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I. INTRODUCTION

For almost a decade, the shift from increasing core clock 

frequencies to exploiting parallelism and multicore chip 

architectures has been the main design drive across all 

application domains in the electronics and computing industry. 

The introduction of multicore chips allowed the constant 

increase in delivered performance otherwise impossible to 

achieve. Multiple microprocessor cores from different 

instruction set architectures stay at the epicenter of such chips 

and are surrounded by memory cores of different technologies, 

sizes and functionalities, as well as by peripheral controllers, 

special function cores, analog and mixed-signal cores, 

reconfigurable cores, etc. 
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The functionality as well as the complexity of multicore 

chips is unprecedented. This is the aggregate result of several 

technologies that emerged and matured together the last few 

decades: (a) manufacturing process now approaching the 10nm 

regime and soon expected to go beyond, (b) sophisticated 

electronic design automation tools assisting and refining every 

step of the design process, (c) new processor architectures 

across the entire spectrum of performance and power 

consumption. 

Electronics-based systems (either for computing or other 

purposes) deliver scalable performance under a domain’s 

power constraints for many decades now. Unfortunately, 

performance scaling at a given power envelope faces today, 

more than ever before, several closely related challenges with 

respect to two major chip development aspects: 

manufacturability and dependability. From a temporal point of 

view manufacturability deals with the cost-effectiveness of 

chips during production (time < 0 before release to market) 

while dependability deals with the correctness of their 

operation in the field (time > 0 after release to market). 

Manufacturability and dependability share common challenges 

and threats, have common objectives and utilize common 

solutions regardless of the employment of chips in systems at 

the low end of performance and power (low-cost embedded 

systems or consumer electronics) or the high end of 

performance (data centers, cloud computing facilities, or 

extremely powerful supercomputers).  

This survey article stems from the view of MEDIAN [1], a 

large network of researchers from academia and industry 

funded by the European Science Foundation that collaborate in 

the areas of manufacturability and dependability of multicore 

architectures and their deployment in different computing 

application domains. In particular the focus of this survey is 

dependability of multicore architectures. Given the short nature 

of this overview, it is worth to note that we discuss only a 

partial and limited subset of the works done in this field, 

focusing on the representative and seminal publications that are 

closer to the vision of the research network. 

The article first describes the main challenges that threaten 

dependability, then presents and classifies the state-of-the-art in 

the solutions and methodologies space.  

II. DEPENDABILITY THREATS

Dependable operation in the field is a function of the 

circuit’s ability to overcome faults occurring during the circuit 

mission time. Dependability is a very generic term and refers to 

the confidence a user has on a system’s ability to operate 

correctly. Dependability is quantified by reliability, 

availability, etc. which are measures of the ability of the 



system to operate under its specifications at a given point of 

time or during a period of operation and plays a key role in the 

international roadmaps of advanced computing systems 

segments [2], [3] [4]. A detailed taxonomy of dependable 

systems can be found in [4]. 

A major threat of modern chips comes from intermittent 

faults induced by environmental conditions, in particular 

particle strikes on the circuit nodes, causing soft errors, [7] 

Soft errors have traditionally been a major concern for storage 

elements (registers, memories) but they are already a serious 

problem for logic nodes as well. Intermittent faults are usually 

due to environment reasons but can be also the result of voltage 

and temperature variability when the circuit operates in more 

than one mode (e.g. when voltage or frequency scaling 

techniques are employed). 

Unlike the past when manufacturing technologies were 

robust enough to guarantee correct operation virtually 

“forever”, today’s circuits suffer from degradation phenomena 

that significantly reduce their life time even when they operate 

in nominal conditions. Such mechanisms are typically referred 

to as aging or wear-out and get more frequent and more severe 

as manufacturing nodes get smaller, and circuit frequencies get 

higher. Aging effects combined to technology node scaling can 

cause both the occurrence of permanent faults but also the 

increase of the rate of elusive faults, which manifest 

themselves as intermittent faults in certain operating conditions 

such as effects of temperature variation or system load 

exceeding certain levels [4]. 

Figure 1 reports a timeline showing the points of time 

during a chip’s lifetime where each threat appears. 

