◦
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D. Tailoring of piezo-actuators

In this section, the piezo-actuators are assumed spread over the entire beam span. As a result, the rotating blade will

be controlled by piezoelectrically induced tip bending moments and inner uniform transverse shear forces. Based on the

discussions in the previous section, the host structure configurations θh = 90◦ and θh = 75◦ are adopted in sequence

as the weak and the strong elastic coupling cases to investigate the tailoring of the piezo-actuators for optimal active

vibration control. Mode shapes of the first four modes for θh = 90◦ and θh = 75◦ cases are depicted in Figs. 10a and

10b, respectively.
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Fig. 10 Mode shapes of the first fourmodes; non-dimensional parameters are defined as ηy = y/L, û0 = u0/(2b),
ŵ0 = w0/(2b), θ̂x = θx , θ̂z = θz .

1. Un-pretwisted rotating blade

The un-pretwisted rotating blade consisting weak elastic coupling is investigated firstly. Recalling the governing

equations (22)-(25), the flapwise bending (flapping motion) and chordwise bending (lagging motion) are exactly

elastically decoupled for the weak elastic coupling case. Damping ratios of the first four modes plotted as a function of

ply-angle of piezo-actuator are illustrated in Fig. 11. In addition, the piezoelectrically induced pure bending and pure

transverses shear points are indicated by 4 and ◦, respectively. In fact, modes 1, 3 and modes 2, 4 are independent

flapwise bending and chordwise bending modes, respectively. The result of Fig. 11a presents that flange-actuator-pair can

control chordwise bending modes by piezoelectrically induced chordwise transverse shear (AQx
1 ), while control flapwise

bending modes by piezoelectrically induced flapwise bending (AMx
1 ). It can be further found that piezoelectrically

induced chordwise transverse shear will offer a similar control authority on chordwise bending modes (modes 2, 4) in the

domain 10◦ < θFp < 70◦ or 110◦ < θFp < 170◦. On the contrary, piezoelectrically induced flapwise bending produces

the maximum control authority only when θFp = 90◦ or 0◦,180◦. Note that, the control authority here is optimized
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on the perspective of energy consumption, in absence of the limitation of the voltages requirement. Considered in

conjunction with the results of piezo-actuator coefficients in Fig. 5, in which greater absolute value of the coefficient

implies lower voltage required to achieve the same actuation level, the optimal ply-angle θFp is suggested to locate in the

domain 53◦ < θFp < 127◦. Actually, this conclusion can be further extended for any elastic coupling cases, namely, the

optimal ply-angle of flange and web actuator-pairs both should be located in the domain 53◦ < θFp < 127◦ in priority.

Similar results can also be concluded for web-actuator-pair in Fig. 11b, e.g., flapwise bending modes and chordwise

bending modes can be restrained by piezoelectrically induced flapwise transverse shear (AQz
3 ) and chordwise bending

(AMz
3 ), respectively; piezoelectrically induced flapwise transverse shear produces a similar control authority on flapwise

bending modes (modes 1, 3) in the domain 10◦ < θFp < 50◦ or 130◦ < θFp < 170◦.
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Fig. 11 Damping ratios versus θp for the weak elastic coupling case; θh = 90◦, β0 = 0◦

Figure 12a further illustrates the associate minimum cost functions Jmin under the velocity initial condition (V-initial)

for the individual mode. For example, the velocity initial condition for mode 2 is given as

x(0) =
[
0 1 0 0 · · ·︸      ︷︷      ︸

Nmode

�� 0 0 0 0 · · ·︸      ︷︷      ︸
Nmode

]T
, (40)

where Nmode denotes the first N modes that adopted in the numerical calculation. In order to estimate the control

authority for the all first four modes in a holistic perspective, the minimum cost function Jmin under the V-initial

conditions of

x(0) =
[
1 1 1 1 0 0 · · ·︸            ︷︷            ︸

Nmode

�� 0 0 0 0 0 0 · · ·︸            ︷︷            ︸
Nmode

]T (41)

is shown in Fig. 12b. According to the definition of the cost function, unit of Jmin is J ·s. However, Jmin presented here

can be treated as a nondimensional parameter, since on one hand unit of the V-initial conditions as given in Eqs. (40)
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and (41) are not specified, on the other hand Jmin illustrates in Fig. 12 is essentially a comprehensive indicator of control

effectiveness (vibration elimination time) and energy consumption. Specifically, lower minimum cost function Jmin

indicates that piezo-actuator can suppress the system vibration faster with an optimal energy consumption. Based on the

results that the modes dominated by the transverse shear actuation present lowest Jmin in a wide range domain as shown

in Fig. 12a, it can be concluded that the LQR optimal control prefers to achieve the transverse shear control authority in

priority at the expense of reducing the bending control authority. In addition, it can be seen from the result of Fig. 12b

that both flange and web actuator-pairs can individually control the flapping and lagging motions simultaneously.
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Fig. 12 Jmin versus piezo-actuator ply-angle θp for the weak elastic coupling; θh = 90◦, β0 = 0◦

