
1. Introduction ber of reactions per species which is usually much larger than in 
conventional mechanisms. Indeed, following the approach already 
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Nowadays it is well recognized that realistic numerical 
simulations of combustion phenomena necessarily require not only 
accurate, detailed modeling of fluid dynamic aspects, but also a 
detailed characterization of the chemical reactions and the physical 
and chemical properties of the gas mixture [1,2]. In particular, the 
inaccuracy of simplistic approaches assuming either equilibrium 
chemistry or global mechanisms has been clearly demonstrated in 
the modeling of reacting flows. As a consequence, this has led to an 
increasing effort to develop and incorporate more complex reaction 
mechanisms in the numerical simulation of combustion processes 
[3,4]. The result is the availability of a huge number of kinetic 
mechanisms with different levels of detail and comprehensiveness. 
Because of the hierarchical nature of the combustion process of 
hydrocarbons, the larger the fuel molecule (i.e. the number of 
carbon atoms), the more species and reactions are required to model 
and describe its combustion. Sufficiently realistic and 
comprehensive kinetic mechanisms usually consist of thousands 
reactions and species [5–8]. Obviously, the number of species and 
reactions increases with the complexity and the size of the fuel 
molecule. As an example, if the largest kinetic mechanism for n-
heptane involves ∼600 species and ∼3000 reactions [9], the 
oxidation of methyl-decanoate, a methyl-ester used as a biodiesel 
surrogate, is described by a mechanism with ∼3000 species and
∼9000 reactions [5]. As a matter of fact, the most recent reaction 
mechanisms for n-alkanes and 2-methyl-alkanes involve more
than 7000 species and more than 30,000 elementary reactions [7].
In particular, in Fig. 1a we reported the number of reactions as a
functions of the number of species for several detailed kinetic 
mechanisms freely available on the web in CHEMKIN⃝R format. The 
mechanisms reported in Fig. 1 are grouped in different families,
according to the research group involved in their development:␣

• POLIMI: CRECK Modeling Group at Politecnico di Milano 
(Italy) [10];

• LLNL: Lawrence Livermore National Laboratories (USA) [11];
• KinCom (Kinetics of Combustion): Université de Lorraine 

(France) [12];
• C3 (Combustion Chemistry Center): National University of Ire-

land, Galway [13];
• GRI: mechanisms related to the GRI-Mech Project [14];
• Others: mechanisms developed by other groups.

The Supplemental material provides the complete list of all the
mechanisms summarized in Fig. 1 (Appendix D), together with the 
bibliographic references. With the exception of schemes belonging 
to the POLIMI class, the number of reactions increases less than lin-
early with the number of species, i.e. NR ≈ 16NS

0.80. POLIMI kinetic 
mechanisms show a different trend, in which there is an approxi-
mately linear correlation between reactions and species, NR≈26NS . 
The difference is due to the different features of POLIMI mecha-
nisms (based on the lumping technique [15]), resulting in a num-
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described by Ranzi et al. [16], the H-abstraction reactions on the 
fuel are systematically considered, taking into account all the dif-
ferent H-abstracting radicals and the number and type of H-atoms 
in the fuel molecule. This is particular evident from the analysis of 
Fig. 1b, where the ratio for the same schemes is reported. While 
for conventional schemes the mean number of reactions per 
species is between 4 and 6, for the lumped POLIMI mechanisms 
this number is usually between 30 and 35. As extensively 
discussed in Section 6, the high number of reactions of lumped 
kinetic mechanisms has a non negligible impact on the 
performances of numerical algo-rithms for the simulation of 
combustion processes. Clearly the size of mechanisms tends to 
grow with time, thanks to new discoveries in chemical kinetics. 
Recent trends suggest that in the near future mechanisms with 
more than ∼10,000 species will be available, es-pecially in order 
to describe combustion of biofuels.

While such large mechanisms may provide very detailed infor-
mation about the chemical activities, it is very expensive (in terms 
of CPU time) to accommodate them in numerical simulations. The 
computational cost of simulations can be prohibitive, even when 
ideal reactors (batch, plug-flow, perfectly-stirred reactors, etc.) or 
one-dimensional laminar flames (flat premixed flames, counter-
flow diffusion flames, etc.) are numerically modeled. As a conse-
quence, the numerical simulation of most practical combustion 
systems of industrial interest is practically impossible using de-
tailed kinetic mechanisms, even on massively distributed-memory 
machines. The substantial reduction of these large mechanisms 
(i.e. the elimination species and reactions which are unimportant 
in the specific conditions under investigation) is probably the only 
viable technique to make them applicable in the near future [17]. 
Even if the size (i.e. number of species and reactions) of detailed ki-
netic mechanisms is the most important challenge for the numeri-
cal simulations, also stiffness of the non-linear chemical equations 
governing the evolution of combustion processes plays a funda-
mental role in controlling the performance and the robustness of 
numerical algorithms [18]. The stiffness, which is related to the ex-
istence of a wide range of characteristic chemical times, increases 
with increasing the complexity of the fuel molecule, because of 
the larger number of radical species in quasi-steady state, fast re-
versible reactions in partial equilibrium, and isomerization pro-
cesses [19]. As a consequence, in order to apply detailed kinetic 
mechanisms in complex reacting flows, the stiffness reduction ap-
pears as an important step, which is usually performed on-the-fly 
and involves expensive calculations, like operations on the Jaco-
bian matrix or sensitivity analysis [4].

The huge number of species and reactions in detailed kinetic 
mechanisms makes it very difficult and complicated to recognize 
the main reaction paths and to interpret the numerical results from 
a chemical point of view [20]. This difficulty can be usually over-
come by making use of reaction path analysis (RPA) and sensitivity



Fig. 1. Size (left) and reactions/species ratios (right) of skeletal and detailed kinetic mechanisms for hydrocarbon fuels studied in the present work. Each point refers to a 
different kinetic mechanism. The complete list is reported in the Supplemental material (Appendix D).
Source: Adapted from Lu and Law [2].
analysis (SA). The first technique consists in determining the con-
tribution of each reaction to the net production or destruction rates
of a species, while the sensitivity analysis allows for the quantita-
tive understanding of how the numerical solution depends on the
various reactions in the kinetic mechanism. However, both the nu-
merical techniques are computationally expensive and produce a
large number of data which require careful post-processing to be
correctly interpreted.

The considerations above reported suggest the need of com-
putational tools able to manage large kinetic mechanisms, with
thousands of species and reactions. Two main features are strictly
required:

1. the calculations have to be very efficient, i.e. proper numerical
technique have to be adopted to reduce the computational cost,
without loss of accuracy;

2. the computational tools have to be very user-friendly, i.e. easy
to use and to be modified by the user, in order to incorporate
them in new or existing numerical codes, to perform also
complex operations (reduction of kinetic mechanisms, kinetic
analyses, etc.).

This paper describes a suite of numerical tools, known as 
OpenSMOKE++, designed to provide a flexible, extensible frame-
work for simulations involving thermodynamics, transport 
processes, and chemical kinetics. The proposed framework is 
specifically conceived to manage very large detailed kinetic 
mechanisms, involving thousands of species and reactions. The 
OpenSMOKE++ framework strongly relies on the so-called Com-
putation Cost Minimization (CCM) techniques [2], i.e. a set of 
strategies that expedite simulations with little or no accuracy 
loss through optimization of the computation sequence. Moreover, 
thanks to its very user-friendly interfaces, based on the most mod-
ern features of C++, the OpenSMOKE++ framework can be easily 
incorporated into new or existing numerical codes to efficiently 
calculate thermodynamic properties, transport properties, and ho-
mogeneous and heterogeneous kinetics rates, and to solve the 
typical ODE (Ordinary Differential Equations) systems describ-
ing combustion processes. The most important features and the 
current capabilities of OpenSMOKE++, together with benchmark 
tests and illustrative examples, are presented and discussed in the 
present paper, which is organized as reported in the following. 
Section 2 describes the most important technical features of the 
OpenSMOKE++ framework, together with its innovative aspects 
with respect to similar frameworks existing in the literature and 
commonly adopted by the combustion community. In Section 3 
the most important computational capabilities of OpenSMOKE++ 
are presented. Then, in Sections 4 and 5, the OpenSMOKE++ Suite
is presented, i.e. a collection of tools to perform numerical simula-
tions of ideal reactors and kinetic analyses, like sensitivity analysis 
or rate of production analysis. Section 6 is devoted to the analysis of 
the numerical performances of the proposed framework on a series 
of examples of interest, in order to show its efficiency and robust-
ness. Then, in Section 7, a series of typical illustrative examples is 
presented, to better demonstrate the generality and the potential 
applications of the proposed framework.

Even if the OpenSMOKE++ framework was already applied 
with satisfactory results for the simulation of a wide range of 
reacting systems (ideal reactors [21], laminar premixed [4] and 
counter-flow diffusion flames [22], evaporation and combustion 
of droplets in microgravity conditions [23], laminar coflow diffu-
sion flames [24,25], catalytic heterogeneous reactors [26,27], reac-
tor networks [28], and internal combustion engines [29]), this is 
the first time we give a detailed description of its features, the nu-
merical models available, and the rationale behind its design.

2. The OpenSMOKE++ framework

OpenSMOKE++ is a framework specifically conceived to manage 
large, detailed kinetic mechanisms and perform numerical simu-
lations of combustion processes. The OpenSMOKE++ framework is 
written in object-oriented C++ and provides classes represent-ing 
the components of a simulation, gas mixtures, reactors, ki-netics 
models, equations of state, ODE integrators, reaction path diagrams, 
and so on. The numerical models are assembled in a physical, 
intuitive way, by creating and combining the different classes. As 
better explained below, this modular approach has im-portant 
advantages in the usability and the extension of the code. 
OpenSMOKE++ is specifically conceived to handle problems with 
thousands of species and reactions, which can be imported from the 
standard CHEMKIN⃝R format [30]. Efficient algorithms are used to 
evaluate reaction and formation rates.

2.1. The object-oriented features

In most cases the numerical codes for the simulation of 
reacting flows have been written in procedural languages. The 
large use of techniques based on procedural programming has 
led to a concentration on the lower levels of the coding and the 
implementation of models (in many cases very complicated) has 
been usually discussed in terms of the manipulation of individual 
floating-point values [31].

The OpenSMOKE++ framework is based on a different method-
ology, which is called Object-Oriented Programming (OOP), which 
is today generally recognized as able to have code that is easier to 
write, validate, and maintain than procedural techniques [32]. The



feasibility of OOP techniques for writing numerical codes for the 
solution of reacting flow problems with detailed chemistry will be 
described and discussed.

The OOP approach involves three main features: abstraction, in-
heritance, and polymorphism [32]. Abstraction is the ability to rep-
resent conceptual constructs in the program and to hide details 
behind an interface. This is achieved by the concept of classes to 
represent conceptual objects in the code, that encapsulate (i.e. con-
tain and protect) the data that make up the object. Member func-
tions are provided that permit limited, well-defined access to the 
encapsulated data. Thus, as an example, it is possible to create data 
types representing chemical species, chemical reactions, a mix-
ture of chemical species, a gas stream, an ideal reactor, etc., hid-
ing the numerical details of the implementation by encapsulation. 
The class interface is designed to be as simple as possible, while 
the implementation is not relevant at this level. Inheritance enables 
relationships between the various classes to be expressed, repre-
senting commonality between different classes of objects by class 
extension. By doing this, existing classes can be given new behav-
ior without the necessity of modifying the existing class. For exam-
ple, the different kind of reactions have some elements in common 
(e.g. the functions to manage the stoichiometry) which can be in-
herited by a parent reaction class and specialized for the specific 
reactions (children) which the user wants to implement. This ap-
proach can be used to construct a complicated class by extending 
base classes that express simpler objects. Polymorphism is the abil-
ity to provide the same interface to objects with different imple-
mentations, thus representing a conceptual equivalence between 
classes that in practical terms have to be coded differently. Exam-
ples of this feature in OpenSMOKE++ include the implementation 
of the Mixture class (as better explained in the following).

The OpenSMOKE++ library is written in C++, since this is a good 
programming language for scientific work. It is widely available on 
all platforms and, being based on C, is fast. Several studies [33,34] 
indicate no significant difference in performance between Fortran 
and the C group of languages.

The OpenSMOKE++ library is based on template programming 
and strongly relies on the concept of policies and policy classes 
[35], an important class design technique that enables the creation 
of flexible, highly reusable libraries. In brief, policy-based class 
design fosters assembling a class with complex behavior out of 
many little classes (called policies), each of which takes care of 
only one behavioral or structural aspect. As the name suggests, a 
policy establishes an interface pertaining to a specific issue. The 
user can implement policies in various ways as long as the policy 
interface is respected. Since policies can be mixed and matched, 
a combinatorial set of behaviors can be achieved by using a small 
core of elementary components.

2.2. The OpenSMOKE++ kernel

OpenSMOKE++ consists of a ‘‘kernel’’ that provides the core 
capabilities for its integration in existing and new numerical codes 
and interface packages to external numerical libraries, to solve 
for example ODE and DAE problems. This kernel is conceived 
by taking into account that one of the main objective of the 
OpenSMOKE++ framework is to make the management of complex 
reacting mixtures easy. For this purpose the main classes are 
designed by exploiting policy design and inheritance techniques.