Manufacturing defects (MD) occur during production (i.e. 

when t<0), transient errors due to radiation (SE) or to voltage 

and temperature variability (V) [6] are expected during all the 

life cycle and aging phenomena (A) at the end of the chip’s 

life. 

Fig. 1 Occurrence of different kinds of faults during the life of a 

device 

Dependable operation of a circuit throughout its lifetime 

can be only guaranteed when it employs hardware and software 

mechanisms to tolerate all possible threats. Since such fault 

tolerance mechanisms are planned during system design and 

realized during system implementation and manufacturing, 

they can improve both quality aspects of the system: cost-

effective production (through yield improvement) and highly 

reliable operation in the field (through mitigation of threats) 

[2], [7]. 

Conceptually, a chip at any stage may require to employ 

mechanisms (external or internal as well as hardware or 

software based) to detect and/or diagnose, recover, and even 

repair itself from permanent, intermittent, or transient faults. 

The subsequent sections of the article concentrate on 

prevalent technological threats (i.e. soft errors and aging effects 

causing both permanent and intermittent faults) and discuss the 

main approaches used in practice to improve the in-field 

dependability of a chip as well as the classic techniques and 

measures that are employed to evaluate a system’s 

dependability.  

III. THE TECHNOLOGY VIEWPOINT  ON CURRENT

CHALLENGES TO DIGITAL ARCHITECTURES

In this section, we elaborate on some of the issues outlined 

in the previous section from a technology point of view. In 

particular, we focus on soft error and aging susceptibility. The 

proposed analysis and mitigation models are applicable not 

only to multicore but to digital architectures in general. 

A. Overview of Soft Errors effects

Soft errors are one of the most important challenges in

nanoscale CMOS technologies impacting field-level product 

reliability. In an electronic component, the failure rate induced 

by soft errors can be relatively high compared to other 

reliability issues [8]. Whether or not soft errors impose a 

reliability risk for electronic systems strongly depends on the 

application. Soft-error rate is generally not an issue for 

consumer applications such as mobile phones, but can be a 

problem for applications that have very severe reliability and 

safety requirements: automotive, data centers, space industry, 

medical electronics, etc.  

Soft errors are events usually provoked by radiations (i.e. 

neutrons from cosmic rays, alpha particles emitted by 

radioactive impurities present in manufacturing used materials, 

etc.). Aggressive technology scaling, higher clock frequencies 

and lower voltage operation strategies result in a reduction of 

capacitance per transistor, and as a consequence particles with 

lower energy, can generate sufficient charge to cause soft 

errors. Soft Error Rates (SER) relate to cases when data is 

corrupted, but the device itself is not permanently damaged. 

Recent experiments show that the SER of combinational logic 

in sub-50nm technologies is comparable with that of sequential 

elements (i.e. latches and flip-flops) and will be a dominant 

factor in the future technologies [9]. With technology scaling 

to nanoscale regimes, a single radiation strike can affect 

multiple cells through secondary particles (neutrons) and 

shared diffusion which result in multiple bit upsets (MBUs) 

[10]. 