For the strong elastic couping case, Figs. 13a and 13b plot damping ratios of the first four modes as a function

of flange-actuator-pair ply-angle θFp and web-actuator-pair ply-angel θWF , respectively. In Fig. 13, no matter the

piezoelectrically induced pure transverse shear (indicated in ◦) or pure bending (indicated in 4) can individually control

the flapping-lagging coupled system via the elastic coupling. It can be found that the variations of damping ratios are

complicated compared to that of the weak elastic case as shown in Fig. 11. In order to capture some valuable information,

Fig. 14 further depicts the associated Jmin under the velocity initial condition. It can be seen that the first four modes

present the similar Jmin distributions when activated by the flange-actuator-pair as shown by solid lines in Fig. 14a,

resulting a distinct Jmin distribution in Fig. 14b. Thus, the optimal ply-angle of flange-actuator-pair is suggested located

in the domain 90◦ < θFp < 127◦ in conjunction with the consideration of the voltage limitation. Whereas, for the

web-actuator-pair case as shown by dashed lines in Fig. 14a, Jmin distributions of the first four modes differ from one

another, increasing the difficulty in identifying the optimal ply-angle of θWp . Based on the result of Fig. 14b, θWp ≈ 65◦

can achieve the lowest Jmin when the first four modes are all accounted. However, web-actuator-pair will lose control

easily on mode 2 when θWp ≈ 69◦. Thus θWp ≈ 60◦ indicated by � in Fig. 14b is suggested for robustness consideration.
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Note that, the lose control points, i.e., the points with approximate zero damping ratio or extreme large minimum

cost function Jmin, contain adequate piezoelectrically induced bending and transverse shear simultaneously. This is

because when the bending actuation introduces the positive control authority, the related transverse shear actuation

induces negative control authority on the lose control points, or vice versa.
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Fig. 13 Damping ratios versus θp for the strong elastic coupling case; θh = 75◦, β0 = 0◦
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Fig. 14 Jmin versus piezo-actuator ply-angle θp for the strong elastic coupling case; θh = 75◦, β0 = 0◦

2. Influence of pretwist angle

Pretwist angle will introduce additional couplings between the flapping and the lagging motions. Figs. 15 and

16 present control authorities of a pretwisted rotary thin-walled beam consisting weak and strong elastic couplings,

respectively. By comparing the damping ratio results between Figs. 15 and 11, it can be found that the flapping-lagging
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coupling effect contributed by pretwist angle is not as significant as that induced by elastic couplings on control authority,

considered in conjunction with that by comparing the results between Figs. 13 and 11.

In addition, for the weak elastic coupling case, the apparent influence of pretwist angle on control authority is solely

observed on mode 3 of the flange-actuator-pair in Fig. 15a and on mode 4 of web-actuator-pair in Fig. 15b, by comparing

to the associated results of the un-pretwisted cases as shown in Figs. 11-14. While for the strong elastic coupling case as

shown in Fig. 16, mode 2 controlled by flange-actuator-pair and modes 3, 4 controlled by web-actuator-pair will be

affected by the pretwist angle.

For the weak elastic coupling case, the optimal ply-angles θFp ≈ 99◦ (indicated by � in Fig. 15d) and θWp ≈ 127◦

(maximum transverse shear actuation point indicated by × in Fig. 15d) are suggested for flange and web actuator-pairs,

respectively. While for the strong elastic coupling case, θFp ≈ 90◦ (pure maximum bending actuation point indicated by

4 in Fig. 16d) and θWp ≈ 60◦ (indicated by � in Fig. 16d) are suggested. Note that, the recommended piezo-actuator

configurations of the pretwisted beams are coincidence with that of the associated un-pretwisted cases.

E. Position study

Considering the high cost of the piezo-composite material, the relationship between control authority and pizo-

actuator size and position should be investigated. Before we address this topic, two nondimensional parameters are

defined, viz.,

ηs =
y2 − y1

L
, ηp =

y1 + y2
2L

, (42)

where y1 and y2 are used to describe the position of the piezo-actuator as shown in Fig. 1; parameter ηs denotes the

piezo-actuator size; and the position parameter ηp is the distance from the blade root to the centroid of the piezo-actuator.

In fact, a comprehensive investigation of the optimization of the control authority is a difficult task, since a lot

of factors should be accounted, such as pretwist and presetting angles, elastic couplings, piezoelectrically induced

actuation couplings, size and position of piezo-actuators and the control strategy. Therefore, the main objective of this

section is try to summarize some general rules to guide the complicated optimization process.

Before the position investigation implemented, Fig. 17 highlights the influences on piezo-actuator position study

when ignoring the additional mass and stiffness of piezo-actuators. Fig. 17a plots damping ratios of the first four modes

as a function of position parameter ηp when flange- and web-actuator-pairs are activated simultaneously. Note that, the

solution without actuator mass and stiffness is indicated by the solid line, while the solution with them is indicated by

the dashed line. It can be found that ignoring the effects of mass and stiffness of the piezo-actuators solely results in less

than 7% error as shown in Fig. 17b. Thus, the effects of mass and stiffness of the piezo-actuators are ignored in the

following discussions.

