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Abstract. Adaptive backstepping methodology is a powerful tool for nonlinear systems, especially for strict-feedback 
ones, but its robustness still needs improvements. In this paper, combined with sliding mode control (SMC), a new 
backstepping design method is proposed to guarantee the robustness. In this method, based on the novel combining 
method, the auxiliary controller is introduced only in the final step of the real controller, unlike traditional methods, 
which usually all include an auxiliary controller in every de-signing step to guarantee the robustness of the closed-
loop systems. The novel combing methods can avoid calculating multiple and high-order derivatives of the auxiliary 
controllers in the intermediate steps, low-ering the computational burden in evaluating the controller. The 
effectiveness of the proposed approach is illustrated from simulation results.  

1 Introduction  
In recent years, numerous adaptive and robust controller 
design approaches have been presented for nonlinear 
control systems. Among them, adaptive backstepping has 
become one of the famous design methodologies [1]-[3]. 
The backstepping design is a recursive procedure. Firstly, 
the system must be or be transformed into a special form, 
in which states are selected recursively and represent the 
input for lower dimension subsystems of the overall 
system. Then, you can select a function of state variables 
as a pseudo-controller, and let the output of the next 
subsystem to track it. Following this procedure step by 
step, the true feedback controller will result. Usually, a 
candidate sub-Lyapunov function can be achieved at each 
individual design stage, and the final Lyapunov function 
can be formed by summing them [1]. 

The backstepping design provides a systematic 
framework suitable for a large class of state feedback 
linearizable nonlinear systems. Besides the systematic 
approach, it has another important feature of ability to 
shape performance [1], [4]. So, a great quantity of 
research and applications on backstepping have emerged. 

The early studies deal with systems in which the 
functions must be “linear in the unknown parameters” [5], 
[6], which limits applicability only to a limited set of 
systems. Furthermore, some very tedious analysis is 
needed to determine “regression matrices  [5], [7]. 
Impulse to developments in adaptive and robust control 
techniques is given by the use of neural networks (NNs) 
[8]-[22] or fuzzy systems [23-26]. Using neural networks 
and/or fuzzy systems, the linearity-in-the-parameter 

assumption of nonlinear functions and the determination 
of regression matrices can be overcome. In recent years, 
the backstepping method has been also applied to some 
special nonlinear systems, such as delay-time, stochastic, 
saturation and some other systems [27-43], which greatly 
broadens the application fields of backstepping 
methodology. 

Several papers give more attention about robustness 
while using backstepping design [23, 44-48]. Method in 
[23] can guarantee H  performance for the nonlinear 
function with unknown parameters, even when 
parameters appear in nonlinear form. The method 
proposed in [44] just focuses on a special kind of 
nonlinear systems. For much more general systems, in 
which there are unknown dynamic disturbances, the 
relative backstepping methods are proposed [45-48]. 
However, an additional function is drawn in every virtual 
controller, and all include hyperbolic tangent function 
(i.e., tanh) or similar, which increase the calculating 
burden of the closed-loop systems. Sliding mode control 
(SMC) method is one important robust technique for 
nonlinear systems [49]. Actually, every subsystem can be 
considered a SMC application in [45-48]. Besides the 
problem above mentioned, the higher order of the 
systems will require a much faster response speed for the 
controllers [46], such that the robustness and control 
accuracy may not be reached to some extent.  

In this paper, a novel backstepping scheme combined 
with SMC method will be given, in which the auxiliary 
terms will be part of the final real controller only, so the 
high-order derivative of the auxiliary terms can be 
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avoided and the degree of calculation complexity can be 
partially lowered. 

The paper is organized as follows. In Section 2, the 
nonlinear system and radial basis function (RBF) neural 
networks are described briefly. A new adaptive 
backstepping design and stability of the closed-loop
system is given in detail in Section 3, and simulated on a 
nonlinear system. Section 4 is where the simulation is 
studied. Finally, conclusions are given in Section 5. 

