
Dependable Multicore Architectures at Nanoscale: the

view from Europe
M. Ottavi, S. Pontarelli, D. Gizopoulos, C. Bolchini, M. K. Michael, L. Anghel, M. Tahoori, A. Paschalis, P. Reviriego,

O. Bringmann, V. Izosimov, H. Manhaeve, C. Strydis, S. Hamdioui

I. INTRODUCTION

For almost a decade, the shift from increasing core clock

frequencies to exploiting parallelism and multicore chip

architectures has been the main design drive across all

application domains in the electronics and computing industry.

The introduction of multicore chips allowed the constant

increase in delivered performance otherwise impossible to

achieve. Multiple microprocessor cores from different

instruction set architectures stay at the epicenter of such chips

and are surrounded by memory cores of different technologies,

sizes and functionalities, as well as by peripheral controllers,

special function cores, analog and mixed-signal cores,

reconfigurable cores, etc.

This work is part of a collaboration in the framework of COST ICT Action

1103 “Manufacturable and Dependable Multicore Architectures at Nanoscale”.

M Ottavi and S Pontarelli are with University of Rome “Tor Vergata”,

Italy; email: {pontarelli, ottavi}@ing.uniroma2.it). D Gizopoulos and A

Paschalis are with University of Athens, Greece, email: {dgizop,

paschali}@di.uoa.gr). C Bolchini is with Politecnico di Milano, Italy, email:

cristiana.bolchini@polimi.it. MK Michael is with University of Cyprus,

Cyprus, email: mmichael@ucy.ac.cy. L Anghel is with TIMA laboratory,

Grenoble, France, email: lorena.anghel@imag.fr. M Tahoori is with Karlsruhe

Institute of Technology, Germany, email: tahoori@ira.uka.de. P. Reviriego is

with Universidad Antonio de Nebrija, Madrid, Spain, email:

previrie@nebrija.es. O Bringmann is with University of Tuebingen, Germany,

email: bringman@fzi.de. V Izosimov is with Semcon AB, Sweden, email:

Viacheslav.Izosimov@semcon.com. H Manhaeve is with Ridgetop Europe,

Belgium, email: hans.manhaeve@ridgetop.eu. C Strydis is with Neurasmus

B.V., The Netherlands email: c.strydis@erasmusmc.nl. S Hamdioui is with
Delft University of Technology, The Netherlands, email:

S.Hamdioui@tudelft.nl

The functionality as well as the complexity of multicore

chips is unprecedented. This is the aggregate result of several

technologies that emerged and matured together the last few

decades: (a) manufacturing process now approaching the 10nm

regime and soon expected to go beyond, (b) sophisticated

electronic design automation tools assisting and refining every

step of the design process, (c) new processor architectures

across the entire spectrum of performance and power

consumption.

Electronics-based systems (either for computing or other

purposes) deliver scalable performance under a domain’s

power constraints for many decades now. Unfortunately,

performance scaling at a given power envelope faces today,

more than ever before, several closely related challenges with

respect to two major chip development aspects:

manufacturability and dependability. From a temporal point of

view manufacturability deals with the cost-effectiveness of

chips during production (time < 0 before release to market)

while dependability deals with the correctness of their

operation in the field (time > 0 after release to market).

Manufacturability and dependability share common challenges

and threats, have common objectives and utilize common

solutions regardless of the employment of chips in systems at

the low end of performance and power (low-cost embedded

systems or consumer electronics) or the high end of

performance (data centers, cloud computing facilities, or

extremely powerful supercomputers).

This survey article stems from the view of MEDIAN [1], a

large network of researchers from academia and industry

funded by the European Science Foundation that collaborate in

the areas of manufacturability and dependability of multicore

architectures and their deployment in different computing

application domains. In particular the focus of this survey is

dependability of multicore architectures. Given the short nature

of this overview, it is worth to note that we discuss only a

partial and limited subset of the works done in this field,

focusing on the representative and seminal publications that are

closer to the vision of the research network.

The article first describes the main challenges that threaten

dependability, then presents and classifies the state-of-the-art in

the solutions and methodologies space.

II. DEPENDABILITY THREATS

Dependable operation in the field is a function of the

circuit’s ability to overcome faults occurring during the circuit

mission time. Dependability is a very generic term and refers to

the confidence a user has on a system’s ability to operate

correctly. Dependability is quantified by reliability,

availability, etc. which are measures of the ability of the

system to operate under its specifications at a given point of

time or during a period of operation and plays a key role in the

international roadmaps of advanced computing systems

segments [2], [3] [4]. A detailed taxonomy of dependable

systems can be found in [4].

A major threat of modern chips comes from intermittent

faults induced by environmental conditions, in particular

particle strikes on the circuit nodes, causing soft errors, [7]

Soft errors have traditionally been a major concern for storage

elements (registers, memories) but they are already a serious

problem for logic nodes as well. Intermittent faults are usually

due to environment reasons but can be also the result of voltage

and temperature variability when the circuit operates in more

than one mode (e.g. when voltage or frequency scaling

techniques are employed).