Soft errors can have different effects on applications. They 

may result in data corruption at the system level, or provoke a 

timing delay or malfunctioning of a circuit or even a system 

crash. Understanding how a particle impact may lead to 

failures, has been made possible due to numerous 

software/hardware methodologies and tools for evaluating SER 

during the design phase. Such methodologies and tools aim to 

reduce the extra design and validation cycles during chip 

fabrication due to late modifications that could be necessary to 

reach the desired reliability level. Their success on doing that 

depends on their accuracy in SER evaluation. The full 



characterization framework includes Technology CAD models 

for the radioactive environment, their interaction with the 

integrated circuit technology as well as design topologies 

facilitating good estimation of Failures-In-Time (FIT) rates for 

memory cells and library elements. Moreover, cell level SPICE 

simulation frameworks and gate level statistical and 

probabilistic approaches push forward the FIT estimation at 

sequential cells [9], RTL level and IP blocks [11]. They take 

into consideration electrical masking, logic masking and timing 

masking phenomena. Higher-level estimation done at the RTL 

and the full SOC level allows the integration of architectural 

vulnerability aspects. All the masking factors have been widely 

studied in recent years and very sophisticated models have 

been proposed [12]. During the last years, the accuracy of 

sensitivity evaluation of soft error effects has been improved as 

well as the evaluation speed is increased by properly taking 

into account the full environment of the system, the operating 

modes, the systematic and random variations as well as the 

application. 
Mitigation approaches for soft errors at the circuit level are 

aimed at avoiding that the effect of the injected charge could 
modify logic values and are generally known as hardening 
techniques. Hardening involves using redundant transistors, 
capacitors, or resistors to make sure that the effect of the upsets 
does not propagate. Some typical examples of hardening 
techniques for memory elements can be found in [13][14][15]. 

B. Overview of Aging effects

Variation effects are among the main reliability issues [16]

and can be categorized into two main categories. Process 

variation is the variation of transistor physical parameters due 

to uncertainties during fabrication process. This type of 

variation leads to significant performance variation at time t = 

0. Aging (temporal variation), leads to variation in behavior of

a circuit over its lifetime, t > 0. Bias Temperature Instability

(BTI), Hot Carrier Injection (HCI) and Time-Dependent

Dielectric Breakdown (TDDB) are three main degradation

phenomena [16], [17]. When the transistor is negatively

(positively) biased, traps are generated at the silicon to

dielectric interface and also inside the dielectric of PMOS

(NMOS) transistors leading to an increase in the threshold

voltage of transistor. This phenomenon is called Negative

(Positive) BTI and leads to increase of the propagation delays

in a circuit and eventually the circuit fails to meet its timing

specifications. HCI is an irreversible aging effect, which is

caused by the accelerated carriers (electron/holes) under lateral

electric fields. HCI also manifests as an increase in the

threshold voltage of mostly NMOS transistors. While BTI

contains both stress and relaxation (recovery) phases,

depending on the transistor gate-source bias, HCI has no

recovery mechanism. The NBTI and HCI complex physical

models are currently enriched with more contributions: the

recoverable part of BTI, the HCI dependence on the workload

and the bulk bias, the interaction between them.

TDDB degrades the gate oxide and leads to an increase in 

its conductance. As a result, the current through the gate 

insulator increases and eventually it can lead to an abrupt 

increase of gate leakage current causing a catastrophic failure 

for the device (hard breakdown) or timing degradation. TDDB 

becomes more severe as the gate oxide thickness becomes 

thinner due to technology scaling. TDDB is primarily a major 

issue for low-k device materials. However, after the 

introduction of high-k dielectrics in highly scaled logic 

devices, TDDB is an even more severe issue because of the 

breakdown of the interfacial layer as well as the high-k layer. 

Another aging issue which affects interconnect is 

electromigration [17]. It is caused by physical migration of 

atoms in a metal wire, when the current flows through the wire 

for a long time. In order to mitigate the reliability threats, there 

are two main categories of techniques: 1) “model, predict, and 

margin”, and 2) “sense and adapt”. Both styles can be applied 

at different levels of abstraction.  

For aging mitigation at circuit level, guard-banding, body 

biasing, and gate sizing are the most well-known methods [18]. 

For effective guard-banding methods, the guard-band has to be 

accurately predicted. Therefore, it is crucial to effectively 

predict the circuit failure expectations due to aging; this 

approach has been extensively explored in the literature [19]. 

Circuit failure prediction can be combined with optimized self-

tuning in order to improve the lifetime by minimizing circuit 

aging guard-bands [19]. Dynamic voltage/frequency scaling is 

another approach that can be used at either coarse or fine 

granularity. There are also methods to mitigate BTI by 

rebalancing the signal probabilities applied to memory blocks, 

logic cores and the entire processor [20]. Another approach is 

input vector control, which can be used at the circuit or the 

instruction level (using NOP instructions) [16].   

In “sense and adapt” strategies against aging effects, the 

circuit behavior has to be constantly monitored at runtime. For 

this purpose, signatures can be collected during normal system 

operation by using special sensors such as the ones proposed in 

[21] or in [22] for monitoring NBTI and oxide degradation.