The real core of the kernel is the Species class, which man-
ages the properties of a single chemical species. The Species class 
is based on several policies concerning the sub-models used to 
evaluate the thermodynamic (density, specific heats, enthalpy, en-
tropy, etc.) and transport properties (thermal conductivity, viscos-
ity, mass diffusivity, etc.). The user can easily choose the policies to 
be used which better fit his needs, i.e. the sub-models to calculate
the required properties, or can easily implement a new policy. The 
only requirement is that the new policy respects the policy inter-
face. The main advantage of this approach is that, if a new policy is 
needed, no changes to the existing code are needed. As an exam-
ple, if a new equation of state is needed for evaluating the density, 
the new corresponding policy can be added to the OpenSMOKE++ 
library, but the source code of the original OpenSMOKE++ library 
does not have to be changed.

The chemical species described by the Species classes can be 
collected together to create the Mixture class, through which the 
user can easily and efficiently evaluate thermodynamic and trans-
port properties of a mixture. The Mixture class is built using a 
number of policies concerning the mixing rules for the evaluation 
of mixture properties (e.g. mean specific heat at constant pres-
sure, thermal conductivity, etc.). The Mixture class does not need 
to know the details behind the calculations of properties of every 
species, but only how to ‘‘mix’’ these properties to evaluate the cor-
responding mean mixture values. This is easily achieved because 
the different species involved in the mixture expose a common in-
terface to the Mixture class. Moreover, the user can access the 
properties of single species of the mixture, without knowing what 
kind of species is being considered, because the exposed interface 
is always the same, independently of the policy. More importantly, 
since policies are implemented on the basis of template program-
ming, there is no CPU-time penalty in this approach.

The chemical reactions are described through the Reaction 
class, which manages the data about the stoichiometry and the ki-
netic parameters of a single reaction. The Reaction class is de-
signed as a virtual class, from which a large number of classes is 
derived, each of them describing a particular kind of reaction (fall-
off reactions, Chebyshev, bimolecular activated reactions, etc.).

The Chemistry class represents a collection of reactions in-
volved in a kinetic mechanism. This class does not have to know the 
details about the implementation of every Reaction type class. 
The most important functions which have to be exposed to the 
Chemistry class are the evaluation of the reaction rate and the ac-
cess to the stoichiometric coefficients. The Chemistry class pro-
vides all the functions to evaluate the formation rates of every 
chemical species, which are usually the most important data re-
quired in the simulation of reacting flows.

It is quite easy to recognize that the OpenSMOKE++ C++ Library 
can be easily extended and adapted to the needs of the user, 
by adding new thermodynamic and/or transport policies and by 
introducing new classes of chemical reactions.

2.3. Efficiency

According to Smooke et al. [36], in typical reacting flow 
calculations with detailed kinetic mechanisms, more than ∼80%of 
CPU time is spent for the numerical evaluation of Jacobian 
matrices. Since the construction of the Jacobian usually involves 
the evaluation of thermodynamic and transport properties and the 
calculation of formation rates of every species a large number of 
times, the OpenSMOKE++ library tries to make the calculations of 
these properties as fast as possible. This goal can be reached by 
exploiting the object oriented nature of C++. In particular, the 
MixtureMap class is specifically conceived for calculating 
thermodynamic, transport properties and kinetics data as fast as 
possible, without using complex interfaces. The idea is quite 
simple: from every Mixture object (working as a sort of C++ 
Factory [35]) a number of independent MixtureMap objects can 
be created. The user can register in each of these MixtureMap 
objects the properties which have to be calculated. Then, when 
these properties are needed, the user has only to update the status 
of the MixtureMap object and ask for the property in which he is 
interested. The details about how calculations are performed



are completely hidden to the user, who does not need to recur to
complex interfaces in which a long number of parameters have to
be passed or to remember the exact order in which the different
functions must be called. This is possible because of the object
oriented programming techniques. Moreover the MixtureMap
objects know the kind of mixture fromwhich theywere originated
and the Mixture object knows every map that it created. In this
way if a change is applied to the Mixture object (e.g. a new
reaction is added, etc.), such changes are automatically applied to
all the maps created by the Mixture object.

Efficiency is achieved by the MixtureMap using several
techniques:
• caching: the code is written in order to cache as much as possi-

ble, which means storing items for future use in order to avoid
retrieving or recalculating them. Only calculations which are
strictly necessary are performed ‘‘on the fly’’. If some variables
can be calculated only once, they are stored so that they are
available for future needs;

• object pools: this is a technique for avoiding the creation and
deletion of a large number of objects during the code execu-
tion [37]. If the user knows that his code needs a large num-
ber of short-lived objects of the same type, he creates a pool
of those objects. Whenever he needs an object in his code, he
asks the pool for one. When the user is done with the object, he
returns it to the pool. The object pool creates the objects only
once, so their constructor is called only once, not each time they
are used. Thus, object pools are appropriate when the construc-
tor performs some setup actions that apply to many uses of the
object, and when the user can set instance-specific parameters
on the object through non-constructor method calls. For exam-
ple, if the user need to solve several ODE systems with different
initial conditions, it is possible create a pool of ODE objects, in
order to reduce the CPU time for allocatingmemory, setting the
numerical parameters, etc.;

• optimized functions: the numerical algorithms are often refor-
mulated in order to exploit the Intel R⃝ MKL Vector Mathemati-
cal Functions Library (VML) [38]. VML includes a set of highly
optimized functions (arithmetic, power, trigonometric, expo-
nential, hyperbolic, special, and rounding) that operate on vec-
tors of real and complex numbers;

• code reformulation: many parts of the numerical algorithms
are reformulated in a less intuitive way in order to minimize
the number of flops needed to perform some calculations or
to avoid the usage of CPU-expensive functions [2]. As an ex-
ample, the kinetic constants are not evaluated using the usual
direct approach: kj = AjTβj exp


−Ej/RT


. On the contrary,

they are calculated using the following formulation: kj =

exp

ln

Aj

+ βj − Ej/RT


. The first formulation requires two

expensive functions for the calculation of the kinetic constant:
a power and an exponential. The second formulation only one
expensive exponential function. The ln


Aj

coefficient must

be evaluated only once and stored and it does not need to
be re-evaluated every time. It is quite clear that by using this
simple reformulation, the user can save CPU time, considering
that detailed kinetic mechanisms involves thousands of reac-
tions.

Moreover, the OpenSMOKE++ functions always try to handle
objects efficiently, applying inline methods and using only pass-
by-reference and return-by-reference techniques, without over-
using costly language features, such as exceptions, virtualmethods
and RTTI (Run Time Type Information).

2.4. Integration in new and existing codes

The object-oriented nature of OpenSMOKE++ library makes
its integration in existing numerical codes quite easy. Because
of encapsulation of data, the user does not have to know the
details about the algorithms internally used byOpenSMOKE++ and,
most importantly, the interface for calling common functions (for
evaluation of formation rates, transport properties, etc.) is kept as
simple as possible. An example is reported in the following C++
lines of code:

1 . Mixture ∗mix = new Mixture ( fileName ) ;
2 . MixtureMap ∗map = new MixtureMap(mix ) ;
3 . map−>SetTemperature (T ) ;
4 . map−>SetPressure (P ) ;
5 . cp_species = map−>cp_species ( ) ;
6 . viscosity_mixture = map−>viscosity_mixture (x ) ;
7 . R = map−>formation_rates ( c ) ;
8 . r = map−>react ion_rates ( c ) ;

In the first line the kinetic mechanism (together the thermo-
dynamic data and the transport properties) is imported from an
external file (usually in CHEMKIN R⃝ format). Then (line 2) a Mix-
tureMap object is created, from the mixture previously imported.
Lines 3 and 4 are used to set the temperature and the pressure at
which the thermodynamic, transport and kinetic properties have
to be calculated. In line 5 the constant specific heats of the species
contained in the kineticmechanism are calculated. In line 6 the dy-
namic viscosity of the mixture is evaluated. In this case, the com-
position is provided in terms of mole fractions (x). The following
point is important to remark. In order to calculate the viscosity of
the mixture, the viscosities of the single species have to be firstly
evaluated. However, as in this case, the user does not need to calcu-
late them explicitly, because, thanks to the object-oriented nature
of the framework, the MixtureMap recognizes that the viscosities
of single species have to be calculated before returning the viscos-
ity of the mixture. More interestingly, if the user asks for the vis-
cosity of themixture for a different composition, without changing
the temperature and thepressure, theMixtureMap class performs
only the operations strictly needed. This means that if the viscosi-
ties of single species depends only on temperature and pressure,
they are not recalculated. So, the big advantage of object-oriented
programming in this kind of context is quite evident: the user does
not need to know the exact order in which to call the functions to
obtain the required data. Moreover, only the strictly necessary cal-
culations are automatically performed, which means that the risk
to perform useless calculations is minimized.

These advantages are also evident from lines 7 and 8. In
particular, in line 7 the formation rates of all the species are
calculated, according to the specified concentrations. Then, in line
8, the user asks for the reaction rates. Apparently, the two lines
seemconceptuallywrong: in order to calculate the formation rates,
the reaction rates for all the reactions are needed, but in this
example the order in which these two operations are performed
is the opposite. However, what happens is completely hidden to
the user: in line 7 the MixtureMap object recognizes that the
reactions rates are needed and therefore they are calculated before
returning the formation rates. In line 8, the reaction rates are not
re-calculated, by they are simply returned, since the MixtureMap
object knows that they were just calculated. If the two lines were
switched, something different would happen, leading to the same
result:

7∗ . r = map−>react ion_rates ( c ) ; / / react ion rates
8∗ . R = map−>formation_rates ( c ) ; / / formation rates

Now in line 7* the reaction rates are not simply returned,
but they have to be calculated. In line 8* the formation rates
are assembled from the reaction rates evaluated above, which
of course are not recalculated. This is a further example that
demonstrates the advantages of object-oriented programming
over the procedural programming.



3. Main features

This section briefly describes the computational capabilities of 
OpenSMOKE++.

3.1. Thermodynamic and transport properties

The thermodynamic properties of single chemical species 
are calculated following the approach proposed by Gordon and 
McBride [39]. For each species, the dimensionless properties at 
constant pressure are specified as functions of temperature as 
follows:CP,i

R
= ai,1 + ai,2T + ai,3T 2

+ ai,4T 3
+ ai,5T 4 (1)

Hi

RT
= ai,1 +

ai,2
2

T +
ai,3
3

T 2
+

ai,4
4

T 3
+

ai,5
5

T 4
+

ai,6
T

(2)

S0i
R

= ai,1 ln T + ai,2T +
ai,3
2

T 2
+

ai,4
3

T 3
+

ai,5
4

T 4
+ ai,7 (3)

where CP,i, Hi, and S0i are the molar specific heat at constant
pressure, the molar specific enthalpy and the molar specific
entropy at 1 atm of species ith, respectively. T is the temperature,
R the universal gas constant, and ai,1 − ai,7 are the least-squares
coefficients of the Gordon and McBride empirical equations [39].
For each species, two sets of coefficients for use on two adjacent
temperature intervals are included, resulting in an overall number
of parameters equal to 14.

The thermodynamic properties of the mixture are evaluated by
applying the Gibbs theorem, which consists in summing up the
contributions made by all species. For example, the specific molar
enthalpy of themixture is given byH =

NS
i=1 xiHi, where xi ismole

fraction of species ith.
The transport properties of the species are computed by

using the standard kinetic theory expressions [40,41]. To expedite
the evaluation of transport properties in OpenSMOKE++, the
temperature dependent parts of the pure species property
expressions are fitted. This means that, rather than re-evaluating
the complex expressions for the properties, only simple fits need
to be evaluated. In particular, following the approach proposed by
Kee et al. [30], a polynomial fit of the logarithm of the property
versus the logarithm of the temperature is adopted:

ln ηi =

N
k=1

bη

i,k (ln T )k−1 (4)

ln λi =

N
k=1

bλ
i,k (ln T )k−1 (5)

lnΓ 0
i,j =

N
k=1

bΓ
i,j,k (ln T )k−1 (6)

where ηi and λi are the dynamic viscosity and the thermal
conductivity of species ith, respectively. Γ 0

i,j is the binary mass
diffusion coefficient between species ith and jth evaluated
at the pressure of 1 bar. The coefficients bη

i,k, b
λ
i,k, and bΓ

i,j,k are
the fitting parameters for viscosity, thermal conductivity andmass
diffusion, respectively.

OpenSMOKE++ uses third-order polynomial fits (i.e., N = 4),
as suggested in [30], where it is reported that the average error is
well within one percent. Obviously, the fitting procedure has to be
carried out for the particular gaseous mixture under investigation,
which means that the fitting cannot be done ‘‘once and for all’’
but must be done once at the beginning of each new problem.
Moreover, while the viscosities and conductivities of species do 
not depend on pressure, the binary diffusion coefficients inversely 
depend on pressure. Eq. (6) refers to unit pressure of 1 bar and 
therefore the real evaluation of a binary diffusion coefficient Γi,j

at pressure p (in bar) is given by Γi,j = Γi,
0
j/p.

The thermal diffusion ratios are estimated using the simplified 
procedure described in [30]. Since the dependence on temperature 
is weaker if compared to the previous transport properties, the 
fitting procedure is directly applied on the temperature, rather 
than on its logarithm.