2 Problem formulation 

2.1 System Description 

The model of many practical systems can be expressed as, 
or transformed into, the following strict-feedback form, 

1

1

( ) 1 1
( ) 2

�� � � � �
� � �
�

( )� ( )
(� (

i i i i

n n n

x f x x i n
x f x u n
y x

               (1)

where, 

1) 1 2, , T i
i nx x x x R� �� 	
 �

TT
	
TTTT
�n 		nn
TTTTxn , 1,2, ,i n� ,n, , u R�  

and y R�  are state variables, system input and output, 
respectively; we also suppose that all the state variables 
can be measured or observed; 

2) functions ( )if x R� , 1,2, ,i n� ,n, , are supposed to 
be unknown but smooth nonlinear functions. 

The control objective is to design an adaptive NN 
controller for system (1) such that, 

1) all the signals in the closed-loop remain semi-
globally uniformly ultimately bounded; 

2) the output y  follows a desired trajectory cy , that 
is bounded up to the ( 1)m� th order with its derivatives. 

Note that in the following derivation of the adaptive 
neural controller, NN approximation is only guaranteed 
with some compact sets. Accordingly, the stability results 
obtained in this work are semiglobal in the sense that, as 
long as desired, there exists controllers with sufficient 
large number of NN nodes such that all the signals in the 
closed-loop remain bounded. 

2.2 Function Approximation Using Neural 
Networks 

The controller design method proposed here does not 
depend on any specific neural network, which is just an 
approximator. In other words, you can adopt any suitable 
network. For convenience, we employ the radial basis 
function neural networks (RBF NN) in this paper. The 
key features of RBF NNs are the following: 

The RBF NN has the general form ˆ ( ) ( )TF � � � � ,

where pR� �  is a vector of adjustable weights and 
( ) pR � � is a vector of RBF’s. Their ability to uniformly 

approximate smooth functions over compact sets is well 
documented in the literature (for example [50]). In 
general, it has been shown that given a smooth function 

:F R�� , where � is a compact subset of mR  ( m  is 

an appropriate integer), and 0� � , there exists a RBF 
vector : m pR R �  and a weight vector pR� �  such 
that, 

( ) ( )TF x x�  ��� � , x� ��

The quantity ( ) ( )= ( )T
FF x x d x� ��  is called the 

network reconstruction error and obviously ( )Fd x �� . 

The optimal weight vector ��  defined above is 
typically chosen as the value of �  that minimizes ( )Fd x
over �, that is 

arg min sup ( ) ( )
p

T

xR
F x x

�
� � �

���

� �� �� �
� �

             (2) 

The Gaussian functions are employed as basis 
functions, in the same form as in [51], which are located 
on a regular grid that contains the subset of interest of the 
state space. 

3 Adaptive control 

3.1 The New Robust Method Combined with 
Sliding Mode Control 

The detailed design procedure is described in the 
following steps. For clarity and conciseness, Steps 1 and 
2 are described with detailed explanations, while Step i 
and Step n are simplified, with the relevant equations and 
the explanations being omitted. Step 1: Let reference 
signal 1d dx y�  and define 1 1 1de x x� � . Its derivative is 

1 1 1 2 1( ) de f x x x� � �1 1 1 2 1de f x x x1 1 1 2 11 1 2( )1f x xf x x1 1 21 11 1( )11                         (3) 
and 2x  is viewed as a virtual control input. We choose 
the controller as follows, 

2 2 1 1 1 1( )d dx x f x x ke� � � � � 1d1x ke11x d1                 (4) 
where k  is constant. Substituting (4) into (3), 1 1e ke� �1 1e ke1 1

is obtained. So, it is easy to know that 1e  is 
asymptotically stable. 