Unlike the past when manufacturing technologies were

robust enough to guarantee correct operation virtually

“forever”, today’s circuits suffer from degradation phenomena

that significantly reduce their life time even when they operate

in nominal conditions. Such mechanisms are typically referred

to as aging or wear-out and get more frequent and more severe

as manufacturing nodes get smaller, and circuit frequencies get

higher. Aging effects combined to technology node scaling can

cause both the occurrence of permanent faults but also the

increase of the rate of elusive faults, which manifest

themselves as intermittent faults in certain operating conditions

such as effects of temperature variation or system load

exceeding certain levels [4].

Figure 1 reports a timeline showing the points of time

during a chip’s lifetime where each threat appears.

Manufacturing defects (MD) occur during production (i.e.

when t<0), transient errors due to radiation (SE) or to voltage

and temperature variability (V) [6] are expected during all the

life cycle and aging phenomena (A) at the end of the chip’s

life.

Fig. 1 Occurrence of different kinds of faults during the life of a

device

Dependable operation of a circuit throughout its lifetime

can be only guaranteed when it employs hardware and software

mechanisms to tolerate all possible threats. Since such fault

tolerance mechanisms are planned during system design and

realized during system implementation and manufacturing,

they can improve both quality aspects of the system: cost-

effective production (through yield improvement) and highly

reliable operation in the field (through mitigation of threats)

[2], [7].

Conceptually, a chip at any stage may require to employ

mechanisms (external or internal as well as hardware or

software based) to detect and/or diagnose, recover, and even

repair itself from permanent, intermittent, or transient faults.

The subsequent sections of the article concentrate on

prevalent technological threats (i.e. soft errors and aging effects

causing both permanent and intermittent faults) and discuss the

main approaches used in practice to improve the in-field

dependability of a chip as well as the classic techniques and

measures that are employed to evaluate a system’s

dependability.

III. THE TECHNOLOGY VIEWPOINT ON CURRENT

CHALLENGES TO DIGITAL ARCHITECTURES

In this section, we elaborate on some of the issues outlined

in the previous section from a technology point of view. In

particular, we focus on soft error and aging susceptibility. The

proposed analysis and mitigation models are applicable not

only to multicore but to digital architectures in general.

A. Overview of Soft Errors effects

Soft errors are one of the most important challenges in

nanoscale CMOS technologies impacting field-level product

reliability. In an electronic component, the failure rate induced

by soft errors can be relatively high compared to other

reliability issues [8]. Whether or not soft errors impose a

reliability risk for electronic systems strongly depends on the

application. Soft-error rate is generally not an issue for

consumer applications such as mobile phones, but can be a

problem for applications that have very severe reliability and

safety requirements: automotive, data centers, space industry,

medical electronics, etc.

Soft errors are events usually provoked by radiations (i.e.

neutrons from cosmic rays, alpha particles emitted by

radioactive impurities present in manufacturing used materials,

etc.). Aggressive technology scaling, higher clock frequencies

and lower voltage operation strategies result in a reduction of

capacitance per transistor, and as a consequence particles with

lower energy, can generate sufficient charge to cause soft

errors. Soft Error Rates (SER) relate to cases when data is

corrupted, but the device itself is not permanently damaged.

Recent experiments show that the SER of combinational logic

in sub-50nm technologies is comparable with that of sequential

elements (i.e. latches and flip-flops) and will be a dominant

factor in the future technologies [9]. With technology scaling

to nanoscale regimes, a single radiation strike can affect

multiple cells through secondary particles (neutrons) and

shared diffusion which result in multiple bit upsets (MBUs)

[10].

Soft errors can have different effects on applications. They

may result in data corruption at the system level, or provoke a

timing delay or malfunctioning of a circuit or even a system

crash. Understanding how a particle impact may lead to

failures, has been made possible due to numerous

software/hardware methodologies and tools for evaluating SER

during the design phase. Such methodologies and tools aim to

reduce the extra design and validation cycles during chip

fabrication due to late modifications that could be necessary to

reach the desired reliability level. Their success on doing that

depends on their accuracy in SER evaluation. The full

characterization framework includes Technology CAD models

for the radioactive environment, their interaction with the

integrated circuit technology as well as design topologies

facilitating good estimation of Failures-In-Time (FIT) rates for

memory cells and library elements. Moreover, cell level SPICE

simulation frameworks and gate level statistical and

probabilistic approaches push forward the FIT estimation at

sequential cells [9], RTL level and IP blocks [11]. They take

into consideration electrical masking, logic masking and timing

masking phenomena. Higher-level estimation done at the RTL

and the full SOC level allows the integration of architectural

vulnerability aspects. All the masking factors have been widely

studied in recent years and very sophisticated models have

been proposed [12]. During the last years, the accuracy of

sensitivity evaluation of soft error effects has been improved as

well as the evaluation speed is increased by properly taking

into account the full environment of the system, the operating

modes, the systematic and random variations as well as the

application.
Mitigation approaches for soft errors at the circuit level are

aimed at avoiding that the effect of the injected charge could
modify logic values and are generally known as hardening
techniques. Hardening involves using redundant transistors,
capacitors, or resistors to make sure that the effect of the upsets
does not propagate. Some typical examples of hardening
techniques for memory elements can be found in [13][14][15].