Another opportunity to obtain the signatures is by using

periodic on-line self-test/diagnostics [19]. Since aging effects 

are highly dependent of circuit temperature, voltage and power 

profiles, collecting such signatures are useful in order to predict 

the aging rates [19]. Adaptive mechanisms can be utilized 

based on the feedback from performance metric sensors [18]. 

Various monitoring schemes and canary circuitries such as 

replica monitors, in-situ monitors, online self-test and 

software-based inference have been proposed [18]. 

IV. DEPENDABILITY TECHNIQUES FOR MULTICORE

SYSTEMS 

In this section we describe various dependability-enhancing 

techniques that can be applied to the different components of a 

multicore system. Table I summarizes the main classes of 

approaches and their main characteristics. For each technique 

it is reported: 1) its fault detection (FD) and/or fault tolerant 

(FT) capabilities with respect to the fault type, 2) the phase 

during which they are devised (design time vs. run time), and 

3) the solution type (software, hardware or architectural).

A. Faults in processor cores

To cope with faults in the processors constituting the multi-

core system, various approaches have been adopted. Some of 



the approaches work at the i) architectural level, by enhancing 

the exploitation of existing cores and/or additional ones, ii) 

micro-architectural level by hardening the core structure, or at 

iii) application/software level, by working at the system and

application software levels. Circuit-level techniques are

usually not explicitly considered in this scenario since they

provide viable solutions (e.g., for the design of a hardened

memory element) independently of the circuit being designed

and thus we will not include them here.

1) Architectural solutions

One of the most straightforward but costly techniques is based

on the use of a second processing core, to monitor the

execution of the applications and, if a deviation from the

expected logical/timing behavior is detected, restart the core.

This can be achieved by means of a dedicated core working in

close synchronization with the master one (lock-step), or by

means of a simplified hypervisor or watch-dog. The presence

of several cores in multicore architectures enables for a direct

implementation of this kind of solutions (e.g. [23][24]). A

different way to exploit core redundancy is by means of active

replication and primary backup. In the former case, the whole

process is executed on another processing core in parallel and,

in case of fault the result from a healthy replica is used. In the

latter approach, only one replica is executed at a time and,

when it is detected as corrupted, the “backup” or “shadow”

replica is activated and executed. The main difference

between the two approaches is that the active replication does

not require timing penalty in case of error recovery but require

higher redundancy with respect to the primary backup (e.g.,

[25]).

2) Micro-Architectural solutions: Processor hardening

Several solutions have been envisioned to harden the

processor architecture itself, so that any fault is dealt with

inside the processor offering a transparent fault tolerant

execution of the applications. Addressing of faults at the

hardware level leads to increased silicon area, increased

critical part of a chip and increased development cost and

power consumption (e.g., [26]). A well-known example of this

approach is the SPARC-based LEON processor used by the

European Space Agency [27].

3) Software techniques

This class of approaches includes solutions that replicate the

tasks or threads of the application a number of times (two for

detection, three for tolerance), executing on different

processing cores and compares the produced outputs. Among

the various solutions proposed in literature, the one presented

in [28] proposes an execution model based on chip-level

redundant threading to deal with soft-errors in processors,

achieving fault detection properties without incurring in high

overheads and without a significant impact on the architecture.

Following the same strategy redundant execution of the tasks

or threads, re-execution consists of re-running the portion of

the application that has been corrupted, upon detection (e.g.,

[29]). Overheads are related to maintaining the necessary

information to perform a delayed execution of the portion of

the application. However, this approach also requires non-

trivial effort and may incur high overheads.

B. Faults in memory

In multicore architectures, the amount of silicon area occupied 

by memories is continuously increasing and also its 

functionalities (e.g. memory coherence) and architectures 

become more and more complex. As a consequence yield and 

reliability enhancement of cache memories is becoming more 

and more important. This is accentuated by the shift from 

SRAM-based caches to novel memories based on resistive 

devices that show promising results with respect to the current 

available charge based memories but present several reliability 

issues (see [30] for Phase Change Memories and [31] for 

nanoionics based memories). Here we shortly describe some 

of the solutions to memory related faults that show how novel 

dependability techniques can be designed to exploit the 

specific characteristics of multicore architectures or how 

already widely used techniques require a deep rethinking to be 

applied in this new scenario. 