The mixture diffusion coefficient Γi,mix for species ith is 
calculated using the following expression [42]:

Γi,mix =

NS
j≠i

xjWj

Wmix

NS
j≠i

xj
Γji

. (7)

The remaining mixture-averaged transport properties are then
estimated from the corresponding pure species properties through
the application of propermixing rules. OpenSMOKE++ employs the
Wilke formula [43] to calculate the dynamic viscosity:

η =

NS
i=1

xiηi
NS
j=1

xjφi,j

(8)

where:

φi,j =
1

√
8


Wj

Wi + Wj


1 +


ηi

ηj


Wj

Wi

1/4
2

(9)

and W is the molecular weight of species ith. For the thermal
conductivity the combination averaging formula proposed by
Mathur et al. [44] is adopted:

λ =
1
2

 NS
i=1

xiλi +


NS
i=1

xi
λi

−1
 . (10)

3.2. Kinetic mechanisms

OpenSMOKE++ is able to manage any number of elementary
chemical reactions, both reversible and irreversible. For a reaction
mechanism involving NR elementary reactions among N species,
the jth elementary step can be written in the following general
form:

NS
i=1

υ
f
ij Si

k f
j

↔
kbj

NS
i=1

υb
ijSi j = 1, . . . ,NR (11)

where Si is the symbol for species ith, υ f
ij is the stoichiometric co-

efficient of reactant species ith in reaction jth, υb
ij the stoichiomet-

ric coefficient of product species ith in reaction jth. k f
j and kbj are

respectively the forward and the reverse kinetic constants of reac-
tion jth. In most cases the forward kinetic constant is given by the
Arrhenius’ law:

k f
j = AjT nje−

Ej
RT (12)

where Aj is the pre-exponential factor, nj the temperature ex-
ponent, Ej the activation energy, R the universal gas constant



and T the absolute temperature. For a reversible elementary re-
action, the reverse kinetic constant kbj can be explicitly spec-
ified by the user or calculated within the code through the
equilibrium constant K c

j :

K c
j = e

∆S0i
R −

∆Hi
RT

 patm
RT

NS
i=1


υb
i,j−υ

f
i,j


(13)

kbj =
k f
j

K c
j

(14)

where the reaction entropy∆S
0
j and the reaction enthalpy∆H j are

defined as:

∆S
0
j =

NS
i=1


υb
i,j − υ

f
i,j

S0i (15)

∆H j =

NS
i=1


υb
i,j − υ

f
i,j

Hi. (16)

The net reaction rate rj of reaction jth is given by the difference
between the forward and the backward (if any) reaction rates,
according to the following plain law of mass action:

rj = k f
j

NS
i=1

cυ
f
ij − kbj

NS
i=1

cυb
ij . (17)

In some reactions, like dissociation or recombination reactions,
a ‘‘third body’’ is required for the reaction to proceed. In these cases
the presence of other species than those directly participating in
the reaction stoichiometry enhances the reaction rate according to
an ‘effective’ concentration, or molecularity,Meff ,j:

Meff ,j =

NS
i=1


αijci


(18)

where α is the third-body efficiency of species ith in reaction jth. 
The resulting, effective reaction rate is then given by rj

eff 
= rjMeff ,j.

OpenSMOKE++ is also able to manage more complex kinetic 
laws describing the chemical reactions (Pressure-dependent 
reactions, Chemically Activated Bimolecular Reactions, Chebyshev 
Polynomials, etc.). The interested reader is referred to A, where 
detailed descriptions are provided.

3.3. ODE Solvers for stiff problems

The time integration of reacting gas mixtures is the basis of 
many computational approaches in numerical combustion [18]. 
Examples include the simulation of ideal reactors (perfectly stirred 
reactors, plug-flow reactors, shock-tubes, batch reactors, etc.) and 
the point-wise time integration of the chemical source terms as 
part of the operator-splitting strategy for the solution of reactive 
Navier–Stokes equations [24]. Thus, one shall assume that the 
reacting gas mixture is governed by the following system of 
coupled, first-order ODEs (Ordinary Differential Equations):

dy
dξ

= f (y, ξ)

y (ξ0) = y0.
(19)

In the equation reported above, y is the vector of unknowns 
(species concentrations, temperature, pressure, etc., depending on 
the specific problem under investigation), ξ is the independent 
variable (usually the time or a spatial coordinate) and f (y, ξ) is a 
non-linear function of the unknowns. The ODE system (19) is
usually stiff [45], since the evolution of chemical species in most 
cases occurs on a wide range of characteristic times. Moreover, in 
case of large kinetic mechanisms, the number of equations to be 
solved can be very large.

The most popular methods for the time integration of stiff 
reaction mechanisms are based on variable-coefficient backward 
differentiation formula (BDF) methods [46]. Those techniques are 
based on modified Newton’s methods and are computationally 
quite expensive, since they require repeated solutions of linear 
systems involving the Jacobian matrix associated to the system 
(19). Due to the importance of ODE systems in kinetic analysis of 
combustion phenomena, the OpenSMOKE++ framework provides 
the interface to several well-known numerical libraries for the 
solution of such ODE systems. In particular, solvers for stiff or 
moderately stiff problems are available, because the best (i.e. more 
efficient and more robust) solver depends on the intrinsic features 
of the kinetic mechanism under investigation.

The current version of OpenSMOKE++ provides the interface to 
the following ODE solvers:

• CVODE [47]: a solver for stiff and non-stiff problems. The 
methods used in CVODE are variable-order, variable-step 
multistep methods. For non-stiff problems, CVODE includes the 
Adams–Moulton formulas, with the order varying between 1 
and 12. For stiff problems, CVODE includes the BDFs in so-called 
fixed-leading coefficient form, with order varying between 1 
and 5. For either choice of formula, the resulting nonlinear 
system is solved (approximately) at each integration step;

•

•

DASPK [48]: a solver for systems of differential–algebraic 
equations. It includes options for both direct and iterative 
(Krylov) methods for the solution of the linear systems arising 
at each (implicit) time step. However, in the present work the 
linear systems that arise are always solved by direct methods 
(LU factorization/solution).
DLSODE [49]: a solver for stiff and non-stiff systems. It uses 
the Adams methods (predictor–corrector) in the non-stiff case, 
and the Backward Differentiation Formulas (BDF) methods in 
the stiff case. The linear systems that arise are solved by direct 
methods (LU factorization/solution);

• DLSODA [49]: a variant version of the DLSODE package. It 
switches automatically between stiff and non-stiff methods. 
This means that the user does not have to determine whether 
the problem is stiff or not, and the solver will automatically 
choose the most appropriate method. It always starts with the 
non-stiff method;

• DVODE [46]: a general purpose solver very similar to DLSODE 
[49]. However, it uses variable-coefficient methods (fixed-
leading coefficient form) instead of the fixed-step-interpolate 
methods in DLSODE. This and other features make it often more 
efficient than DLSODE;

• RADAU5 [50]: a solver using an implicit Runge–Kutta method 
(RadauIIa) of order 5 (three stages) with step size control and 
continuous output.

In addition to the solvers reported above, a native OpenSMOKE++ 
ODE solver is also provided. Basically it is based on the same 
numerical approach of BzzOde [51] (belonging to the BzzMath 
libraries [51–53]), but all the linear algebra operations are per-
formed through the C++ Eigen library. It is specifically conceived 
for very stiff problems and it is based on the BDF in the so-called 
fixed-leading coefficient form, with order varying between 1 and 5.

The complete list of solvers is summarized in Table 1. All the 
solvers are open-source and freely available for academic pur-
poses. Since smart interfaces are available in the OpenSMOKE++ 
framework, the user can very easily switch from one solver to an-
other.



Table 1
List of stiff ODE solvers available in the current version of OpenSMOKE++.

Name Integration method Order Linear system Linear algebra Ref.

CVODE Variable-coefficient BDF Variable Direct, LU Factorization BLAS/LAPACK (Intel R⃝ MKL) [47]
DASPK Variable-coefficient BDF Variable Direct, LU Factorization BLAS/LAPACK (Intel R⃝ MKL) [48]
DLSODA Fixed-coefficient BDF Variable Direct, Gauss Factorization LINPACK [49]
DLSODE Fixed-coefficient BDF Variable Direct, Gauss Factorization LINPACK [49]
DVODE Variable-coefficient BDF Variable Direct, LU Factorization BLAS/LAPACK (Intel R⃝ MKL) [46]
RADAU5 Implicit Runge–Kutta Variable Direct, Gauss Factorization LINPACK [50]
Native Fixed-coefficient BDF Variable Direct, LU Factorization Eigen (Intel R⃝ MKL) Present work
The current version of OpenSMOKE++ assumes that the Jacobian 
matrix corresponding to the ODE system is dense, in order to 
be as general as possible. However, the formation rates of most 
chemical species are usually dominated by only a small set of 
reactions. Reflecting this physical behavior, most large chemical 
kinetic mechanisms in the literature are extremely sparse in terms 
of interactions between different species. In other words, each 
species reacts with a small number of the total number of species 
available in the mixture. Dense techniques adopted by the current 
version OpenSMOKE++ cannot exploit this inherent sparsity. 
Several authors demonstrated that, after a proper reformulation 
of the ODE problem (19), in some cases (for example batch 
reactors with constant volume) it is possible to take advantage 
of the sparsity and to adopt ODE solvers specifically conceived 
for systems with sparse Jacobian matrices, with a significant 
gain in the computational time [18,54–56]. As a consequence, 
our near-term development plans do necessarily focus on the 
development of numerical tools to exploit the sparsity of large 
kinetic mechanisms.

3.4. Sensitivity analysis

The OpenSMOKE++ framework provides several useful tools 
to perform sensitivity analysis, both for unsteady and steady-
state problems. Sensitivity analysis is very important for kinetic 
studies, since it allows the quantitative understanding of how the 
numerical solution of the governing equations depends on the 
various parameters contained in the model itself [57,58]. Only 
the first-order sensitivity coefficients with respect to the reaction 
rate coefficients (pre-exponential factors, activation energy or 
kinetic constant) can be calculated. The calculation of sensitivity 
coefficients exploits the linearity of the differential equations 
governing their evolution, regardless of any non-linearities in the 
problem itself.

The equations for the sensitivity coefficients can be easily 
obtained starting from the ODE system describing the system 
under investigation:

dy
dξ

= f (y, ξ ; α) . (20)

In the equations reported above, we explicitly introduced the
idea that the functions on the right hand side do not depend only
on the unknowns y (size N), but also on a number of parameters α
(size NP ), corresponding for example to the kinetic parameters of
the chemical reactions. The first-order sensitivity coefficients are
then defined as:

sij =
∂yi
∂αj

(21)

where the index j refers to the variable and i to the parameter. For
large kineticmechanisms the number of sensitivity coefficients can
be enormous. As an example, for a kinetic mechanism with N =

1000 species and NP = 10, 000 reactions the number of sensitivity
coefficients of specieswith respect to the pre-exponential factors is
equal to 108. In order to simplify the next equations we introduced
Fig. 2. Sparsity pattern of Jacobian matrix of coupled system of model equations 
(20) and sensitivity equations (22). N is the number of main unknowns and NP the 
number of parameters. Each block is a square matrix, with size equal to N × N. 
The shaded blocks are usually dense, while the white blocks are null matrices. The 
blocks on the main diagonal are equal to the Jacobian matrix J of the model Eqs.
(20).

the following vector sj =


∂y1
∂αj

,
∂y2
∂αj

, . . . ,
∂yN
∂αj


, i.e. the set of

sensitivity coefficients of all the N variables yi with respect to the 
jth parameter αj. If we differentiate the differential equations (20) 
with respect to the parameters (21), we have the following NP 
additional ODE systems:

dsj
dξ

= Jsj +
∂f
∂αj

sj (ξ0) = 0
(22)

where J is the Jacobian matrix of the main ODE system (20), i.e. Jij =
∂ fi
∂yj

.
There are two important points to remark about the above 

sensitivity equations. The first observation is that the original 
system (20) is not coupled to the sensitivity equations (22), and 
can be solved independently of the sensitivity equations, although 
the sensitivity equations are dependent on the original system. The 
second point is that the sensitivity equations (22) are linear in the 
sensitivity coefficients with the same Jacobian matrix employed for 
the state equations.

The overall system, given by the coupling of Eqs. (20) and (22), 
can be solved directly only if the number of parameters of interest 
is relatively small. This is impossible for very large kinetics, with 
thousands of reactions.

OpenSMOKE++ calculates the sensitivity coefficients also for 
very large mechanisms using a modified version of the staggered 
direct method [59,60], which is described in the following. Since 
the second term in the r.h.s. of Eqs. (22) does not depend on 
the sensitivity coefficient, it is quite easy to demonstrate that the 
structure of the Jacobian matrix associated to the overall ODE 
system is very sparse and block-structured, as reported in Fig. 2.



From this Figure it is not difficult to demonstrate that instead of 
solving the whole ODE system, one can solve NP independent ODE 
systems, given by the coupling of Eqs. (20) and (22) for a specific 
parameter αj. However, even exploiting this kind of decoupling, 
the computational cost could be prohibitively large for detailed 
mechanisms. A further simplification is performed. In particular, 
the sensitivity equations (22) are solved separately from, but 
sequentially with, the model equations (20). This means that the 
model equations are advanced over the step ∆ξ = ξn+1 − ξn 
independently of the sensitivity equations, without any loss of 
accuracy, since they do not depend on sensitivity coefficients. 
Then, the sensitivity equations are solved over the same step, 
adopting the backward Euler method:
I − ∆ξ Jn+1 sn+1

j = sn+1
j + ∆ξ

∂f
∂αj

n+1

j = 1, . . . ,NP (23)

where I is the identity matrix. The equations reported above cor-
respond to NP independent linear systems, where the unknowns
are the sensitivity coefficients sn+1

j . It is interesting to observe that
the matrix


I − ∆ξ Jn+1


is always the same, regardless of the spe-

∂αj

cific parameter. This means that it can be factorized only once per 
step, regardless of the number of parameters, which is usually very 
large.

The numerical procedure described above is computationally 
very convenient, since the stiff ODE solver is adopted to solve 
only the model equations, while the sensitivity equations are 
transformed in a set of decoupled linear systems sharing the same 
matrix. Since the systems are decoupled, they can be also solved 
in parallel, either on distributed or shared memory machines (this 
feature is not yet available in OpenSMOKE++).