B. Overview of Aging effects

Variation effects are among the main reliability issues [16]

and can be categorized into two main categories. Process

variation is the variation of transistor physical parameters due

to uncertainties during fabrication process. This type of

variation leads to significant performance variation at time t =

0. Aging (temporal variation), leads to variation in behavior of

a circuit over its lifetime, t > 0. Bias Temperature Instability

(BTI), Hot Carrier Injection (HCI) and Time-Dependent

Dielectric Breakdown (TDDB) are three main degradation

phenomena [16], [17]. When the transistor is negatively

(positively) biased, traps are generated at the silicon to

dielectric interface and also inside the dielectric of PMOS

(NMOS) transistors leading to an increase in the threshold

voltage of transistor. This phenomenon is called Negative

(Positive) BTI and leads to increase of the propagation delays

in a circuit and eventually the circuit fails to meet its timing

specifications. HCI is an irreversible aging effect, which is

caused by the accelerated carriers (electron/holes) under lateral

electric fields. HCI also manifests as an increase in the

threshold voltage of mostly NMOS transistors. While BTI

contains both stress and relaxation (recovery) phases,

depending on the transistor gate-source bias, HCI has no

recovery mechanism. The NBTI and HCI complex physical

models are currently enriched with more contributions: the

recoverable part of BTI, the HCI dependence on the workload

and the bulk bias, the interaction between them.

TDDB degrades the gate oxide and leads to an increase in

its conductance. As a result, the current through the gate

insulator increases and eventually it can lead to an abrupt

increase of gate leakage current causing a catastrophic failure

for the device (hard breakdown) or timing degradation. TDDB

becomes more severe as the gate oxide thickness becomes

thinner due to technology scaling. TDDB is primarily a major

issue for low-k device materials. However, after the

introduction of high-k dielectrics in highly scaled logic

devices, TDDB is an even more severe issue because of the

breakdown of the interfacial layer as well as the high-k layer.

Another aging issue which affects interconnect is

electromigration [17]. It is caused by physical migration of

atoms in a metal wire, when the current flows through the wire

for a long time. In order to mitigate the reliability threats, there

are two main categories of techniques: 1) “model, predict, and

margin”, and 2) “sense and adapt”. Both styles can be applied

at different levels of abstraction.

For aging mitigation at circuit level, guard-banding, body

biasing, and gate sizing are the most well-known methods [18].

For effective guard-banding methods, the guard-band has to be

accurately predicted. Therefore, it is crucial to effectively

predict the circuit failure expectations due to aging; this

approach has been extensively explored in the literature [19].

Circuit failure prediction can be combined with optimized self-

tuning in order to improve the lifetime by minimizing circuit

aging guard-bands [19]. Dynamic voltage/frequency scaling is

another approach that can be used at either coarse or fine

granularity. There are also methods to mitigate BTI by

rebalancing the signal probabilities applied to memory blocks,

logic cores and the entire processor [20]. Another approach is

input vector control, which can be used at the circuit or the

instruction level (using NOP instructions) [16].

In “sense and adapt” strategies against aging effects, the

circuit behavior has to be constantly monitored at runtime. For

this purpose, signatures can be collected during normal system

operation by using special sensors such as the ones proposed in

[21] or in [22] for monitoring NBTI and oxide degradation.

Another opportunity to obtain the signatures is by using

periodic on-line self-test/diagnostics [19]. Since aging effects

are highly dependent of circuit temperature, voltage and power

profiles, collecting such signatures are useful in order to predict

the aging rates [19]. Adaptive mechanisms can be utilized

based on the feedback from performance metric sensors [18].

Various monitoring schemes and canary circuitries such as

replica monitors, in-situ monitors, online self-test and

software-based inference have been proposed [18].

IV. DEPENDABILITY TECHNIQUES FOR MULTICORE

SYSTEMS

In this section we describe various dependability-enhancing

techniques that can be applied to the different components of a

multicore system. Table I summarizes the main classes of

approaches and their main characteristics. For each technique

it is reported: 1) its fault detection (FD) and/or fault tolerant

(FT) capabilities with respect to the fault type, 2) the phase

during which they are devised (design time vs. run time), and

3) the solution type (software, hardware or architectural).

A. Faults in processor cores

To cope with faults in the processors constituting the multi-

core system, various approaches have been adopted. Some of

the approaches work at the i) architectural level, by enhancing

the exploitation of existing cores and/or additional ones, ii)

micro-architectural level by hardening the core structure, or at

iii) application/software level, by working at the system and

application software levels. Circuit-level techniques are

usually not explicitly considered in this scenario since they

provide viable solutions (e.g., for the design of a hardened

memory element) independently of the circuit being designed

and thus we will not include them here.

1) Architectural solutions

One of the most straightforward but costly techniques is based

on the use of a second processing core, to monitor the

execution of the applications and, if a deviation from the

expected logical/timing behavior is detected, restart the core.

This can be achieved by means of a dedicated core working in

close synchronization with the master one (lock-step), or by

means of a simplified hypervisor or watch-dog. The presence

of several cores in multicore architectures enables for a direct

implementation of this kind of solutions (e.g. [23][24]). A

different way to exploit core redundancy is by means of active

replication and primary backup. In the former case, the whole

process is executed on another processing core in parallel and,

in case of fault the result from a healthy replica is used. In the

latter approach, only one replica is executed at a time and,

when it is detected as corrupted, the “backup” or “shadow”

replica is activated and executed. The main difference

between the two approaches is that the active replication does

not require timing penalty in case of error recovery but require

higher redundancy with respect to the primary backup (e.g.,

[25]).