However, since the function 1 1( )f x  is unknown, the 
desired controller cannot be implemented in practice. 
Instead, a NN-based virtual controller can be used as 
follows: 

2 1 1 1 1 1( )T
d dx x x ke� � � � � 1d1x ke11x d1                   (5) 

where 1 1 1( )T x�   is RBF NN used to approximate 1 1( )f x . 
Defining 2 2 2de x x� � , 1e1e  can be obtained as 

1 1 1 2 2 1

1 1 1 1 2 2 1

( )

( )
d d

T
d d

e f x e x x

x x e x d� �

� � � �

� � � � �
1 1 1 2 2d d1e f x e x x1 1 1 2 21 1 2( )11 1f x e xx e1 1 2 21 1 21 1 2( )11 d

1d 21 22x e x1d 222
       (6)

where 1�
�  is the optimal weight vector of 1 1( )f x . The 

neural reconstruction error 1 1 1 1 1 1( ) ( )Td f x x� � �  is 
bounded, i.e., there exists a constant 1 0� �  such that 

1 1d �� . Throughout the paper, we introduce ( )T
i i ix� 

as neural networks and define their reconstruction errors 
as ( ) ( )T

i i i i i id f x x� � � , where 1,2, ,i n� ,n, . Like in the 
case of 1d , id  is bounded, i.e., i id �� . 
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Substituting (5) into (6), we get 

1 1 1 1 1 2 1( )Te x ke e d� � � � �11)1)11e1 1 1
T

1(T
1111
T

1(1 11
T                   (7)

where 1 1 1� � ��� �1 1� � �1 11
�����1 . Throughout this paper, we shall 

define i i i� � ��� �i i i� � �i ii
�����i . 

Step 2: This step makes the error between 2x  and 2dx
as small as possible. Differentiating gives 

2 2 2 3 3 2

2 2 2 2 3 3 2

( )

( )
d d

T
d d

e f x e x x

x x e x d� �

� � � �

� � � � �
2 2 2 3 3d d2e f x e x2 2 2 3 3( )2 2f x e xf x e x2 2 3 32 2 32 2 3( )22 d

2 32 33x e xe2d 333
         (8) 

Similarly, take 3dx  as the virtual controller. We let 

3dx  be of the form 

3 2 2 2 2 1 2 2 2( ) ( )T
d dx x x e ke�  � �� � � � �12 1122 112 (( 112       (9) 

In (9) and the following formulas, i R� �
( 1,2, ,i n� ,n, ) are real numbers and we will show how to 
choose them in the following of this paper. Substituting 
(9) into (8), we will have 

2 2 2 2 1 2 2 2 3 2( ) ( )Te x e ke e d�  � �� � � � �2222( )( )22 2 2e2 2 2
TT
2 222 22 (T
2 22 (T (10) 

Step (3 1)i i n� � � : In a similar fashion, we can 
design a virtual controller ( 1)i dx �  to make the error 

i i ide x x� �  as small as possible. Differentiating ie  gives 

1 ( 1)

1 ( 1)

( )

( )
i i i i i d id

T
i i i id i i d i

e f x e x x

x x e x d� 

� �

�
� �

� � � �

� � � � �

( )i i i i i d id1 ( 1)e f x e x x( )i i i i i di i d1)( ) 1 (1 (f x e xf x e x( )i i i i di i ii i i i d1 ( 1)( ) 1 (

id i 1id iid 11x eid iid i 11
(11) 

where 1 1 ( 1)i i i de x x� � �� � . Similarly, let the virtual 

controller ( 1)i dx �  to be of the form 

( 1) 1( ) ( )T
i d i i i id i i i ix x x e ke�  � �� �� � � � �1111((( 1       (12) 

Then we have 

1 1( ) ( )T
i i i i i i i i i ie x e ke e d�  � �� �� � � � �ii )))))i i iei i i

TT
i ii (i ii ((T (T
i ii ( (13) 

Step n : This is the final step. Differentiating the error 
n n nde x x� � , we will have 

( )

( )
n n n nd

T
n n n nd n

e f x u x

x x u d� �

� � �

� � � �
n n n nde f x u x( )n n n nn n( )f x uf x u( )n nn nn n( )

ndx u dndndx uundnd
             (14) 

Similarly, letting 

1( ) ( )T
n n n nd n n n n qu x x e ke u�  � ��� � � � � �nd n 1nd n 1( 1(( 1(((( 1      (15) 

where qu  is the auxiliary controller. Substituting (15) 
into (14), gives 

1( ) ( )T
n n n n n n n n q ne x e ke u d�  � ��� � � � �nn( )( )( )( )( )n n nen n n

TT
n nn (n nn ((T (T
n nn (       (16) 

In which, *
i i i� � �� �*
i i i� � �*
i ii��i  ( 1,2, ,i n� ,n, ).