The main limitation of this approach is that the integration step 
is dictated exclusively by the model equations. This could lead 
to some inaccuracies in the estimation of sensitivity coefficients. 
Based on our experience, the relative error with respect to a fully-
coupled approach is usually within 5%. As the relative values 
of the sensitivity coefficients, rather than their absolute values, 
are really important in sensitivity analysis, the approximations 
introduced by the proposed method can be considered acceptable. 
However, if more accuracy is needed, OpenSMOKE++ allows to 
split the integration step ∆ξ in a number of sub-steps and to solve 
the sensitivity equations (23) over them in sequence. In this 
procedure the Jacobian matrix J and the ∂f vector are assumed
to vary linearly along the whole integration step. Obviously the
computational cost increases linearly with the number of sub-
steps adopted.

The raw sensitivity coefficients are normalized in the form of
logarithmic derivatives, in order to make them more useful for
analyses and comparisons:

s̃ij =
∂ ln yi
∂ lnαj

=
αj

yi
sij. (24)

In some cases, the sensitivity coefficients are more useful when
they are normalized by the maximum value of each dependent
variable:sij =

αj

max yi
sij. (25)

This normalization is particularly useful when yi is a mass
fraction, since it avoids artificially high sensitivity coefficients in
regions where the mass fractions are approaching zero, and thus
affected by numerical errors.

3.5. Rate of production analysis (ROPA)

The rate of production analysis (ROPA) is another useful tool
to better understand kinetic aspects in the simulation of reaction
flows. Basically, the rate of production analysis determines the 
contribution of each reaction to the production or destruction rates 
of a species.

The ROPA is performed according to the procedure described 
in [30]. For each species i and each reaction j it is possible to 
define a normalized production contribution Cij

p and a normalized
destruction contribution Cij

d:

Cp
ij =

max

υ

f
ij − υb

ij , 0

rj

NR
k=1

max

υ

f
ij − υb

ij , 0

rk

(26)

Cd
ij =

min

υ

f
ij − υb

ij , 0

rj

NR
k=1

min

υ

f
ij − υb

ij , 0

rk

. (27)

The normalized contributions to production and destruction
sum to 1 (i.e.

NR
j=1 C

p
ij = 1 and

NR
j=1 C

d
ij = 1). They compare

the relative importance of each reaction to the production or 
destruction rates of a species.

3.6. Reaction path analysis (RPA)

Reaction path analysis (RPA) in OpenSMOKE++ is performed 
following the guidelines proposed by Grcar et al. [20]. Here we 
present only the basic ideas behind the implementation of RPA 
in OpenSMOKE++. Reaction path analysis is an accounting of the 
exchange of material among species in a chemically reacting sys-
tem, which can be conveniently visualized by a reaction path dia-
gram. In mathematical terms a reaction path diagram is a directed 
graph whose nodes are the chemical species. An edge connects two 
species if a reaction moves material from one to the other. The 
edge is drawn as an arrow from the reactant to the product. The 
thickness of an arrow may indicate the rate of material exchange 
among species. In order to avoid any ambiguity in determining the 
rate of exchange among species (i.e. the thickness of the arrows), 
OpenSMOKE++ is based on the concept of reaction fluxes of con-
served scalars.

In other words, the thickness of the arrows is evaluated accord-
ing to the reaction flux of a conserved scalar through species due 
to reactions. The conserved scalar is an atomic element, so each 
reaction path analysis is specific, typically, to either carbon, hydro-
gen, nitrogen, or oxygen. With this in mind, it is straightforward to 
determine the mass flux involved in a reaction. Over the region of 
interest, atoms of element e move from species A to species B at the 
rate:

R (e, A, B) =

NR
j=1


V
nj (e, A, B) rjdV (28)

where the summation is over all reactions, and V is the whole re-
gion of space. nj (e, A, B) is the number of atoms of elements e that
a single forward instance of reaction jth moves from A to B. The
magnitude of R (e, A, B) determines the width of the edge between
species A and B. The sign determines the direction of the arrow:
if positive then A → B, if negative B → A. The conserved scalar
approach gives reaction path diagrams the following properties:

1. the amount of material removed from the species at the base
of any path equals the amount contributed to the species at the
head;

2. the sum of the thicknesses of all paths into a species equals the
sum of the thicknesses of all paths going out.



Fig. 3. Structure of the OpenSMOKE++ Suite.

4. The OpenSMOKE++ suite

Being open-source, the OpenSMOKE++ framework offers users
complete freedom to customize and extend existing functionali-
ties, to add new classes and models, and to create specific solvers
for reacting systems. Since it follows a highly modular code design
with sub-libraries devoted to specific functionalities (e.g. ther-
modynamic models, kinetic models, mathematical functions, nu-
merical methods, physical models, etc.) the customization process
is quite easy, without requiring a deep knowledge of the whole
framework.

The current version of OpenSMOKE++ is already distributed
with a collection of ‘‘standard solvers’’ for solving very common
problems, which are typically met when chemical kinetic analyses
have to be performed. Here theword ‘‘solver’’ has to be intended as
an independent program, built with the aim to perform a specific
task (for example to simulate a batch reactor, or to model a shock-
wave, etc.). In the following, the OpenSMOKE++ Suite definition
will be used to refer to the collection of OpenSMOKE++ standard
solvers. The list of available solvers (which is continuously
growing) includes:

1. a kinetic pre-processor, a solverwhich is able to read, check, and
analyze kinetic mechanisms written in the CHEMKIN R⃝ format.
It is used to rewrite the kinetic mechanism in a XML format
which can be efficiently used by every other OpenSMOKE++
solvers;

2. a collection of solvers to simulate chemical reactors like batch
reactors, perfectly stirred reactors, shock-tubes, etc. These
solvers are completely independent from each other, but need
the same pre-processed kinetic mechanism in XML format,
generated by the kinetic pre-processor mentioned above;

3. a graphical post-processor, to easily post-process the results of
the numerical simulations performed using the OpenSMOKE++
solvers.

Fig. 3 shows a schematic diagram of the links among the different 
solvers included in the OpenSMOKE++ Suite.

4.1. Kinetic pre-processor

The Kinetic Pre-Processor is a program that reads a symbolic 
description of a reaction mechanism and then extracts the needed 
thermodynamic and transport data for each species and the kinetic 
data for each reaction. The primary output from the Kinetic Pre-
Processor is the kinetics.xml file written in XML (Extensible 
Markup Language) format. This file contains all the required data
about the atomic elements, the chemical species, and the reactions
included in the kinetic mechanism under investigation. The XML
format was chosen because of several reasons:

1. accessibility: separation of data makes very easy and compu-
tationally efficient to extract them. Moreover, since the for-
matting instruction are incorporated in the data, if changes are
applied in the organization of data, they can be easily managed
by the XML reader;

2. standardization: XML is an international standard, which
means that it is quite easy to read the data also with third-party
software.

3. portability: XML provides a robust and durable format for
information storage and transmission. Robust because it is
based on a proven standard, and can thus be tested and verified.
Durable (i.e. persistent) because it uses plain-text file formats
which will live longer than proprietary binary ones.

Once the Kinetic Pre-Processor has been executed and the 
kinetics.xml file created, the user is ready to use the any 
OpenSMOKE++ solver.

The Kinetic Pre-Processor checks the consistency of thermody-
namic coefficients provided by the user to calculate the specific 
heat, the enthalpy and the entropy of each species. In par-
ticular, two sets of 7 coefficients each are needed, one for a 
low-temperature range [Tmin ÷ Tcom] and the other one for the 
high-temperature range [Tcom ÷ Tmax]. At Tcom, i.e. the common 
temperature, the thermodynamic properties calculated using the 
two sets of coefficients must be the same, for consistency reasons.

The Kinetic Pre-Processor allows also to adjust the thermody-
namic coefficients in order to ensure not only the continuity of the 
thermodynamic functions at Tcom, but also the continuity of first-
, second-, and third-order derivatives. This adjustment can result 
in positive effects during the integration of the ODE systems de-
scribing many chemical reactors (see Section 5). The procedure is 
described in Appendix B.

Additional tests to check the consistency of kinetic data 
are performed by the Kinetic Pre-Processor (for example about 
the stoichiometry of the reactions, the existence of duplicated 
reactions, etc.).

4.2. Reactor solvers

The list of available solvers for chemical reactors is reported 
in Table 2. The corresponding mathematical models are described 
in detail in the next paragraph. Typically, the desired initial (or 
inlet) conditions, including temperature, pressure, and mixture 
composition (which may be expressed by means of mole fractions, 
mass fractions, or fuel-oxidizer equivalence ratio) should be 
specified. If sensitivity analysis is required, the problem data 
must also include lists of the parameters with respect to which 
sensitivity coefficients have to be calculated and the dependent 
variables of interest. For normal code usage, the user will set 
only two integration parameters: the relative and absolute error 
tolerances for all the variables. Obviously, the magnitudes of 
the two error tolerances control the accuracy of the numerical 
solution, and the computational cost of the simulation usually 
increases with increased accuracy requirements. Some numerical 
experiments may be necessary to optimize the local error 
tolerances (see Section 6).

4.3. Graphical post-processor

The OpenSMOKE++ outputs are not written in binary format, 
in order to give the user the freedom to use them with any 
kind of software. However, the OpenSMOKE++ framework is



Table 2
List of solvers available in the current version of OpenSMOKE++ Suite for the simulation of ideal reactors.

Reactor type Description

Batch reactor Transient, homogeneous system closed to exchange of mass, open to exchange of heat.
Perfectly stirred reactor Transient or steady-state perfectly stirred reactor, also known as continuously stirred tank reactor (CSTR).
Plug flow reactor Tubular reactor with flat radial profiles, without axial dispersion.
Shock tube reactor Normal incident or reflected shock, used to simulate shock-tube experiments.
Fig. 4. Reaction path diagrams automatically generated by the Graphical Post-Processor using the GraphViz open-source graph visualization software [61]. The diagrams 
correspond to the simulation of a constant volume, adiabatic batch reactor at the initial pressure and temperature of 1 atm and 1200 K, respectively, burning a mixture of 
n-heptane and air with equivalence ratio of 1. The results are obtained using the POLIMI_PRF_PAH_LTHT_1311 kinetic mechanism (276 species and 8439 reactions) [62]. 
The impact of width (w) and depth (d) parameters on the complexity and the level of accuracy of the diagram is shown: (a) w = 2, d = 1; (b) w = 2, d = 2; (c) w = 3, d = 2.
also equipped with a Graphical Post-Processor, i.e. a software
to conveniently post-process and visualize the results of the
numerical simulations, which is especially useful for the kinetic
analysis of very largemechanisms. Themost interesting and useful
features are reported in the following:
1. Post-processing of sensitivity analysis: the raw sensitivity 

coefficients sij, are normalized according to different options 
(local versus global normalization), sorted according to their 
values and plotted using bar charts. Moreover, profiles of most 
important sensitivity coefficients can be also plotted in 2D 
charts.

2. Rate of production analysis: the production and destruction 
coefficients (Eqs. (26) and (27)) are automatically calculated 
(either locally or over a user-defined region), sorted and plotted 
using bar charts.

3. Reaction path analysis: the reaction path analysis is automati-
cally performed (either locally or integrated over a user-defined 
region) for any species with respect to any atomic element 
available in the kinetic mechanism and the corresponding reac-
tion path diagram is automatically generated and drawn, using 
the open-source GraphViz graph visualization software [61]. 
Starting from the requested species and atomic element, the re-
action path diagram is drawn according to the width and the 
depth parameters specified by the user, which are used to con-
trol its complexity and the level of detail. In particular, the first 
parameter is the maximum number of arrows leaving from each 
node. The depth parameter is an integer which specifies the 
maximum number of levels to be drawn. Fig. 4 shows an ex-
ample to better illustrate the capabilities of the reaction path 
diagram generator.

5. Standard solvers for ideal reactors

In this Section we present the mathematical models behind the 
solvers reported in Table 2. Additional details about the derivation 
of the governing equations reported below can be found in [63].

5.1. Batch reactors

A variety of batch reactors can be solved, either at constant 
pressure, assigned or variable volume, in isothermal or adiabatic 
conditions or with heat exchange with the external environment. 
In particular, the conservation equations of species are solved in



terms of mass fractions:

ρ
dωi

dt
= WiΩ̇i i = 1, . . . ,NS (29)

while the conservation equation of energy is written directly in
terms of temperature. For constant-pressure reactors:

ρCP
dT
dt

= −

NS
i=1

Ω̇iH̃i +
Q̇
V

(30)

while for constant or variable volume reactors:

ρCV
dT
dt

= −

NS
i=1

Ω̇i


H̃i − RT


−

P
V

dV
dt

+
Q̇
V

. (31)

In the expression reported above, Q̇ is the power exchanged
with the external environment, typically expressed using the
global heat exchange coefficientU , the exchange surface areaA and
the temperature of the environment Tenv: Q̇ = UA (Tenv − T ).