2) Micro-Architectural solutions: Processor hardening

Several solutions have been envisioned to harden the

processor architecture itself, so that any fault is dealt with

inside the processor offering a transparent fault tolerant

execution of the applications. Addressing of faults at the

hardware level leads to increased silicon area, increased

critical part of a chip and increased development cost and

power consumption (e.g., [26]). A well-known example of this

approach is the SPARC-based LEON processor used by the

European Space Agency [27].

3) Software techniques

This class of approaches includes solutions that replicate the

tasks or threads of the application a number of times (two for

detection, three for tolerance), executing on different

processing cores and compares the produced outputs. Among

the various solutions proposed in literature, the one presented

in [28] proposes an execution model based on chip-level

redundant threading to deal with soft-errors in processors,

achieving fault detection properties without incurring in high

overheads and without a significant impact on the architecture.

Following the same strategy redundant execution of the tasks

or threads, re-execution consists of re-running the portion of

the application that has been corrupted, upon detection (e.g.,

[29]). Overheads are related to maintaining the necessary

information to perform a delayed execution of the portion of

the application. However, this approach also requires non-

trivial effort and may incur high overheads.

B. Faults in memory

In multicore architectures, the amount of silicon area occupied

by memories is continuously increasing and also its

functionalities (e.g. memory coherence) and architectures

become more and more complex. As a consequence yield and

reliability enhancement of cache memories is becoming more

and more important. This is accentuated by the shift from

SRAM-based caches to novel memories based on resistive

devices that show promising results with respect to the current

available charge based memories but present several reliability

issues (see [30] for Phase Change Memories and [31] for

nanoionics based memories). Here we shortly describe some

of the solutions to memory related faults that show how novel

dependability techniques can be designed to exploit the

specific characteristics of multicore architectures or how

already widely used techniques require a deep rethinking to be

applied in this new scenario.

1) Cache-coherence solutions

Specific methods related to the multicore paradigm exploit the

cache coherence protocols also to add error detection and

correction features to the system. The simplest method

consists in detecting errors by means of parity bits, correcting

the error using a copy of the data stored in another cache. As

an example, coherence protocol aimed at dealing with

transient failures that affect the interconnection network of a

multicore architecture is presented in [32].

2) Transactional-memory approach

Another family of techniques related to the multicore

paradigm exploits the transactional memory approach.

Transactional memory operations attempt to simplify

concurrent programming, by allowing a group of load and

store instructions to execute in an atomic way. It can be used

to add fault tolerant capacities to the multicore memories. As

one of the various examples, [33] uses a hardware

transactional memory to detect transient and permanent faults.

3) Information redundancy

Well-known techniques based on redundant row/columns

and/or on the use of error correction codes, received renewed

attention, since the different requirements in terms of power

consumption and speed, and the different type and likelihood

of errors in memories, require different types of solutions

(e.g., [34]).

C. Communication

Also here we selected only a small subset of possible

solutions, focusing on those that exemplify the relationship

between the specific solution and the multicore architecture.

Different topologies have been proposed to connect together

multicore architectures [35]. Some of these topologies are

based on shared bus communication infrastructures, often

connecting together private memories (e.g. L1 private caches

are connected to a shared L2 cache). When bus based

topologies are used, error codes are the most viable solution.

In particular, it is straightforward to use the same ECC used in

memory, also for data movement. When complex

interconnection structures like Networks-on-Chip (NoC) are

employed [36] [37], more error tolerant techniques can be

used, since error can be handled at link level or at network

level. Automatic Repeat Request (ARQ) uses error detection

codes to detect errors, retrying the failed transmission, while

Forward Error Control (FEC) is based on ECC codes. Hybrid

ARQ/FEC (HARQ) schemes combine both techniques to

obtain a better reliability/performance trade-off.

TABLE I. DEPENDABILITY TECHNIQUES FOR MULTI-CORE ARCHITECTURES

Technique name
Technique

family
Target Fault Type Phase Solution Type

Processor

Transient Permanent
Intermitt

ent

Design

-time

Run-

time
SW HW Architectural

Dual Lock-Step [24]

Architectural

solutions

FT FD FT X X

Hypervisor [23] FT FD FT X X

Watchdog [24] FT FD FD X X

Active replication &

backup [25]
FT FD FD X X

Processor hardening

[26][27]

Micro-

Architectural

solutions

FT FD/FT FD/FT X X

Redundant execution

[28] Software

techniques

FD/FT FD/FT FD/FT X X X

RE-execution and

recovery [29]
FD/FT FD/FT FD/FT X X X

Cache-coherent solutions [32]

Memory

FD/FT FD/FT FD/FT X X

Transactional memory approaches [33] FD/FT FD/FT FD/FT X X

Information redundancy [34] FD/FT FD/FT FD/FT X X X

ARQ [35][36]

Communications

FD FD FD X X

FEC [35][36] FT FT FT X X

HARQ [35][36] FD/FT FD/FT FD/FT X X X

V. DEPENDABILITY METRICS AND EVALUATION

The design of dependable multicore systems cannot be done

without having defined clear dependability metrics and the

way to measure them. This section discusses metrics used for

evaluating the dependability of multicore systems and their

evaluation methodologies.