From (7), (10), (13) and (16), we can get 
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Let

1

n
i ii

S e�
�

��                             (18) 

in which 0i R� � �  ( 1,2, ,i n� ,n, ) can be chosen
suitably such that all the roots of 0S �  are in the open 
left-half of the complex plane. So, the derivative of S is 

1

1 1

=

= ( )

n
i ii

n nT
i i i i i i n qi i

S e

kS x d u

�

��  � �

�

� �
� � � �

�
� �

S = � iei

( )(( )(TT ( )( )( )(
 (19) 

Consider the Lyapunov function candidate 
2 1

1
1 1

2 2
n T

i i i ii
V S � � ��

�
� �  � 1

i i i i� � �1i i ii i� �i ii                        (20) 

where 0T
i i �  �  ( 1,2, ,i n� ,n, ) are adaptive gain 

matrices. 
The derivative of V is 

1
1

2 1
1

1

=

= ( )

n T
i i i ii

n T
i i i i i ii
n

n q i ii

V SS

kS S x

S u d

� � �

��  �

� �

�
�

�
�

�

�  

� 	� � � 
 �
! "� �# $
% &

�
�
�

1
1

n T
i i i ii
� � �1T

i i ii i� �T
i ii��V SS= S

ii � 	1�1)( �i i i ii i ii i i( )((( 		i�i)(( ))(((  (21) 

Consider the following adaptation laws: 
( )i i i i i iS x S�  ' �� 	�  �
 �i i�i i � Si SS                       (22) 

where 0i' �  ( 1,2, ,i n� ,n, ) are small constants. 
Formulas (22) are so-called '-modification, introduced to 
improve the robustness in the presence of the 
approximation error id  and avoid the weight parameters 
to drift to very large values. 

Substituting (22) into (21), we get 

( )

2
1 1

2
1 1

n nT
i i i i n q i ii i

n nT
i i i i i n q i ii i

V kS S S u S d

kS S S u S d

�' � � � �

�' � � � � �

� �

�
� �

� � � � �

� � � � � �

� �
� �

i i ni i ni i
TT SST SST
i i ni i nV kSkS

( )( )i i i n q( )( )( )( )( )T ( )T
i i i n qni i i( ) SS( )T � S uSS u( )T
i i i n qi i n( )

(23) 

According to Schwartz inequality, we have 

( ) 2T
i i i i i i� � � � � �� �� � �( ) 2T
i i i i i i( )� �( �T
i i i i ii i i( )� �)� � � �� � � �)� � �� � �)i i ii i)� � ��)                 (24) 

In which, �  is the Euclidian norm of a vector. 
Additionally, if we let 

1
sgn( )

n
q i ii

u L S�
�

� ��                        (25) 

Where 0iL �  is an undetermined parameter and sgn (�) is 
the sign function. Then, substituting (24) and (25) into 
(23), we have 
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�V kSkS

2i i

(26) 

Obviously, if we let 
21 4i i i i

n
L d' �

�
�! "� �# $

% &
                  (27)

then there is 0V � 0V � . In other words, parameter S is 
semiglobally asymptotic stable. Form (18), we can easily 
know that ie  ( 1,2, ,i n� ,n, ) are semiglobally asymptotic 
stable, too. 

Obviously too, if for any =1,2, ,i n,n,
2

12 4i i i id� � � '� �� � �i i� �i i
����i��            (28) 

there is 0V � 0V �  again. So, according to a standard 
Lyapunov theorem extension [51], the weights i�
( 1,2, ,i n� ,n, ) of the RBF NNs are  uniformly ultimately 
bounded (UUB)[51]. 