1) Cache-coherence solutions

Specific methods related to the multicore paradigm exploit the

cache coherence protocols also to add error detection and

correction features to the system. The simplest method

consists in detecting errors by means of parity bits, correcting

the error using a copy of the data stored in another cache. As

an example, coherence protocol aimed at dealing with

transient failures that affect the interconnection network of a

multicore architecture is presented in [32].

2) Transactional-memory approach

Another family of techniques related to the multicore

paradigm exploits the transactional memory approach.

Transactional memory operations attempt to simplify

concurrent programming, by allowing a group of load and

store instructions to execute in an atomic way. It can be used

to add fault tolerant capacities to the multicore memories. As

one of the various examples, [33] uses a hardware

transactional memory to detect transient and permanent faults.

3) Information redundancy

Well-known techniques based on redundant row/columns

and/or on the use of error correction codes, received renewed

attention, since the different requirements in terms of power

consumption and speed, and the different type and likelihood

of errors in memories, require different types of solutions

(e.g., [34]).

C. Communication

Also here we selected only a small subset of possible 

solutions, focusing on those that exemplify the relationship 

between the specific solution and the multicore architecture. 

Different topologies have been proposed to connect together 

multicore architectures [35]. Some of these topologies are 

based on shared bus communication infrastructures, often 

connecting together private memories (e.g. L1 private caches 

are connected to a shared L2 cache). When bus based 

topologies are used, error codes are the most viable solution. 

In particular, it is straightforward to use the same ECC used in 

memory, also for data movement. When complex 

interconnection structures like Networks-on-Chip (NoC) are 

employed [36] [37], more error tolerant techniques can be 



used, since error can be handled at link level or at network 

level. Automatic Repeat Request (ARQ) uses error detection 

codes to detect errors, retrying the failed transmission, while 

Forward Error Control (FEC) is based on ECC codes. Hybrid 

ARQ/FEC (HARQ) schemes combine both techniques to 

obtain a better reliability/performance trade-off.  

TABLE I. DEPENDABILITY TECHNIQUES FOR MULTI-CORE ARCHITECTURES  

Technique name 
Technique 

family 
Target Fault Type Phase Solution Type 

Processor 

Transient Permanent 
Intermitt

ent 

Design

-time

Run-

time 
SW HW Architectural 

Dual Lock-Step [24] 

Architectural 

solutions 

FT FD FT X X 

Hypervisor [23] FT FD FT X X 

Watchdog [24] FT FD FD X X 

Active replication & 

backup [25] 
FT FD FD X X 

Processor hardening 

[26][27] 

Micro-

Architectural 

solutions 

FT FD/FT FD/FT X X 

Redundant execution 

[28] Software 

techniques 

FD/FT FD/FT FD/FT X X X 

RE-execution and 

recovery [29] 
FD/FT FD/FT FD/FT X X X 

Cache-coherent solutions [32] 

Memory 

FD/FT FD/FT FD/FT X X 

Transactional memory approaches [33] FD/FT FD/FT FD/FT X X 

Information redundancy [34] FD/FT FD/FT FD/FT X X X 

ARQ [35][36] 

Communications 

FD FD FD X X 

FEC [35][36] FT FT FT X X 

HARQ [35][36] FD/FT FD/FT FD/FT X X X 

V. DEPENDABILITY METRICS AND EVALUATION

The design of dependable multicore systems cannot be done 

without having defined clear dependability metrics and the 

way to measure them. This section discusses metrics used for 

evaluating the dependability of multicore systems and their 

evaluation methodologies. 