Figures 18-21 depict the first four damping ratios of the system as a function of position parameter ηp for selected
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Fig. 15 Damping ratios and Jmin versus θp for the weak elastic coupling case; θh = 90◦, β0 = 60◦

combinations of influence factors, such as the elastic coupling, the actuation coupling, the size of the piezo-actuator.

Considering the facts that the flange and web actuator-pairs can control the system independently, the are discussed

separately. Special attention should be paid on the piezoelectrically induced bending and transverse shear coupling case

considering the evident drawbacks of either pure bending or pure transverse shear cases, i.e., pure bending case loses

the directly twist control ability and pure transverse shear case requires much higher applied voltages.

The flange-actuator-pair is discussed firstly. From the result of Fig. 18, it can be found that damping ratio of mode

1 decreases when the position moves from the blade root to the tip. In other words, flange-actuator-pair produces

the maximum damping ratio of mode 1 when it locates near the blade root. Whereas, its optimal position producing

desirable damping ratios of modes 2 and 3 is near the middle of the span as shown in Figs. 19 and 20. The optimal

position for mode 4 is hardly to determine, since the size of piezo-actuator and the elastic coupling both have significant

effects on control authority of mode 4. Note that, the influence induced by piezoelectric actuation couplings seems
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Fig. 16 Damping ratios and Jmin versus θp for the strong elastic coupling case; θh = 75◦, β0 = 60◦

inconsequential for mode 4 as illustrated in Fig. 21. In conclusion, based on the results of Figs. 18-21 (indicated by black

color), elastic coupling and the piezo-actuator size are the greater weight factors for the flange-actuator-pair position

optimization.

As for web-actuator-pair as indicated by red color in Figs. 18-21, it can be found that the position optimization

results are completely different form that of the flange-actuator-pair. The control authority on mode 1 is not sensitive to

the position as shown in Fig. 18. While the control authority on mode 2 decreases when the position moves from the

blade root to the tip, see Fig. 19. Whereas, according to the results in Figs. 20 and 21, the optimal position for modes 3

and 4 are significantly affected by the size, the elastic coupling, the piezoelectrically induced actuation coupling etc.

VI. Conclusions
Based on the LQR control strategy, active control of pretwisted smart blades modeled as rotating composite

thin-walled beams incorporating piezo-composite is implemented. The piezo-actuators are grouped as two independent
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Fig. 17 The influence of mass and stiffness of the piezo-actuator.

actuator-pairs, viz., flange-actuator-pair and web-actuator-pair. The synergistic effect played by the directionality

property of piezo-composite layers, considered in conjunction with that of tailored fiber-reinforced host structure, on

their dynamic response characteristics was highlighted. In addition, pertinent suggestions are summarized for decreasing

the difficulty of the complex optimization process for the piezo-actuator placement and sizing. Considering the evident

drawbacks of piezoelectrically induced either pure bending or pure transverse shear cases, i.e., pure bending case loses

the directly twist control ability and pure transverse shear case requires much higher applied voltages, piezoelectrically

induced transverse shear and bending coupling seems the optimal choice for active control of the flapping or lagging

motion. In fact, by adjusting the weight of the piezoelectrically induced transverse shear component in the coupling, the

control authority of the desirable mode can be increased at the expense of reducing that of others. In addition, the main

conclusions of the present article include:

1) piezoelectrically induced transverse shear plays an important role on active control of flapping and lagging

motions of the blade;

2) control authorities contributed by piezoelectrically induced transverse shears are more sensitive to the elastic

coupling compared to that contributed by piezoelectrically induced bendings;

3) both flange and web actuator-pairs can individually control the flapping and lagging motions simultaneously;

4) on the perspective of energy consumption, the implemented LQR optimal control prefers to achieve the transverse

shear control authority in priority at the expense of reducing the bending control authority.
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Fig. 18 Damping ratio of mode 1 versus piezo-actuator position; F− and B−: flange and web actuator-pairs,
respectively; −b, −s, −bs: pure bending (θp = 90◦), pure transverse shear (θp = 150◦), coupling actuations
(θp = 105◦), respectively.
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Fig. 19 Damping ratio of mode 2 versus piezo-actuator position; F− and B−: flange and web actuator-pairs,
respectively; −b, −s, −bs: pure bending (θp = 90◦), pure transverse shear (θp = 150◦), coupling actuations
(θp = 105◦), respectively.
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Fig. 20 Damping ratio of mode 3 versus piezo-actuator position; F− and B−: flange and web actuator-pairs,
respectively; −b, −s, −bs: pure bending (θp = 90◦), pure transverse shear (θp = 150◦), coupling actuations
(θp = 105◦), respectively.
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Fig. 21 Damping ratio of mode 4 versus piezo-actuator position; F− and B−: flange and web actuator-pairs,
respectively; −b, −s, −bs: pure bending (θp = 90◦), pure transverse shear (θp = 150◦), coupling actuations
(θp = 105◦), respectively.
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