A. Metrics

A system’s dependability can be quantified by various metrics

and techniques, typically at different abstraction levels of the

system. Such metrics include Failures-in-Time (FIT) rate
1
,

Mean Time To Failure (MTTF)
2
, Mean Time Between

Failures (MTBF)
3
, bit failure Probability (Pfail)

4
, Architectural

and Program Vulnerability Factors (AVF
5
, PVF

6
), Silent Data

Corruptions (SDC)
7
, Detectable Unrecoverable Errors

(DUE)
8
, Soft Error Rate (SER)

9
, etc. ([50][51]) . Estimation

techniques can be performed either pre-silicon, comprised of

statistical fault injection in simulators or model-based

1 FIT rate is the number of failures per 109 hours of operation.
2 MTTF is the average elapsed time to system failure (gives expected

lifetime of single point of failure systems).
3 MTBF is the average elapsed time between failures of a system.
4 Pfail is the raw technology failure probability of a cell or gate.
5 AVF is the probability that a fault in a hardware component will lead to

an architecturally visible error.
6 PVF calculates the percentage of architectural-level masking in a

program.
7 SDC is the number or rate of faults in a hardware component that lead to

output errors and are not detected by any mechanism.
8 DUE is the number of rate of faults in a hardware component that are

detected by a detection mechanism or lead to an exception but can’t be

corrected.
9 SER is the rate at which a device encounters or is predicted to encounter

soft errors.

analysis, or post-silicon on the actual hardware prototypes,

which can be more accurate but come relatively late in the

design flow.

Most reliability estimation techniques consider the circuit- and

gate-level. At the circuit-level, reliability device simulators

estimate the probability of a given failure mode at the output

of a logic gate hit by a particle or affected by other types of

stresses [38], [39]. These simulators have become an integral

part of the design process, modeling the variety of physical

failure mechanisms (TDDB, BTI, EM, HCI) discussed in

Section III. Recently it has become apparent that the impact of

process variations must be integrated in the circuit simulation

process, along with the physical failure mechanisms [40]. At

the gate-level, the entire netlist is considered to estimate the

error susceptibility of a node. This requires computing the

probability of sensitizing the node with an input vector able to

propagate the erroneous value to the circuit’s outputs [41], a

task that requires the simulation of several random vectors

whose number significantly increases with the size of the

circuit. To tackle this complexity, chip level reliability

prediction methods are mostly statistical following sampling

approaches as the one described in [49].

B. Evaluation

Traditionally, dependability metrics have been evaluated

analytically using technology and empirically derived foundry

and in-field data. For example, the FIT rate of a system is

additive on the constituent FIT rate of its components; MTTF

can be calculated either from individual component MTTFs

or, in a less cumbersome manner, using the inverse of the

system FIT rate; MTBF is the addition of MTTF and MTTR

(Mean Time to Repair), etc [50][51]. SDC and DUE rates are

important metrics used to categorize and quantify the impact

of faults in a system and the effectiveness of its underlying

detection/correction mechanism(s). Both rates can be applied

separately to each of the various dependability metrics. For the

case of soft-errors, it is typical to express the SER as the

summation of SDC FIT and DUE FIT [50].

A significant body of recent work at different levels in the

area of resiliency involves the study of the impact and

susceptibility of transient (soft) errors through fault injections

[48]. Transient faults can be injected into a microprocessor in

various ways leading to different control capabilities over the

time and location of the fault injection, the level of

perturbation to the processor, and the simulation time and cost

requirements. Commonly used hardware methods are

processor pin-level injection, heavy-ion radiation, power or

electromagnetic disturbances and non-destructive laser fault

injection. All these methods closely imitate real fault

situations, but are usually expensive and applicable only after

the physical chip is available. Software fault injection is a

low-cost alternative that can be applied to designs, programs

and O/S and allows observing the final impact on the system.

Software methods can be classified into two classes: (i)

software-implemented methods, where the processor state or

programs are modified during compile- or run-time and the

injection takes place on real hardware and (ii) simulation-

based method, where the processor, workload, and fault

injections are all modeled in a software simulator of the

architecture. In general, the latter is more flexible as it

provides better controllability of fault injection and

observability of the system behavior. However, it requires a

very accurate processor microarchitecture and system model

developed in software and it runs several orders of magnitude

slower than hardware or software-implemented methods.

In the recent years, there has been a considerable effort in

estimating the vulnerability of microprocessors considering

correlation models or even reliability estimation models that

work concurrently at different abstraction levels where the

micro-architecture is changed. The most popular measure is

the AVF, which is the probability of a bit-flip in a

microprocessor structure leading to a user visible system error

[42]. AVF gives more realistic SER estimates than circuit- and

device-level SERs (for SDCs and DUEs) as it tracks

observable errors. As a result, circuit- and device-level SER

can be considerably derated. Accurate estimation of AVF is a

complex process involving a large number of fault injections

and simulations requiring many resources to track values and

instructions as they travel through a processor [43]. The

process becomes even more demanding when multiple bit-

flips, which are expected in future technologies, must be

considered.