A. Metrics

A system’s dependability can be quantified by various metrics 

and techniques, typically at different abstraction levels of the 

system. Such metrics include Failures-in-Time (FIT) rate
1
, 

Mean Time To Failure (MTTF)
2
, Mean Time Between 

Failures (MTBF)
3
, bit failure Probability (Pfail)

4
, Architectural

and Program Vulnerability Factors (AVF
5
, PVF

6
), Silent Data 

Corruptions (SDC)
7
, Detectable Unrecoverable Errors 

(DUE)
8
, Soft Error Rate (SER)

9
, etc. ([50][51]) . Estimation 

techniques can be performed either pre-silicon, comprised of 

statistical fault injection in simulators or model-based 

1 FIT rate is the number of failures per 109 hours of operation. 
2 MTTF is the average elapsed time to system failure (gives expected 

lifetime of single point of failure systems). 
3 MTBF is the average elapsed time between failures of a system. 
4 Pfail is the raw technology failure probability of a cell or gate. 
5 AVF is the probability that a fault in a hardware component will lead to 

an architecturally visible error.  
6  PVF calculates the percentage of architectural-level masking in a 

program.  
7 SDC is the number or rate of faults in a hardware component that lead to 

output errors and are not detected by any mechanism. 
8 DUE is the number of rate of faults in a hardware component that are 

detected by a detection mechanism or lead to an exception but can’t be 

corrected.  
9 SER is the rate at which a device encounters or is predicted to encounter 

soft errors. 

analysis, or post-silicon on the actual hardware prototypes, 

which can be more accurate but come relatively late in the 

design flow.  

Most reliability estimation techniques consider the circuit- and 

gate-level. At the circuit-level, reliability device simulators 

estimate the probability of a given failure mode at the output 

of a logic gate hit by a particle or affected by other types of 

stresses [38], [39]. These simulators have become an integral 

part of the design process, modeling the variety of physical 

failure mechanisms (TDDB, BTI, EM, HCI) discussed in 

Section III. Recently it has become apparent that the impact of 

process variations must be integrated in the circuit simulation 

process, along with the physical failure mechanisms [40]. At 

the gate-level, the entire netlist is considered to estimate the 

error susceptibility of a node. This requires computing the 

probability of sensitizing the node with an input vector able to 

propagate the erroneous value to the circuit’s outputs [41], a 

task that requires the simulation of several random vectors 

whose number significantly increases with the size of the 

circuit. To tackle this complexity, chip level reliability 

prediction methods are mostly statistical following sampling 

approaches as the one described in [49]. 

B. Evaluation

Traditionally, dependability metrics have been evaluated 

analytically using technology and empirically derived foundry 

and in-field data. For example, the FIT rate of a system is 

additive on the constituent FIT rate of its components; MTTF 

can be calculated either from individual component MTTFs 

or, in a less cumbersome manner, using the inverse of the 

system FIT rate; MTBF is the addition of MTTF and MTTR 

(Mean Time to Repair), etc [50][51].  SDC and DUE rates are 

important metrics used to categorize and quantify the impact 



of faults in a system and the effectiveness of its underlying 

detection/correction mechanism(s).  Both rates can be applied 

separately to each of the various dependability metrics. For the 

case of soft-errors, it is typical to express the SER as the 

summation of SDC FIT and DUE FIT [50].  

A significant body of recent work at different levels in the 

area of resiliency involves the study of the impact and 

susceptibility of transient (soft) errors through fault injections 

[48]. Transient faults can be injected into a microprocessor in 

various ways leading to different control capabilities over the 

time and location of the fault injection, the level of 

perturbation to the processor, and the simulation time and cost 

requirements. Commonly used hardware methods are 

processor pin-level injection, heavy-ion radiation, power or 

electromagnetic disturbances and non-destructive laser fault 

injection. All these methods closely imitate real fault 

situations, but are usually expensive and applicable only after 

the physical chip is available. Software fault injection is a 

low-cost alternative that can be applied to designs, programs 

and O/S and allows observing the final impact on the system. 

Software methods can be classified into two classes: (i) 

software-implemented methods, where the processor state or 

programs are modified during compile- or run-time and the 

injection takes place on real hardware and (ii) simulation-

based method, where the processor, workload, and fault 

injections are all modeled in a software simulator of the 

architecture. In general, the latter is more flexible as it 

provides better controllability of fault injection and 

observability of the system behavior. However, it requires a 

very accurate processor microarchitecture and system model 

developed in software and it runs several orders of magnitude 

slower than hardware or software-implemented methods. 