5.2. Plug flow reactors

Plug flow reactors (PFR) are commonly used to validate detailed
kinetic mechanisms and to perform kinetic analyses. The species
and the temperature may vary along the reactor, but it is assumed
that there are neither variations in radial direction, neither diffu-
sive transport along the length of the channel, i.e. in the flow direc-
tion. The OpenSMOKE++ framework allows the simulation of such
reactors, in isothermal or adiabatic conditions or with prescribed
heat exchange with the external environment. The conservation
equations of species and energy arewrittenwith respect to the spa-
tial coordinate ξ . An additional equation is written to reconstruct
the residence time τ . Thanks to the assumption reported above, the
steady-state equations governing the PFR constitute a ODE system
with initial conditions (prescribed on the inlet section):

ρv
dωi

dξ
= WiΩ̇i i = 1, . . . ,NS

ρv


ĈP +

v2

T


dT
dξ

= −

NS
i=1

Ω̇iH̃i

− v2Wmix

NS
i=1

Ω̇i +
UPc
Ac

(Tenv − T )

dτ
dξ

=
1
v
.

(32)

In the equations reported above, Pc andAc are the perimeter and
the area of the cross section surface.

5.3. Transient stirred reactors

The Perfectly Stirred Reactor (PSR) or Continuously Stirred Tank
Reactor (CSTR) is an idealization that proves useful in describing
laboratory experiments and can often be used in modeling
practical devices. Gases enter the reactor with mass flow rate ṁ,
temperature T inlet and composition ωinlet

i . Once inside the reactor,
the gases mix instantaneously and perfectly, which means that
temperature and composition within the reactor are uniform. The
OpenSMOKE++ framework also includes the possibility to study
chemical reactions in such kind of reactors, both in steady-state
and unsteady conditions. Moreover, the reactor can be adiabatic,
isothermal or it can exchange heat with the external environment.
The conservation equations of species and energy are reported in
the following in the unsteady form:

ρ
dωi

dt
= ρ

ωinlet
i − ωi

τ
+ WiΩ̇i i = 1, . . . ,NS

ρĈP
dT
dt

= ρ

NS
i=1

xinleti


H̃ inlet

i − H̃i


W inlet

mix τ
−

NS
i=1

Ω̇iH̃i +
Q̇
V

.

(33)

In the equations reported above, τ is the residence time inside
the reactor, which is defined as:

τ =
ρV
ṁ

. (34)

In steady-state conditions, Eqs. (33) become a system of non-
linear algebraic equations, since the unsteady terms on the l.h.s. 
are identically equal to zero. The solution of these equations 
is obtained using the Newton’s method or modified Newton’s 
methods. Unfortunately, especially for large kinetic mechanisms, 
the Newton’s methods are not sufficiently robust, i.e. they require 
a good first-guess solution to converge. In order to circumvent 
this problem, even if steady-state simulations are required, 
OpenSMOKE++ starts solving the conservation equations in the 
unsteady form, to approach a better first guess solution. Then, after 
solving for a specified time interval, OpenSMOKE++ attempts to 
solve the steady-state problem by the Newton’s method. If the 
Newton’s method fails, the unsteady equations are solved for an 
additional time interval to improve the first-guess estimation. This 
procedure is then repeated up the convergence of the Newton’s 
method. In the worst scenario, the steady-state solution is obtained 
through the integration of the ODE system (33) for a sufficiently 
long time interval.

5.4. Shock tubes

The Shock Tube Model (STM) is used to model the chemical 
kinetics behind a normal incident or a reflected shock. In particular, 
the interest is especially to simulate the behavior of a shock tube 
experiment for studying reaction kinetics.

The post-shock conditions, needed to follow the evolution of 
chemical species after a shock has passed over, are automatically 
determined by solving the following equations, corresponding to 
the conservation of mass, momentum, and energy in steady, one-
dimensional, inviscid flow of an ideal gas mixture:

p1v1 = p2v2

p1 + p1v2
1 = p2 + p2v2

2

Ĥ1 +
v2
1

2
= Ĥ2 +

v2
2

2
.

(35)

In these equations, which assume that the coordinate system
is attached to the shock, the subscripts 1 and 2 indicate condi-
tions upstream and downstream of the shock, respectively. p, v,
and Ĥ are the pressure, the velocity and themass specific enthalpy
of the gas stream, respectively. Eqs. (35) are solved using a New-
ton–Raphson iteration procedure. The set of equations describing
the mass fraction, velocity and temperature profiles downstream
of the shock, can be derived from conservation laws of mass, mo-
mentum and energy. The flow is assumed to be adiabatic andmass
diffusion, thermal conductivity, and viscous effects are assumed to
be negligible. Since the typical test times behind a shock wave are
on the order of 10−4–10−3 s, neglecting transport phenomena does
not impact on the accuracy of the results. The conservation equa-
tions constitute a ODE system with initial conditions, as reported



in the following:

ρ
dωi

dt
= WiΩ̇i i = 1, . . . ,NS
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dt

= v2 dρ
dt
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ρĈPT


β

ρ
dv
dt

= −v
dρ
dt

− ρv2β.

(36)

The equations reported above are written using the time t as the 
independent variable instead of distance z, since in typical shock 
tube experiments, the usual measurable quantities are density, 
species concentration, velocity and temperature as functions of 
time. The relationship between time and distance can be obtained 
by adding the following equation to the ODE system (36):

dz
dt

= v. (37)

In Eqs. (36) β is a correction coefficient which takes into account 
the boundary layer effects, causing the shock to decelerate, the 
contact surface to accelerate and the flow behind the shock to be 
non uniform. In the current version of OpenSMOKE++ β is calculated 
following the approach proposed by Mirels [64,30].

6. Performances

In this section we analyze and discuss the numerical perfor-
mances of the OpenSMOKE++ framework for solving problems 
which are typically faced to perform kinetic analysis. In addition 
a comparison with the Cantera framework [65] is also presented, 
in order to better demonstrate the reliability of the OpenSMOKE++ 
framework and its numerical efficiency. This choice has been made 
since Cantera is a widely used open-source general purpose code, 
applied to a large variety of combustion cases with detailed kinetic 
mechanisms and therefore it provides a suitable solution against 
which to compare the present code. Moreover, since the Cantera 
source code is available, it is possible to directly compare its per-
formances through the direct control of the numerical parameters 
governing the ODE integration, the initialization overhead, and the 
solution output.

An Intel Xeon E5320 CPU, running at 1.86 GHz with 8 MB of L2 
cache memory and 36 Gb of RAM was adopted for running all the 
simulations presented in this Section. Even if 12 cores were 
available, the simulations were always performed on a single core. 
We used the GNU compiler collection (g++) version 4.8.1 to 
compile both the OpenSMOKE++ and the Cantera solvers (with 
the compiler options: -O3 -m64). In order to ensure the best 
performances of Cantera solvers, the Sundials libraries [66] were 
adopted for solving the stiff ODE systems. The BLAS/LAPACK 
support was provided through the Intel⃝R MKLLibraries [38], both 
for the OpenSMOKE++ and the Cantera solvers.

6.1. Evaluation of thermodynamic and kinetic data

The performances of the OpenSMOKE++ framework were firstly 
evaluated in terms of CPU time needed to calculate thermodynamic 
(specific heats and enthalpies of species, reaction enthalpies, etc.) 
and kinetic (reaction and formation rates) properties of mixtures
Fig. 5. Overall CPU time for calculating thermodynamic and kinetic data for
different kinetic mechanisms versus the number of species.

of ideal gases with different number of species and reactions. In
particular the following operations were analyzed:

1. calculation of specific heat of species;
2. calculation of enthalpies of species and reaction enthalpies for

all the reactions;
3. calculation of kinetic constants for all the reactions;
4. calculation of reaction rates;
5. calculation of formation rates for all the species.

This choice has been made since the operations reported above are 
typically required at each time step for the simulation of ideal 
reactors (see next Section). Fig. 5 reports the overall CPU time to 
perform the 5 operations reported above for the different kinetic 
mechanisms already analyzed in Fig. 1. All the kinetic 
mechanisms, with the exception of POLIMI family, tend to collapse 
on the same line, showing that the CPU time increases with the 
number of species with a power of ∼0.9 (i.e. less than linearly). 
This is due to the fact that the number of reactions tends to 
increase slower than the number of species (i.e. the ratio 
reactions/species tends to decrease with increasing the number of 
species). The kinetic mechanisms belonging to the POLIMI family 
show a different trend: in particular the CPU time is 2–3 times 
larger than kinetic mechanisms with the same number of species 
and the rate of increase occurs with a power of ∼1.4. In both cases 
the explanation is simply related to the larger reactions/species 
ratio of POLIMI kinetic mechanisms (about 35 for the largest 
scheme against a mean value of ∼4 for the other kinetic 
mechanisms).

Fig. 6 reports the relative weights of the five operations reported 
above for the main families of kinetic mechanisms. Independently 
of the kinetic mechanism, the computational cost for evaluating 
the specific heat is negligible (less than 2%). The evaluation of 
kinetic constants and formation rates for all the species require 
usually 15%–20% and 10%–15% of total CPU time, respectively. The 
evaluation of reaction rates is the most consuming part, with a 
relative weight of 35%–40% for POLIMI family or 45%–50% for the 
other families. The calculation of reaction enthalpies is quite time 
consuming (up to 35%) for the kinetic mechanisms belonging to the 
POLIMI family, because of the high number of reactions involved. 
In other case, the cost is smaller (around 20%).

6.2. Evaluation of transport properties

Transport properties (thermal conductivity, dynamic viscosity, 
mass diffusivities and thermal diffusion ratios) are required 
for the simulation of combustion systems. In particular, the 
OpenSMOKE++ framework calculates the transport properties of 
ideal gases using the technique described in Section 2 in order 

to minimize the computational cost, which would be prohibitive



Fig. 6. Relative weight of the different operations required to calculate thermodynamic and kinetic properties for different families of kinetic mechanisms.
for large kinetic mechanism. A difference with respect to the 
thermodynamic and kinetic properties is that the transport 
properties are only a function of the number of species and do 
not depend on the number of reactions involved in the kinetic 
mechanism. In analyzing the CPU cost required for evaluating the 
transport properties, we split the cost for calculating the properties 
of single species from the cost for calculating the properties for 
the whole mixture (i.e. the cost behind the application of proper 
mixture-averaging rules).

Since the thermal diffusion ratios are calculated only for species 
with very low molecular weight (less than 10 kg/kmol), the 
cost for their evaluation is negligible with respect the other 
transport properties, especially for large detailed mechanisms with 
hundreds of species. As a consequence, in the following analysis 
they are neglected.

The transport properties for the single species are calculated 
using the same polynomial approximation (see Eqs. (4)–(6)). Thus, 
the computational cost for evaluating the single transport property 
of a single species is the same. However, since in a mixture of NS

species, NS ×
NS
2 binary diffusion coefficients Γ 0

i,j are needed (the
factor 2 is due to the symmetry of Γ 0), the cost for evaluating
them is NS

2 times higher than the cost associated to thermal
conductivities or dynamic viscosities. Thus the cost of calculation 
of single species transport properties is dominated by the mass 
diffusion coefficients and scales quadratically with the number of 
species. The CPU time required for evaluating the mixture averaged 
properties depends on the mixing rule, as better explained in the 
following.

Fig. 7 reports the CPU time needed to calculate the mixture av-
eraged properties (including the cost to calculate the correspond-
ing properties for single species) for kinetic mechanisms with 
different number of species. Moreover, a comparison with respect 
to the CPU time required to calculate the thermodynamic and 
transport properties is also reported. From the analysis of Fig. 7 
it is evident that the computational cost for transport properties
Fig. 7. Comparison between CPU times required for the evaluation of mixture 
averaged transport properties (thermal conductivity, dynamic viscosity, mass 
diffusion coefficients) and thermodynamic and kinetic data as a function of 
the number of species in the kinetic mechanism. The points refer only to the 
mechanisms reported in Fig. 1.

increases very fast with the number of species and becomes sys-
tematically higher than the cost for thermodynamic and kinetic 
properties when the number of species is larger than ∼200. The 
CPU time for transport properties is very unbalanced among the 
different operations required.

Fig. 8 shows the relative weights of such operations versus the 
number of species. First of all it is evident that for sufficiently large 
schemes the relative weights becomes independent of the number 
of species. The time for calculating the species thermal 
conductivities and viscosities is negligible, as expected. Also the 
evaluation of the mixture thermal conductivity (Eq. (10)) has a 
negligible weight. On the contrary, the calculation of binary 
diffusion coefficients requires ∼40% of total CPU time, and the 
evolution of the corresponding mixture averaged diffusivities
∼20%. Surprisingly, the application of the mixing rule for viscosity 
(Eq. (8)) is very expensive, requiring ∼40% of total CPU time.␣



Fig. 8. Relative weights of different operations for the evaluation of mixture-
averaged transport properties as a function of the number of species in the kinetic 
mechanism. Due to the asymptotic behavior of relative weights of CPU times with 
the number of species, only the smallest kinetic mechanisms were taken into 
account among those reported in Fig. 1.

In order to reduce the computational cost spent for calculating
the mixture viscosity, the mixing rule proposed by Herning
and Zipperer [67] was also implemented in the OpenSMOKE++
framework and tested:

η =

NS
i=1

xiηi
√
Wi

NS
i=1

xi
√
Wi

. (38)

The formula reported above is less accurate than the original 
Wilke formula, especially at high pressures. However, we found 
that the relative error between the two formulations was always 
smaller than ∼4% in a wide range of operating conditions of 
temperature and composition. The advantage of the Herning and 
Zipperer formula is the computational cost, which increases only 
linearly with the number of species, as reported in Fig. 8.

6.3. Adiabatic, constant-volume batch reactors fed with n-heptane

Following the work performed by Perini et al. [68], the first 
benchmark was chosen as a set of 18 constant-volume, adiabatic 
batch reactors, burning a mixture of n-heptane and air. The 18 
problems have different initial conditions, corresponding to a 
matrix of cases involving two initial pressure values (2 and 20 
bar), three temperature values (750, 1000 and 1500 K), and three 
initial compositions of the fuel–air mixture (λ equal to 0.5, 1, and 
2). Each case is integrated for a time interval equal to 0.01 s. Table 
3 reports the full details about the initialization matrix.