3.2 Remarks 

Remark 1: In the stability analysis of the two methods, 
the term “semi-globally asymptotically stable” means that 
the NNs can only approximate the nonlinear function in 
some compact set. If NNs can approximate the nonlinear 
function in a large enough space the system states, we 
can say the approaches are both “global” asymptotic 
stable. 

Remark 2: For a much more general system, its 
subsystem can be written as follows 

( ) ( )1 ,i i i i ix f x x x t�� � �*( )i i i( )x f ( )i i ii ( )f x( )i ii ( )  

where ( ),i x t*  1,2, ,i n� ,n,  are unknown bounded dyna-
mic disturbances of systems: 
1) if ( ),i ix t +* � , we can let i i iL L +, �  in (27); 

2) if ( ) ( ),i i i ix t x+ -* � , we can let 

( )i i i i iL L x+ -, �  in (27), too. 
Obviously, with the simple substitution, we can 

guarantee that the closed-loop systems are also stable, i.e., 
the methods presented in this paper can suit much more 
general nonlinear systems with just simple modifications. 

Remark 3: Although the SMC method can guarantee 
robustness, it has the drawback of chattering. However, 
you can adopt any suitable chattering reduction 
approaches to resolve it. 

4 Simulation 
In this paper, the model of the system is given as 

2

2
1 1 2

2 1 2

1

0.1

0.2 sin( )x

x x x

x e x x u
y x

�

� �

� � �
�

1 0x1 00

2 0x2 00               (32) 

where 1x  and 2x  are states, which can all be observed, 
and y  is the output of the system, respectively. Initial 

conditions are . /0 10 20, 1,0T Tx x x� �� 	
 �  and sin( 2)dy t�
is the desired reference signal. All the basis functions of 
the NNs in this example are of the form [52] 

( ) ( )
2( ) exp

T
i j i j

ij i
j

x u x u
x

v


� 	� �� �� �� �
� �
 �

 ( 1,2, , ij l� il, i ) (33) 

In which, ju  are the centers of the receptive fields and 

jv are the widths of the Gaussian function. The NN 

1 1 1( )T x�   includes 13 nodes (i.e., 1 13l � ), whose centers 

ju
 are evenly spaced in [-6, 6], and the NN 2 2 2( )T x� 

contains 169 nodes (i.e., 1 169l � ), with centers ju

evenly spaced in [-6, 6]0[-6, 6]. And all the widths jv  of 
the NNs are 0.5. The design parameters of the controller 

are 1 2 {2}diag �  � , 1 2 0.2' '� � , . /4,1 T� � , 2k �
and 1 2 5L L� � . The sign function is replaced by 
saturation function. The initial weights 1�  and 2�  are all 
given arbitrarily in [-1, 1]. Figs. 1 and 2 show the 
simulation results of applying controller (22), (25) and 
(29) for tracking desired signal dy . 

We can see that good tracking performance is 
obtained, especially the time t is large enough. From Fig. 
1, we can draw a conclusion that there is a long-term 
transient response process for the system output to track 
the desired signal, and the rate of convergence can be 
improved by selecting the control parameters 
appropriately. Fig. 2 shows the trajectory of the controller. 
During simulation, especially due to the finite difference 
approximation of the derivatives, the input may be huge 
at the first several steps. To overcome this, you can limit 
its magnitude. In the simulation of this paper, for 
example, we let 8.0u � 1 . The fine tuning of the 
controller is out of scope in the present paper, yet the 
results show the effectiveness of the structure of the 
controller proposed. 

5 Conclusion 
In this paper, a adaptive backstepping NN control 
approaches combined with SMC method are presented 
for a class of strict-feedback nonlinear systems with 
unknown nonlinearities. They guarantee the robustness 
against the unknown bounded dynamic disturbances. 
Unlike conventional backstepping methods, in the current 
methods one auxiliary term is introduced only in the final 
real controller, which can avoid calculating the high-
order derivative of the auxiliary item. Therefore, they can 
both lower the degree of calculation comp lexity to some 
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extent. Simulated results demonstrate the effectiveness of 
the proposed approaches. 
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Figure 1. The output of the system under control 
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Figure 2. The trajectory of system input 
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