In the recent years, there has been a considerable effort in 

estimating the vulnerability of microprocessors considering 

correlation models or even reliability estimation models that 

work concurrently at different abstraction levels where the 

micro-architecture is changed. The most popular measure is 

the AVF, which is the probability of a bit-flip in a 

microprocessor structure leading to a user visible system error 

[42]. AVF gives more realistic SER estimates than circuit- and 

device-level SERs (for SDCs and DUEs) as it tracks 

observable errors. As a result, circuit- and device-level SER 

can be considerably derated. Accurate estimation of AVF is a 

complex process involving a large number of fault injections 

and simulations requiring many resources to track values and 

instructions as they travel through a processor [43]. The 

process becomes even more demanding when multiple bit-

flips, which are expected in future technologies, must be 

considered. 

When analyzing the lifetime reliability of processor-based 

systems, it is essential to investigate the impact at system 

level. Srinivasan et al. [44] described a model for lifetime 

analysis for microprocessors and conducted dynamic 

reconfigurations based on the model. Other works predict 

lifetime reliability based on simulations but, as with [44], the 

failure mechanisms do not consider aging effects leading to 

inaccuracies in the simulation results. In [45], one of the few 

works on system-level lifetime reliability analysis for many-

core processors, the impact of workloads and associated 

temperature variations are considered. Recently, researchers 

have begun to explore the system-level impact of variations on 

power, performance, and reliability by developing models of 

process variation. 

Scarce work has focused on systematically including the 

software into the reliability evaluation process. Some work 

analyzes various compiler optimization effects on the AVF of 

embedded processors. However, the experiments lack new 

guidelines regarding software reliability improvement at 

compiler level. In [46] the authors proposed a first attempt of 

performing static analysis of a computer system including its 

software. While representing a new idea to include the 

software in the error susceptibility estimation, the approach is 

limited to errors in the instruction op-codes of the program 

prior to their execution and does not consider the data and 

control part of the microprocessor. Recent interesting 

solutions include the software layer by computing the PVF 

[47] for a set of applications exploited to improve AVF

computation for several microprocessors. However, neither

the final software workload, nor the full stack is explicitly

considered.



TABLE II. POPULAR DEPENDABILITY METRICS  

Metric Level Phase Calculation Method 

Failures-in-Time (FIT) circuit/component/microarchitecture Post-Silicon/Design Experiment/Simulation 

Mean Time To Failure (MTTF) 
circuit/component/microarchitecture 

Post-Silicon/Design Experiment/Simulation 

Mean Time Between Failures (MTBF) circuit/component/microarchitecture Post-Silicon/Design Experiment/Simulation 

Bit failure probability  (Pfail) circuit/component Post-Silicon Experiment 

Silent Data Corruptions (SDC) microarchitecture/architecture Design Simulation 

Detectable Unrecoverable Errors (DUE) microarchitecture/architecture Design Simulation 

Soft Error Rate (SER) 
circuit/component/microarchitecture/ar

chitecture 
Post-Silicon/Design Experiment/Simulation 

Architectural Vulnerability Factor (AVF) microarchitecture/architecture Design Simulation/Analytical 

Program Vulnerability Factors (PVF) architecture Application (S/W) Simulation 

VI. CONCLUSIONS AND FUTURE CHALLENGES

This article presented a survey of dependability issues faced 

by multi-core architectures at nanoscale technology nodes. 

Existing solutions against these challenges were also 

discussed, describing their scope of application, from 

technology level methodologies, to design approaches to the 

metrics required to evaluate the overall dependability of a 

system.  

In the future, the constant reduction of the feature size of the 

devices will exacerbate the issues related to aging and soft 

errors. This will create further challenges and at design level, 

an integrated design approach that will cope with the 

occurrence of faults at any time of their occurrence i.e. at 

manufacturing (thus increasing yield) and in the field (thus 

increasing reliability) will become more and more important 

to obtain economically viable and dependable systems. 

Dependability assessment will also need an integrated 

approach for cross-layer, pre- and post-silicon techniques for 

“just right” dependability assessment in order to avoid “over-

design” for dependability using classic guard-banding 

methodologies. 
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