The simulations were carried out with all the available solvers 
in OpenSMOKE++ (to compare their relative performances) and 
with the Cantera framework [65]. The same absolute and 
relative tolerances, respectively equal to 10−14 and 10−8, were 
used for all the simulations, regardless the adopted solver. Four 
different kinetic mechanisms were adopted to perform the 
simulations, with increasing number of species: a skeletal 
mechanism from Lu et al. [69] (188 species and 842 reactions), the 
detailed scheme of Herbinet et al. [70] (273 species and 1853 
species), the POLIMI_TOT_1311 kinetic mechanisms (460 species 
and 16,000 reactions) [4], and the latest version of the LLNL n-
heptane mechanism (658 species and 2827 reactions) [9].

Fig. 9 reports the calculated temperature profiles with the 
four mechanisms reported above for Case 2 (see Table 3). This 
is an initial low temperature, low pressure case, where the 
system’s stiffness is at its peak [68], and therefore it is particularly 
interesting for numerical analysis. The predicted ignition delay
Table 3
Initial conditions for the constant-volume
batch reactors.

Case T0[K] P0[bar] Mixture λ

1 750 2 0.5
2 750 2 1
3 750 2 2
4 1000 2 0.5
5 1000 2 1
6 1000 2 2
7 1500 2 0.5
8 1500 2 1
9 1500 2 2

10 750 20 0.5
11 750 20 1
12 750 20 2
13 1000 20 0.5
14 1000 20 1
15 1000 20 2
16 1500 20 0.5
17 1500 20 1
18 1500 20 2

Fig. 9. Predicted temperature profiles versus time in a batch reactors fed with n-
heptane and air. Case 2: initial composition λ = 1, initial pressure p0 = 2 bar, initial 
temperature T0 = 750 K (Table 3).

times range from ∼3 to ∼4.5 ms, according to the employed 
kinetic mechanism.

Fig. 10 shows the comparison between the OpenSMOKE++ and 
Cantera solutions for Case 2 (only the results referring to the LLNL 
mechanism are reported). Excellent agreement between the two 
solutions is evident. A similar agreement was also observed for all 
the other cases, which are not here reported for sake of brevity.

The numerical performances of the OpenSMOKE++ framework 
were tested by solving the 18 cases summarized in Fig. 15, 
comparing the 8 different ODE solvers for stiff problems reported 
in Table 1. Moreover, as a further comparison with existing 
external codes, the same simulations were repeated using the 
Cantera framework. The results are summarized in Fig. 11, 
where the overall CPU time (i.e. summed up over all the 18 cases) 
is reported for the 4 kinetic mechanisms reported above. 
Moreover, Tables 4 and 5 report the overall number of time steps 
and Jacobian matrix evaluations for the 7 ODE solvers, 
respectively. From the analysis of such results, it is evident that the 
OpenSMOKE++ performances are strongly affected by the adopted 
ODE solver. In particular, as evident from Fig. 11, the best 
performances are always associated with the CVODE solver. Also 
the DASPK solver shows very good results in terms of CPU time, 
but it resulted less robust than CVODE: as an example it failed in 
solving 4 cases when the POLIMI_TOT_1311 kinetic mechanism is 
adopted. The DVODE and DLSODE showed similar performances: 
they are very robust (no failures were observed), but slower than 
CVODE (up to ∼5 times slower). The RADAU5 implicit solver is very



Fig. 10. Mass fraction profiles of selected species versus the time: comparison between the OpenSMOKE++ simulation (lines) and the Cantera simulation (points) 
performed using the detailed LLNL n-heptane kinetic mechanism. Case 2: initial composition λ = 1, initial pressure p0 = 2 bar, initial temperature T0 = 750 K (Table 3).
Fig. 11. Performance comparison between Cantera and the OpenSMOKE++ framework: overall CPU times for the 18 cases reported in Fig. 15. The batch reactors are 
fed with a mixture of n-heptane and air. The OpenSMOKE++ framework was tested using the 8 different stiff ODE solvers summarized in Table 1. If a ODE solver failed in 
integrating at least one of the cases reported in Table 3, the corresponding bar is not reported.
accurate, but this limits its computational efficiency, since many 
function evaluations per step are needed. As expected, the worst 
performances were obtained with the DLSODA solver: it switches 
automatically between stiff and non-stiff methods, but, since it 
always starts with the non-stiff method, this can result in a 
penalty in the CPU time. Moreover, several failures were observed 
when the POLIMI_TOT_1311 kinetic mechanism was employed. 
The native OpenSMOKE++ solver resulted very robust (no failures 
were observed) and sufficiently fast (only the CVODE solver is 
systematically faster). Some interesting observations can be made 
from Tables 4 and 5:

• the CVODE and DVODE have a very similar behavior in terms of
number of time steps and Jacobian evaluations. This is expected,
since the CVODE is the C version of DVODE (which is written
in FORTRAN). However, the performances in terms of CPU time
are very different. In our opinion, this can be mainly attributed
to the different solvers for the linear systems: the CVODE
uses the BLAS/LAPACK libraries (through the Intel R⃝ MKL
implementation), while the less recent LINPACK libraries are
used by the DVODE solver;

• the native OpenSMOKE++ solver requires a smaller number of
Jacobian evaluations with respect to the CVODE solver, but the
overall number of time steps is much larger. This could explain
its worse performances in terms of CPU time;

• the number of time steps of DLSODE is similar to CVODE, but
the number of Jacobian evaluations is much larger, resulting in
quite slow performances;

• the number of steps required by theRADAU5 solver is very small
if compared to the other solvers, but the number of Jacobian
evaluations is huge. Moreover, since it is based on implicit



Fig. 12. Comparison of overall computational times (in seconds) required for the numerical integration of the 18 cases reported in Table 3 as a function of the relative and 
absolute tolerances. The CPU times reported in the maps are in minutes. The analysis is limited to the most effective ODE solvers available in OpenSMOKE++ (i.e. the native 
solver and CVODE), which are compared to the Cantera framework [65].
Runge–Kutta method, the solution of a larger linear system is
required, which further increases the computational time.

The comparison with respect to Cantera is quite encouraging: 
when the CVODE or the native ODE solvers are employed, the 
OpenSMOKE++ framework is significantly faster, especially for 
large number of species (as an example, when the LLNL 
mechanism is adopted, the CVODE solvers is ∼3 times faster than 
Cantera).

It is important to remark that the computational cost of the 
simulations of the batch reactors described in this section is 
strongly affected by the tolerances employed in the ODE solver, as 
summarized through the maps reported in Fig. 12. The maps show 
the overall CPU time needed for integrating the 18 cases (see Table 
3) for different values of relative tolerances (from 10−4 to 10−8) 
and absolute tolerances (from 10−10 to 10−14). The analysis is 
limited to the Cantera framework and to the two fastest ODE 
integrators in OpenSMOKE++, i.e. CVODE and the native solver. In 
some cases, when the tolerances are too large, the integration 
failed. As expected, the required CPU time increases when the 
tolerances are decreased in a monotonic way. However, in some 
cases there are combinations of values of relative and absolute 
tolerances which result in a maximum in the CPU time.

6.4. Performances with large kinetic mechanisms

The tests performed in the previous sections were performed 

with medium-size kinetic mechanisms. Additional analyses were
performed using large kinetic mechanisms, with thousands of 
species, through the simulation of the same 18 adiabatic, constant 
volume batch reactors already described in Section 6.3.

First of all an inlet mixture of methyl-decanoate and air was 
considered. Three kinetic mechanisms were compared: the 
POLIMI_TOT_1311 kinetic mechanisms (460 species and 16,000 
reactions) [4], the mechanism of Glaude et al. [71] (1253 species 
and 7146 reactions), and the latest version of the LLNL methyl-
decanoate mechanism (2878 species and 8855 reactions) [3]. The 
performances of OpenSMOKE++ and Cantera are summarized in 
Fig. 13. The results are analogous to the n-heptane case. In 
particular, the best performances are always obtained using the 
CVODE solver, while the DLSODA solver gives the worst 
performances, not only in terms of CPU time, but also in terms of 
reliability, since in many cases failures in the integration of the 
ODE system were observed. The native OpenSMOKE++ solver 
results in satisfactory performances, especially if compared with 
common ODE solvers, like DLSODE, DVODE and RADAU5. The 
overall performances of OpenSMOKE++ appears very promising, 
especially if compared with Cantera: in particular, for the largest 
kinetic mechanism (2878 species) the OpenSMOKE++ calculations 
(based on the CVODE integrator) resulted ∼8 times faster than 
Cantera.

As a final example, the kinetic mechanism of Westbrook et al.
(7175 species and 31,669 reactions) [6] was taken into account for 
simulating a Diesel surrogate (nC7H16/nC16H34/C14H30, 40/10/50%



Table 4
Solver performance comparison for stiff ODE solvers available in OpenSMOKE++: overall number of steps for the 
18 cases reported in Table 3.

Native BzzOde CVODE DASPK DLSODE DLSODA DVODE RADAU5

Lu 68771 67330 34216 35513 29031 40854 34050 6714
KinCom 106879 99874 45400 45389 36375 53470 44601 8164
Polimi 104217 97092 41856 20632 32930 47052 42576 5991
LLNL 110820 106702 36625 36475 30369 46857 37471 6445
Table 5
Solver performance comparison for stiff ODE solvers available in OpenSMOKE++: overall number of evaluations 
of Jacobian matrix for the 18 cases reported in Table 3.

native BzzOde CVODE DASPK DLSODE DLSODA DVODE RADAU5

Lu 286 288 695 1381 4257 5747 693 5251
KinCom 359 356 919 1879 4968 7003 904 6085
Polimi 357 359 950 Failed 4678 Failed 943 4898
LLNL 321 322 720 1518 4331 6393 729 4769
Fig. 13. Performance comparison between Cantera and the OpenSMOKE++ 
framework: overall CPU times for the 18 cases reported in Table 3. The batch 
reactors are fed with a mixture of methyl-decanoate and air. The OpenSMOKE++ 
framework was tested using the 8 different stiff ODE solvers summarized in Table 1. 
If a ODE solver failed in integrated at least one of the cases reported in Table 3, the 
corresponding bar is not reported.
Fig. 14. Batch reactors fed with a Diesel surrogate (nC7H16/nC16H34/C14H30, 
40/10/50% mol) and air: performance comparison between among different ODE 
solvers available in OpenSMOKE++.

mol) burning in air [55]. This last test is computationally very 
expensive, because of the large number of species and reactions in 
the mechanism. The numerical analyses were performed using 
only the most effective ODE solvers available in OpenSMOKE++, 
namely the native solver, CVODE, DASPK, DLSODE, and DVODE 
solvers. The results are summarized in Fig. 14, where the overall 
CPU time to simulate the complete set of 18 batch reactors is 
reported. The important role played by the ODE solver is very 
evident from this example: as usual, the best performance is 
obtained using the CVODE solver, which is also ∼20 times faster 
than DLSODE and DVODE solvers.

6.5. Oscillating cool-flames in a jet-stirred reactor

The oxidation chemistry in the low- and intermediate-
temperature regimes (600–900 K) plays a significant role in 
combustion processes, such as autoignition in diesel engines, end-
gas autoignition and knock phenomena in SI engines are initiated 
at these low temperatures [72]. In the low-temperature regime 
the oxidation of hydrocarbons is a very complex process, involving 
different propagation and chain branching reactions, which can 
lead to a large variety of phenomena: oscillatory cool-flame, single-
stage, two-stage, and multistage ignitions [73].

In this section we focus the attention on the numerical mod-
eling of jet-stirred reactors dominated by the low-temperature 
mechanism, in which the formation of oscillating cool flames can 
be observed. The system is quite challenging from a numerical 
point of view and represents an additional test to analyze the ro-
bustness of the OpenSMOKE++ framework.
 The numerical tests were performed by considering a spheri-
cal, ideal, jet-stirred flow reactor (see Eqs. (33)) with internal vol-



Fig. 15. Temperature profiles in a jet-stirred reactor exchanging heat with the external environment (at 620 K), fed with a mixture of n-heptane and air in stoichiometric 
amounts, for different values of pressure and inlet temperature. Reactor parameters: V = 100 cm3, τ = 200 ms, U = 0.5 kcal/m2/s. The results refers to the 
POLIMI_TOT_1311 kinetic mechanisms (460 species and 16,000 reactions) [4].
Fig. 16. Computational performances of ODE solvers available in OpenSMOKE++: CPU times for the simulation of a dynamic jet-stirred reactor with thermal exchange with 
the external environment (at 620 K), fed with a mixture of n-heptane and air in stoichiometric amounts. Reactor parameters: V = 100 cm3, τ = 200 ms, Tin = 620 K, P = 2 
atm, U = 0.5 kcal/m2/s. The performances are reported for the following kinetic mechanisms: a skeletal mechanism from Lu et al. [69] (188 species and 842 reactions), the 
detailed scheme of Herbinet et al. [70] (273 species and 1853 species), the POLIMI_TOT_1311 kinetic mechanisms (460 species and 16,000 reactions) [4], and the latest 
version of the LLNL n-heptane mechanism (658 species and 2827 reactions) [9].
ume of 100 cm3 and residence time of 200 ms, fed with a mixture 
of n-heptane and air (with equivalence ratio equal to 1) at differ-
ent temperatures and pressures. Heterogeneous reactions are ne-
glected and heat exchange with the external environment (at the 
fixed temperature of 620 K) is accounted for, assuming a global 
heat-transfer coefficient equal to 0.5 kcal/m2/°C (as suggested by 
Lignola et al. [74]).