When analyzing the lifetime reliability of processor-based

systems, it is essential to investigate the impact at system

level. Srinivasan et al. [44] described a model for lifetime

analysis for microprocessors and conducted dynamic

reconfigurations based on the model. Other works predict

lifetime reliability based on simulations but, as with [44], the

failure mechanisms do not consider aging effects leading to

inaccuracies in the simulation results. In [45], one of the few

works on system-level lifetime reliability analysis for many-

core processors, the impact of workloads and associated

temperature variations are considered. Recently, researchers

have begun to explore the system-level impact of variations on

power, performance, and reliability by developing models of

process variation.

Scarce work has focused on systematically including the

software into the reliability evaluation process. Some work

analyzes various compiler optimization effects on the AVF of

embedded processors. However, the experiments lack new

guidelines regarding software reliability improvement at

compiler level. In [46] the authors proposed a first attempt of

performing static analysis of a computer system including its

software. While representing a new idea to include the

software in the error susceptibility estimation, the approach is

limited to errors in the instruction op-codes of the program

prior to their execution and does not consider the data and

control part of the microprocessor. Recent interesting

solutions include the software layer by computing the PVF

[47] for a set of applications exploited to improve AVF

computation for several microprocessors. However, neither

the final software workload, nor the full stack is explicitly

considered.

TABLE II. POPULAR DEPENDABILITY METRICS

Metric Level Phase Calculation Method

Failures-in-Time (FIT) circuit/component/microarchitecture Post-Silicon/Design Experiment/Simulation

Mean Time To Failure (MTTF)
circuit/component/microarchitecture

Post-Silicon/Design Experiment/Simulation

Mean Time Between Failures (MTBF) circuit/component/microarchitecture Post-Silicon/Design Experiment/Simulation

Bit failure probability (Pfail) circuit/component Post-Silicon Experiment

Silent Data Corruptions (SDC) microarchitecture/architecture Design Simulation

Detectable Unrecoverable Errors (DUE) microarchitecture/architecture Design Simulation

Soft Error Rate (SER)
circuit/component/microarchitecture/ar

chitecture
Post-Silicon/Design Experiment/Simulation

Architectural Vulnerability Factor (AVF) microarchitecture/architecture Design Simulation/Analytical

Program Vulnerability Factors (PVF) architecture Application (S/W) Simulation

VI. CONCLUSIONS AND FUTURE CHALLENGES

This article presented a survey of dependability issues faced

by multi-core architectures at nanoscale technology nodes.

Existing solutions against these challenges were also

discussed, describing their scope of application, from

technology level methodologies, to design approaches to the

metrics required to evaluate the overall dependability of a

system.

In the future, the constant reduction of the feature size of the

devices will exacerbate the issues related to aging and soft

errors. This will create further challenges and at design level,

an integrated design approach that will cope with the

occurrence of faults at any time of their occurrence i.e. at

manufacturing (thus increasing yield) and in the field (thus

increasing reliability) will become more and more important

to obtain economically viable and dependable systems.

Dependability assessment will also need an integrated

approach for cross-layer, pre- and post-silicon techniques for

“just right” dependability assessment in order to avoid “over-

design” for dependability using classic guard-banding

methodologies.

ACKNOWLEDGMENT

The MEDIAN COST Action (http://www.median-

project.eu) is funded by the European Science Foundation and

the European Union.

REFERENCES

[1] M. Ottavi, “Introducing MEDIAN: A new COST Action on

manufacturable and dependable multicore architectures at nanoscale,” in
Proc. IEEE European Test Symposium, pp. 28-31, 2012.

[2] A. DeHon, N.Carter, H.Quinn, “Final Report for CCC Cross-Layer

Reliability Visioning Study”, Computing Community Consortium,

http://www.cra.org/ccc/xlayer.php.

[3] Gupta, P.; Agarwal, Y.; Dolecek, L.; Dutt, N.; Gupta, R.K.; Kumar, R.;
Mitra, S; Nicolau, A.; Rosing, T.S.; Srivastava, M.B.; Swanson, S.;

Sylvester, D, "Underdesigned and Opportunistic Computing in Presence

of Hardware Variability," Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on , vol.32, no.1, pp.8,23, Jan. 2013

[4] A. Avizienis et al. "Basic concepts and taxonomy of dependable and
secure computing." IEEE Transactions on Dependable and Secure

Computing, vol. 1 no. 1, pp. 11-33, 2004.

[5] M. Duranton, D. Black-Schaffer, K. De Bosschere, J. Maebe, “The
HiPEAC Vision for Advanced Computing in Horizon 2020”,

http://www.hipeac.net/system/files/hipeac_roadmap1_0.pdf

[6] M. Alam, K. Roy, C. Augustine, “Reliability-and Process-variation

aware design of integrated circuits—A broader perspective”, In Proc. of
the IEEE International Reliability Physics Symposium (IRPS), 2011.

[7] ITRS, http://public.itrs.net, June 2011.

[8] T.Heijmen, “Soft Errors from Space to Ground Historical Overview,”
Soft Errors in Modern Electronic Systems, Springer, 2011.