Fig. 15 shows the calculated temperature profiles versus time 
for different inlet conditions. The formation of oscillating cool 
flames sustained by the continuous feed is evident for all the in-
let temperature and pressures investigated. In particular, the fre-
quency of these cool flames increases with the inlet temperature 
and the pressure of the reactor. Moreover, the oscillation ampli-
tudes, both in the reactor temperature and fuel conversion, are 
higher at reduced conditions, that is, lower temperatures, pres-
sures, and/or short contact time (not here reported). The predicted
behavior qualitatively reproduces the experimental observations 
with satisfactory agreement [75].

The performances of the ODE solvers available in OpenSMOKE++ 
are summarized in Fig. 16, where the CPU time to solve the case at 
T = 620 K and p = 2 atm is reported. Different kinetic mech-
anisms were employed and compared (see Section 6.3). Also in 
this case, the best performances are obtained using the CVODE 
solver and satisfactory CPU times were achieved by the native 
OpenSMOKE++ solver, especially if compared with common ODE 
solvers, like DLSODE and DVODE. The RADAU5 solver gave the worst 
performances, since it was never able to give a solution.

6.6. Sensitivity analysis

   The calculation of sensitivity coefficients is a very CPU intensive 
operation when large kinetic mechanisms are taken into account.



Fig. 17. Calculated profiles of mole fractions of selected species and temperature in 
a constant-volume batch reactor fed with a mixture of CO/H2/N2 (40/30/30% mol) 
and air in stoichiometric conditions at initial pressure P0 = 1 atm and temperature 
T0 = 1000 K. The simulation was performed using the POLIMI_H2CO_1311 kinetic 
mechanism [76].

This is due to the huge number of equations which have to be 
solved simultaneously. As reported in Section 3.4, OpenSMOKE++ 
uses a modified version of the direct staggered algorithm, since the 
fully-coupled solution of Eqs. (20) and (22) is possible only when 
the number of species and reactions is small.

In order to show the accuracy and the reliability of the stag-
gered algorithm, sensitivity analyses were performed through the 
simulation of a constant-pressure batch reactor, fed with a mix-
ture of CO/H2/N2 (40/30/30% mol) and air in stoichiometric con-
ditions at the initial pressure and temperature of 1 atm and 1000 
K, respectively. A kinetic mechanism, with 14 species and 34 re-
actions, was employed [76]. Fig. 17 shows the calculated temper-
ature profile, together with the mole fraction profiles of selected 
species. Because of the small dimensions of the kinetic mecha-
nism, the sensitivity coefficients were calculated using both the 
fully-coupled approach (here assumed as the reference solution) 
and the staggered technique. Fig. 18 reports the calculated H2O2 
sensitivity coefficient profiles for the first two most important re-
actions: the continuous line represents the fully-coupled solution, 
while the remaining lines the solutions obtained using the stag-
gered algorithm with different number of sub-steps. The selected 
time interval (from 0.22 to 0.28 ms) corresponds to the shaded re-
gion reported in Fig. 17. From these results it is evident that the 
number of sub-steps affect the absolute values of sensitivity coef-
ficients, but the shape of the curves is correctly captured also using 
only 1 sub-step. Actually, since in performing the sensitivity anal-
ysis the real interest is often in the relative weights of sensitivity
Fig. 19. Calculated sensitivity coefficients of H2O2 for the batch reactor described 
in Fig. 17. The coefficients are calculated at time t = 0.24 ms.

coefficients and less in their absolute values, also the staggered so-
lution with only 1 sub-step could be considered acceptable in most 
cases. This is more evident from Fig. 19, where the H2O2 sensitivity 
coefficients are reported for the first 8 reactions at t = 0.24 ms.

The computational performances of the staggered algorithm 
were evaluated through the simulations of constant-volume batch 
reactors, already described in Section 6.3. First of all the attention 
was focused on n-heptane/air mixtures and cases 2 and 11 (see 
Table 3). The CPU times required to perform the simulations, 
without and with the sensitivity analysis, are summarized in 
Table 6.

From these results it is evident, as expected, that the additional 
cost of sensitivity analysis can be orders of magnitude larger than 
the time for the simulation of the reactor. Most of the time is spent 
to factorize the Jacobian matrix and to solve the corresponding 
linear system through the backward-substitution. In particular 
at each time step, the Jacobian matrix is factorized only once 
(independently of the number of reactions), but the backward 
substitution is performed NR times, where NR is the number of 
reactions. This easily explains why the CPU time to perform the 
sensitivity analysis with the POLIMI_TOT_1311 kinetic mechanism 
(16,000 reactions) is much larger than the time required by the 
LLNL mechanism (2827 reactions), despite the number of species 
of the latter (658) is larger than the first (460).

Larger kinetic mechanisms were also investigated. In particular, 
cases 2 and 11 (see Table 3) were simulated for methyl-
decanoate/air mixtures using the LLNL kinetic mechanism (2878 
species and 8555 reactions). This kinetic mechanism is particularly 
challenging for sensitivity analysis, since at each time step 24.6
Fig. 18. Calculated sensitivity coefficient profiles of H2O2 for the batch reactor analyzed in Section 6.6. The panels refer to the first two most sensitive reactions. The 
calculations were done using the fully-coupled approach (continuous line) or using the staggered method with different numbers of time sub-steps (1, 2 or 4).



Table 6
Constant-volume batch reactors fed with n-heptane/air mixtures: performances of sensitivity analysis. The CPU times, reported only for 2 cases (Table 3), representative of 
low- and high-pressure conditions, compare the simulations performed without and with the sensitivity analysis to better show the additional cost due to the calculation 
of sensitivity coefficients.

NS NR NP Case 2: CPU time [s] Case 11: CPU time [s]
Without With Without With

Lu 188 842 0.16 · 106 0.52 72.5 0.98 133
Herbinet 273 1853 0.50 · 106 0.84 209 2.21 497
LLNL 658 2827 1.86 · 106 6.43 1129 17.4 3148
Polimi 460 16000 7.36 · 106 6.17 7045 21.8 18790
Fig. 20. Calculated sensitivity coefficients of methyl-decanoate (MD) for Cases 2 and 11 described in Table 3.
millions of sensitivity coefficients has to be calculated. The 
required CPU times were in line with the expected trends from the 
previous analysis: 28.3 and 65 h for case 2 and 11, respectively, 
while the corresponding CPU times without the calculation of 
sensitivity coefficients were 6.7 and 16.5 min.

The huge number of sensitivity coefficients means that it is im-
possible to store all of the sensitivity results at each time-step. In 
this particular example, assuming double precision, the result 
would be a ∼187 MB file for each time-step. For this reason, even 
if the sensitivity analysis is performed for all the species and all 
the reactions, the user has to select a limited number of species for 
which all the sensitivity coefficients have to be writ-ten in a file. 
Fig. 20 reports the calculated sensitivity coefficients of methyl-
decanoate (MD) for the two cases. The numbers re-ported above 
suggest the fundamental importance of proper post-processing 
tools to analyze the calculated sensitivity coefficients. The 
OpenSMOKE++ Suite includes a graphical post-processor for the 
efficient treatment of sensitivity analysis results: normaliza-tion 
of coefficients with different options; identification of most 
important sensitivity coefficients for each species (on a local or 
global basis); automatic generation of bar-charts (see Fig. 20); au-
tomatic plotting of sensitivity profiles (see Fig. 18).

7. Illustrative examples

In this Section we present a series of illustrative examples
which can be typically be solved using the OpenSMOKE++ frame-
work. The purpose is to demonstrate that large kineticmechanisms
can be efficiently and easily managed, also on complex systems,
like multi-dimensional flames.

7.1. Ideal reactors

The design of combustion systems relies on the availability of
accurate chemical kineticmechanisms. In particular, ignition delay
time data at elevated pressures and low-to-intermediate tempera-
tures are important for the validation of chemical kinetics models
at practical engine conditions. However, it has been noticed that
shock-tube ignition data can significantly differ from rapid com-
pression machine (RCM) data especially at high pressures and low
temperatures. Ignition delay times obtained from shock-tube ex-
periments are typically shorter than data obtained in RCM exper-
iments [77]. Sung and Curran [78] recently discussed the typical 
operating ranges of shock tube and RCM experiments. RCMs typi-
cally give accessibility to study auto-ignition chemistry at elevated 
pressure under conditions in which reactivity may be too slow for 
shock tubes. The complementary combination of RCM and shock 
tube experiments allows to develop and validate kinetic mecha-
nisms over a very wide range of conditions.

As an example of the combination of shock tube and RCM exper-
iments, Nakamura et al. [79] recently carried out a comprehensive 
experimental and theoretical study of n-butylbenzene oxidation in 
air over a wide range of conditions. In particular, the ignition delay 
times at low temperature were measured using the rapid compres-
sion machine at NUI Galway, which adopts a creviced piston, while 
a shock tube was used to investigate the reactivity at higher tem-
peratures.

The OpenSMOKE++ code includes a solver for the simulation of 
a transient closed homogeneous batch reactor, which can be used 
to perform calculations of ignition delay times experimentally ob-
tained in Shock Tubes (ST) and RCM devices.

It is important to notice that both systems (ST and RCM) typi-
cally exhibit a non-ideal behavior, which limits the applicability of 
a simple adiabatic constant-volume simulation. For example, for 
the simulations of RCM experiments it is important to include in 
the simulation the variable volume-time histories, to reproduce in 
the simulation facility effects such as reaction during compression 
and heat loss. These variable volume-time histories are nowadays 
generally experimentally obtained from non-reactive pressure 
traces [78,79] and can be directly adopted in the simulation. Fig. 21 
shows an example of simulation results obtained using the n-
butyl-benzene kinetic mechanism of Nakamura et al. [79] (which 
includes about 960 species and 4330 reactions) and adopting both 
constant volume simulations and the proper volume time his-
tory for each RCM simulation. As expected, and as already ob-
served in [79], the RCM simulations obtained including the facility 
effects result in a significantly better agreement with the exper-
imental data. Ignition delays are significantly under-predicted if



Fig. 21. RCM and Shock tube simulation using OpenSMOKE++ and the kinetic mechanism of Nakamura et al. [79]. Effect of constant-volume and variable volume 
simulations. Panel (a) Comparison between experimental [79] and predicted pressure profiles during a RCM experiment (butyl-benzene/air at Φ = 1, compressed gas T = 
893 K, P = 10 atm). Panel (b) Predicted and measured [79] ignition delay times of n-butyl-benzene in shock tube and RCM experiments. The continuous line refers to an 
isochoric adiabatic batch reactor simulation (P0 = 10 atm), the dashed line includes in the simulation the full volume history. Initial mole fractions: fuel = 1.53%, O2 = 
20.68%, diluent = 77.79%.
the effect of heat loss is not properly taken into account. For shock 
tube simulations, constant volume conditions can be usu-ally 
adopted, but in many cases it is necessary to take into account the 
pressure rise before ignition which is of the order of dP/dt = 1 ÷ 5 
[78–81]. As already discussed by several authors [82,83], these 
facility effects, which are the consequence of incident-shock 
attenuation and boundary layer growth, result in an increase in 
pressure, which can complicate the interpretation of ignition time 
measurements made at long test times. It is therefore necessary to 
include the effect of the pre-ignition pressure rise in the simula-
tions when the delay time is longer than ∼1–5 ms [83]. This effect 
obviously tends to make the calculated ignition delays shorter 
than a corresponding value obtained without considering the 
facility-dependent pressure rise, as temperature rises with 
pressure due to compression [78]. It is also important to underline 
that the facility-dependent effects on long ignition delay times are 
opposite when comparing shock tube and RCM ignition delays 
[78]. Also in the case of a shock tube experiment, it is possible to 
include facil-ity effects in the simulation using volume profiles 
that have been deduced from pressure profiles measured in non-
reacting experi-ments [78] and assuming an adiabatic 
compression/expansion pro-cess. The OpenSMOKE++ code 
supports both alternatives, i.e. it is possible to use the volume 
history, as in the RCM example of Fig. 21, or to explicitly specify 
the value of the pressure derivative. This second option can be 
used only when the pressure rise prior to ig-nition is due to a 
reasonably constant dP/dt [78]. A more complete discussion on 
the effect of the pressure rise on the ignition delays can be found 
in the work of Chaos and Dryer [84].

It is important to underline that it is not possible to reproduce 
the effects of the roll-up vortex and the thermo-kinetic interactions 
due to the resulting temperature non-homogeneity which is 
typically present when non-creviced pistons are adopted. As 
discussed in detail by Sung and Curran [78], creviced pistons are 
able to suppress the boundary layer, preventing its entrainment 
into the reaction chamber of the RCM via a roll-up vortex. 
Unfortunately, a significant portion of the available ignition delay 
times in literature were measured with RCMs that did not employ 
a creviced piston to contain the roll-up vortex. The adequacy of the 
homogeneous modeling of RCMs without creviced pistons during 
reactive conditions has been recently investigated by Mittal and 
Chomier [85] using CFD simulations. They concluded that, since 
temperature non-homogeneity induced by the roll-up vortex leads 
to diminution of the NTC behavior, the experimental data from 
RCMs without creviced piston needs to be taken with caution 
for quantitative validation and refinement of kinetic mechanisms. 
Chaos and Dryer [84] concluded that a proper characterization of 

each apparatus is needed in order to help generate an accurate
chemical kinetic models. For this reason it is particularly important 
to have open codes, such as OpenSMOKE++, where it is possible to 
introduce the proper reactor model for each apparatus in a flexible 
way.