[9] B. Gill, N. Seifert, and V. Zia, “Comparison of alpha-particle and

neutron-induced combinational and sequential logic error rates at the

32nm technology node,” In Proc. of the IEEE International Reliability
Physics Symposium, 2009, pp. 199 –205.

[10] R. A. Reed, M. A. Carts, P.W. Marshall, C.J. Marshall, O. Musseau,
P.J. McNulty, ... & T. Corbiere. “Heavy ion and proton-induced single
event multiple upset”. IEEE Transactions on Nuclear Science, 44(6),
1997, 2224-2229.

[11] A. Evans, D. Alexandrescu, E. Costenaro, L. Chen, “Hierarchical

RTL_Based Combinatorial SER Estimation,” In Proc. of the IEEE

International On Line Testing Symposium, IOLTS, 2013, pp 139-144.

[12] R. R. Rao, K. Chopra, D. T. Blaauw, D. M. Sylvester, “Computing the
soft error rate of a combinational logic circuit using parameterized

descriptors,” Trans. Comp.-Aided Des.Integ. Cir. Sys., vol. 26, no. 3, pp.

468–479, 2007.

[13] M. Zhang, S. Mitra, , T. M. Mak, N. Seifert, , N. J. Wang, , Q. Shi, S. J.
Patel, (2006). Sequential element design with built-in soft error
resilience. Transactions on Very Large Scale Integration (VLSI)
Systems, IEEE, 14(12), 1368-1378.

[14] T. Calin, M. Nicolaidis, and R. Velazco. "Upset hardened memory
design for submicron CMOS technology." IEEE Transactions on
Nuclear Science43.CONF-960773-- (1996).

[15] P. Hazucha, T. Karnik; S. Walstra, B. Bloechel, J. Tschanz, J. Maiz, K.
Soumyanath, G.Dermer, S. Narendra, V. De, S. Borkar, "Measurements
and analysis of SER tolerant latch in a 90 nm dual-Vt CMOS
process," Proceedings of the Custom Integrated Circuits Conference,
2003. IEEE 2003 , vol., no., pp.617,620, 21-24 Sept. 2003

[16] J. Fang, S. Gupta, S. V. Kumar, S. K Marella, V. Mishra, P. Zhou, S. S.

Sapatnekar, “Circuit reliability: from physics to architectures,” In Proc.
ACM Int. Conf. Computer-Aided Design, 2012, pp. 243–246.

[17] B. Mesgarzadeh, I. Soderquist, A. Alvandpour, “Reliability challenges

in avionics due to silicon aging,” In Proc. of the 15th IEEE International

Symposium on,Design and Diagnostics of Electronic Circuits &
Systems (DDECS), 2012, pp. 342–347.

[18] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique, M.

Tahoori, and N. When, “Reliable on-chip systems in the nano-era:

lessons learnt and future trends,” In Proc. ACM Design Automation
Conf., 2013, pp.1-10.

[19] S. Mitra, K. Brelsford, Y. M. Kim, H.-H. K. Lee, Y. Li, “Robust system

design to overcome CMOS reliability challenges,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 1, no. 1, pp.
30–41, 2011.

[20] V. Huard et al., “A Predictive bottom-up hierarchical approach to digital

system reliability”, in Proc. IEEE Int. Reliability Physics Symp., pp.
4B.1.1.-4B.1.10, 2012.

[21] A. C. Cabe, Z. Y. Qi, S. N. Wooters, T. N. Blalock, and M. R. Stan,
"Small Embeddable NBTI Sensors (SENS) for Tracking On-Chip

Performance Decay," in Proc. Int. Symp. Quality Electronic Design, pp.

1-6, 2009.

[22] E. Karl, P. Singh, D. Blaauw, and D. Sylvester, "Compact in situ sensors

for monitoring negative-bias-temperature-instability effect and oxide

degradation," Solid State Circircuts Conferance, pp. 410– 411, 2008.

[23] S. Campagna, M. Hussain, M.Violante, “Hypervisor-Based Virtual
Hardware for Fault Tolerance in COTS Processors Targeting Space
Applications”, in Proc. Int. Symp. Defect and Fault Tolerance in VLSI

Systems, pp. 44-51, 2010.

[24] D. Gizopoulos, M. Psarakis, S. V. Adve, P. Ramachandran, S. Kumar
Sastry Hari, D. Sorin, A. Meixner, A. Biswas, X. Vera, "Architectures

for Online Error Detection and Recovery in Multicore Processors", in

Proc. of Design, Automation & Test in Europe (DATE), 2011, pp. 533-
538.

[25] N. Budhiraja, K. Marzullo, F. B. Schneider, S. Toueg, “The primary-

backup approach”, Distributed systems (2nd Ed.), 1993.

[26] A. Pan, O. Khan, S. Kundu, “Improving yield and reliability of chip

multiprocessors,” in Proc. Conference on Design, Automation and Test
in Europe, pp. 490-495, 2009.

[27] J. Gaisler, “A portable and fault-tolerant microprocessor based on the

SPARC v8 architecture”, In Proc. of Int. Conf. Dependable Systems and
Networks, pp. 409-415, 2002.

[28] J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe, "Reunion:

Complexity-effective multicore redundancy", IEEE MICRO, pp. 223-
234, 2006.

[29] N. Kandasamy, J. P. Hayes, B. T. Murray, “Transparent Recovery from

Intermittent Faults in Time-Triggered Distributed Systems”, IEEE

Tranactions on Computers, 52(2), 113–125, 2003.

[30] A. Pirovano et al. "Reliability study of phase-change nonvolatile

memories." IEEE Transactions on Device and Materials Reliability,
vol. 4 no. 3 pp. 422-427, 2004.

[31] R. Waser and A. Masakazu "Nanoionics-based resistive switching

memories." Nature materials vol. 6 no.11 pp. 833-840, 2007.

[32] R. Fernández-Pascual, J. M. Garcia, M. E. Acaci and J. Duato, "A low

overhead fault tolerant coherence protocol for CMP architectures," In
Proc. of the IEEE Int. Symp. on High Performance Computer
Architecture, 2007, pp. 157-168.

[33] G. Yalcin, O. S. Unsal, A. Cristal, M. Valero, "FaulTM-multi: Fault

Tolerance for Multithreaded Applications Running on Transactional
Memory Hardware," in Proc. Workshop on Wild and Sane Ideas in

Speculation and Transactions, 2011.

[34] Su, Chin-Lung, Yi-Ting Yeh, and Cheng-Wen Wu. “An integrated ECC

and redundancy repair scheme for memory reliability enhancement,”
20th IEEE International Symposium on Defect and Fault Tolerance in

VLSI Systems, 2005. DFT 2005.

[35] D. Bertozzi, L. Benini, and G. De Micheli, “Error control schemes for

on-chip communication links: the energy-reliability tradeoff,” IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems, vol.

24 no. 6, pp.818-831, 2005.

[36] S. Murali,, N. Vijaykrishnan, M.J. Irwin, L. Benini, and G. De Micheli,

“Analysis of error recovery schemes for networks on chips,” IEEE
Design & Test of Computers, vol. 22, no. 5, pp.434-442, 2005.

[37] Ejlali, Alireza, et al. "Joint consideration of fault-tolerance, energy-

efficiency and performance in on-chip networks." In Proc. Design,

Automation & Test in Europe Conference & Exhibition, 2007.

[38] G. Papasso, D. Rossi, and C. Metra M. Omana, “A model for transient
fault propagation in combinatorial logic,” in Proc. IEEE On-Line

Testing Symposium, pp. 111-115, 2003.

[39] A. Maheshwari, I. Koren, N. Burleson, “Techniques for transient fault
sensitivity analysis and reduction in VLSI circuits,” in Proc. of the IEEE
International Symposium on Defect and Fault-Tolerance in VLSI

Systems, 2003, p. 597-604.

[40] D. Blaauw, and V. Zolotov A. Agarwal, “Statistical timing analysis for

intra-die process variations with spatial correlations,” in Proc. Int. Conf.
Computer-Aided Design, 2003, pp. 900-907.

[41] N. Touba K. Mohanram, “Partial error masking to reduce soft error

failure rate in logic circuits,” in Proc. IEEE Int. Symp. Defect and Fault-

Tolerance in VLSI Systems, 2003, p. 433.

[42] S. Mukherjee, C. Weaver, J. Emer, S.K. Reinhardt, and T. Austin, “A
Systematic Methodology to Compute the Architectural Vulnerability

Factors for a High-Performance Microprocessor,” in Proc. Int. Symp.

Microarchitecture (MICRO), 2003, pp. 29-40.

[43] N. Wang, A. Mahesri, and S.J. Patel, “Examining ACE Analysis
Reliability Estimates Using Fault-Injection,” in Proc. Int.Symp.

Computer Architecture (ISCA), 2007, 460-469.

[44] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers, "The Case for
Lifetime Reliability-Aware Microprocessors," in Proceedings of

International Symposium on Computer Architecture (ISCA), 2004, pp.

276-287.

[45] L. Huang and Q. Xu, “Characterizing the Lifetime Reliability of
Manycore Processors with Core-Level Redundancy”, In Proc. of the

IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), 2010, pp. 680-685.

[46] S. Di Carlo, G. Di Natale, and P. Prinetto A. Benso, “Static analysis of
SEU effects on software applications,” in Proc. of the International Test

Conference, 2002, pp. 500-508.

[47] V. Sridharan, D. R. Kaeli, “Eliminating microarchitectural dependency
from architectural vulnerability,” in Proc. of IEEE 15th International
Symposium on. High Performance Computer Architecture, 2009, HPCA

2009.

[48] J.A.. Clark, D.K. Pradhan, “Fault injection: a method for validating

computer-system dependability,” IEEE Computers, vol. 28, no. 6, pp.
47-56, June 1995.

[49] R.Leveugle, A.Calvez, P. Maistri, P. Vanhauwaert, “Statistical Fault
Injection: Quantified Error and Confidence,” ACM/IEEE Design,
Automation, and Test in Europe Conference (DATE), 2009.

[50] S. Mukherjee, “Architecture Desing for Soft Errors,” Morgan
Kaufmann, 2008.

[51] D.K. Pradhan, “Fault-Tolerant Computer System Design”, Prentice-
Hall, 2003.