7.2. Multi-dimensional laminar flames

As a further illustrative example, the OpenSMOKE++ framework 
was incorporated into the laminarSMOKE solver [24] for the 
simulation of multi-dimensional laminar flames. The code has 
been already used for the simulation of laminar coflow diffusion 
flames [86–89], premixed flames [25], and to investigate the probe 
effects on the structure of a low-pressure laminar flame and 
to assess the deviations from results obtained in unperturbed 
flames [90]. Here we present only the results obtained for a coflow, 
axisymmetric, laminar diffusion flame burning prevaporized n-
heptane. Additional examples and validation cases are presented 
in [25]. The fuel stream is a mixture of 3.67% n-heptane and 
96.33% nitrogen, by volume. The outer stream is oxygen-vitiated 
air with 31% of oxygen. The simulated burner (whose geometric 
configuration is presented in Fig. 22) consists of two concentric 
nozzles, with diameters of 2.41 mm and 25.4 mm for the fuel and 
oxidizer streams, respectively. A parabolic, fully developed velocity 
profile is assumed for the fuel (inner) stream, with an average value 
of 79 cm/s. A top-hat profile is imposed for the oxidizer (outer) 
stream, with average speed of 68.7 cm/s. The fuel stream is injected 
at 470 K, while the oxidizer stream at ambient temperature. 
Tosatto et al. [91] adopted the same burner geometry to perform 
experimental and numerical studies of coflow flames fed with 
JP8 surrogates. In the present work the JP8 was simply replaced 
with n-heptane, while all the remaining boundary conditions 
were assumed unchanged. Several detailed kinetic mechanisms, 
with different number of species and reactions, were adopted to 
perform the numerical simulations, as reported in Table 7.

As better presented in the following, the investigated laminar 
flame show a significant lift-off height, Hlift . Mohammed et al. [92] 
demonstrated that the Hlift can be correctly predicted only with 
accurate, detailed kinetic mechanisms. Therefore, the present 
simulations appear a convenient choice to better point out the 
different predictive capabilities of the detailed kinetic mechanisms 
taken into account.

The transport equations of mass, momentum, species and en-
ergy are solved in a 2D axisymmetric computational domain. 
Proper boundary conditions are needed by the equations reported 
above. In particular, at the inlets of fuel and oxidizer streams, 
Dirichlet conditions are imposed, to fix the velocity, the temper-
ature and the composition. At the centerline, symmetry conditions



Table 7
Kinetic mechanisms adopted for the numerical simulation of the laminar co-flow flame 
described in Section 7.2.

Name Number of species Peak temp. [K] Lift-off height [mm] Ref.

Mauss-47 47 2161 4.8 [93]
Mauss-110 110 2170 4.5 [93]
Lu-88 88 2175 3.6 [17]
Lu-188 188 2136 5.1 [17]
JetSurF 2.0 348 2210 5.8 [94]
Fig. 22. Coflow, laminar diffusion flames: schematic of the diffusion flame set-up, 
together with dimensions of the computational domain.

are adopted. Neumann conditions are imposed to model the out-
flow conditions at the top of the computational domain.

A 2D, 30 × 80 mm rectangular computational domain was 
adopted, which is sufficiently large to ensure that the boundary 
conditions do not affect the flame region [91]. A non-uniform, 
structured mesh with 150 points along the axis and 80 points along 
the radial coordinate was chosen to discretize the computational 
domain. This grid was found sufficiently large to ensure that the 
numerical solution does not depend on the spatial discretization 
of the computational domain.

The laminarSMOKE solver is based on the operator-splitting 
algorithm, which requires the solution of a transport step (ac-
counting only for convection and diffusion) and of a chemical step 
(accounting only for the reactions). Here we summarize only its 
main features, but additional details are presented and discussed 
in [25]. The transport (convection and diffusion) step is solved us-
ing the backward (or implicit) Euler’s method. The chemical (or 
reaction) step (corresponding to a set of independent, stiff ODE 
systems) is solved using the native OpenSMOKE++ ODE solver. 
Only the species and energy equations are solved through the 
operator-splitting algorithm. Since the continuity and the momen-
tum equations are solved in a segregated approach, in order to en-
sure the conservation of mass at each time step, the PISO algorithm 
is applied [95].

Even if the flames here simulated are in steady-state conditions, 
the laminarSMOKE code solves the transport equations in their 
unsteady form, in order to ensure higher robustness. Thus, the 
simulations are run over a time interval sufficiently large to reach 
steady-state conditions. In order to avoid stability issues, the time-
step is automatically adjusted during the calculations to have a 
sufficiently small maximum Courant number. OpenSMOKE++ was 
incorporated into the laminarSMOKE framework to manage both 
the transport step (calculation of thermodynamic and transport
properties) and the chemical step (integration of independent stiff 
ODE systems, representing constant-volume adiabatic reactors). 
An Infiniband platform was used for running all the simulations. In 
its current configuration, it is made up of 16 nodes, each of them 
having 36 GB of RAM memory and 12 Intel R⃝ Xeon R⃝ X5675 (12 Mb 
cache, 3.06 GHz, 6.40 GT/s Intel R⃝ QPI) processors. The simulations 
reported in the following were performed using a centered spatial 
scheme and a maximum Courant number of 0.1.

Fig. 23 reports the maps of temperature and mass fractions of 
selected species, calculated using the JetSurF 2.0 kinetic mecha-
nism (348 species and 2163 reactions). To our knowledge, this is 
one of the largest kinetic mechanism (in terms of number of 
species) adopted for the simulation of a laminar coflow flame. The 
typical features of non-premixed flames can be observed, with fuel 
inside the flame front and oxidizer (O2) outside it, together with 
conversion to CO and H2 and then to CO2 and H2O across the flame 
front. In Fig. 24 we reported the mass fraction profiles of selected 
species along the axis of the flame. Because of the flame lift-off, a 
significant amount of oxygen is able to penetrate into the flame, as 
evident from the peak at ∼10 mm.

The numerical simulations performed with the other kinetic 
mechanisms show similar results, and they are not here reported 
for sake of brevity. The flame lift-off height (here defined as the 
lowest axial location where the flame reaches the temperature of 
1000 K) is a very important property to test the reliability and the 
accuracy of a kinetic mechanism. In particular, it was demonstrated 
that the lift-off height is usually strongly dependent on the extinc-
tion strain rate of the mechanism [92]. As reported in Table 7, the 
four kinetic mechanisms employed for the present analysis show 
different lift-off heights.

The CPU time to perform the simulations reported above, based 
on the operator-splitting technique, is strongly affected by the 
complexity (especially the number of species) of the kinetic 
mechanism adopted. In particular, the total CPU time is split into 
three main parts: (i) the reaction (or chemical) step, in which the 
uncoupled, stiff ODE systems are integrated over the chosen time-
step; (ii) the evaluation of transport properties (mass diffusion 
coefficients, thermal conductivity, dynamic viscosity and thermal 
diffusion coefficients); (iii) the transport (convection and 
diffusion) step. Fig. 25 reports the computational costs for 
simulating (on a single processor) a time interval of 2.5 µs for the 
different kinetic mechanisms in Table 7. The reaction step (i.e. 
integration of independent stiff ODE systems) results to be a very 
consuming part of the code, independently of the kinetics, 
requiring ∼45%–60%of the total computational time. The 
evaluation of the transport properties covers only ∼1%, while the 
transport step has a weight which is comparable to the reaction 
step. The remaining operations represent less than ∼4% of total 
CPU time. In particular, from Fig. 25 it is evident that the CPU 
times required by the reaction and transport steps are comparable 
and increases quadratically (∼1.9) with respect to the number of 
species. The reaction step and the evaluation of transport 
properties are entirely performed by the OpenSMOKE++ library. 
Since they cover more than 50% of total CPU time, this further 
explains the interest of a numerical tool like OpenSMOKE++ able 
to manage detailed kinetic mechanism with minimization of 

computational time.



Fig. 23. Laminar, coflow diffusion flame burning n-heptane: calculated maps of temperature and mass fractions of selected species. Iso-contour lines of temperature (1000, 
1500 and 2000 K) are reported on each map. The coordinates along the axial and radial directions are in mm. The calculations were performed using the JetSurF 2.0 kinetic 
mechanism [94].
Fig. 24. Laminar, coflow diffusion flame fed burning n-heptane: calculated mass fraction profiles of selected species along the axial coordinate. The calculations were 
performed using the JetSurF 2.0 kinetic mechanism [94].
8. Concluding remarks

We have presented OpenSMOKE++, a general framework for
numerical simulations of reacting systems with detailed kinetic
mechanisms. The code, which is entirelywritten in object-oriented
C++, was specifically designed to manage very large detailed
kineticmechanisms (involving thousands of species and reactions)
and to be easily customized by the user. The most important
technical features of the OpenSMOKE++ framework, together with
its innovative aspects with respect to similar codes commonly
adopted by the combustion community, were presented and
discussed. The computational performances of the proposed
framework were discussed through a series of examples, which
demonstrated the robustness and the efficiency of OpenSMOKE++
calculations.

We have made the OpenSMOKE++ code freely available,
because we believe this will be of great benefit for the scientific
community, by giving the researchers the possibility to focus their



Fig. 25. Laminar, coflow diffusion flame burning n-heptane: analysis of the CPU times for different kinetic mechanisms. Left: relative weights of CPU times for the different
phases required by the operator-splitting technique. Right: CPU times per computational cell versus the number of species.
effort on the design of new models, rather than spending time in 
re-implementing a well-known method.
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Appendix A. Reactions available in OpenSMOKE++

In addition to the conventional reaction laws described in 
Section 3.2, the current version of OpenSMOKE++ offers the 
possibility to manage a large number of alternative formulations.

Pressure-dependent reactions

Pressure-dependent reactions show a behavior which is 
directly dependent on the pressure. The effective reaction rate
requires the calculation of twomodifiedArrhenius’ laws describing
thehigh-


kf0,j

and low-pressure


kf
∞,j


limits,which are properly

combined together. In particular, the forward kinetic constant is
given by:

k f
j = kf

∞,j
P j
r

1 + P j
r
F PD
j (A.1)

where F PD
j is a blending function and P j

r is the reduced pressure

P j
r =

kf0,jMeff ,j

kf
∞,j

. OpenSMOKE++ provides three different kinetic laws

for estimating F PD
j , namely the Lindemann, the Troe and the SRI

models. In the Lindemann model F PD
j is simply equal to 1. In the

Troe form, F PD
j is given by:
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where the constants cj, nj, and dj have the following expressions:cj = −0.4 − 0.67 log F cent
j
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j

dj = 0.14
(A.3)
and

F cent
j =


1 − αj


e
−

T
T∗∗∗
j + αje

−
T
T∗
j + e−

T∗∗
j
T . (A.4)

The four parameters αj, T ∗

j , T
∗∗

j , and T ∗∗∗

j are specific of each
pressure-dependent reaction in the Troe form. In the SRI approach
the blending function is approximated differently:
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bj
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−
T
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T ej (A.5)

where

Xj =
1

1 +


log P j

r

2 . (A.6)

The five parameters aj, bj, cj, dj, and ej are specific of each
pressure-dependent reaction in the SRI form.

Chemically activated bimolecular reactions

The kinetic constant of Chemically Activated Bimolecular
Reactions is described by the following function:

k f
j = kf0,j

1

1 + P j
r
F PD
j . (A.7)

The expression reported above is very similar to Eq. (A.1). The
main difference is that kf0,j is the pressure-independent factor,
while in (A.1) it is kf

∞,j. The three choices for F PD
j are exactly the

same as for the unimolecular fall-off reactions, i.e. the Lindemann,
Troe and SRI models.

Pressure-dependent reactions through logarithmic interpolation

The formulation proposed by Miller and Lutz [30] describes
the pressure dependence of a reaction based on the direct
interpolation of reaction rates specified at individual pressures. In
particular, for a given reaction, the usual Arrhenius’ parameters are
supplied for a set of Pk pressures. Then for a pressure P between Pk
and Pk+1, the kinetic constant k f

j is obtained through the following
interpolation:

ln k f
j = ln kfj,k +


ln kfj,k+1 − ln kfj,k

 ln P − ln Pk
ln Pk+1 − ln Pk

. (A.8)

The method reported above can be used as an alternative
approach to describe any type of pressure dependence (including
the formulations reported in the previous sections).



Chebyshev polynomials

The Chebyshev formulation consists in approximating the
logarithm of the kinetic constant of a given reaction as a
truncate bivariate Chebyshev series in the reverse temperature and
logarithm of pressure [30]. First of all, the normalized temperatureT and pressureP are calculated as reported in the following:
T =

2T−1
− T−1

min − T−1
max

T−1
max − T−1

minP =
2 log P − log Pmin − log Pmax

log Pmax − log Pmin

(A.9)

where the minimum and maximum values of temperature
and pressure have to be established by the user. Then, the
corresponding kinetic constant (the subscript j, referring to the
index of reaction, is omitted for simplicity) is given by:

log kf =

N
n=1

M
m=1

anmϕn
Tϕm

P (A.10)

where the Chebyshev polynomials are defined as:

ϕn (x) = cos


n − 1
cos (x)


. (A.11)

The integers N andM represents the number of basis functions
for temperature and pressure, respectively. The N ×M coefficients
a of the Chebyshev expansion have to be provided by the user.

Landau–Teller formulation

The generalized Landau–Teller formulation [30] calculates the
kinetic constant as:

k f
j = AjTβje−

Eaj
RT +

Bj
T1/3

+
Cj

T2/3 . (A.12)

If theBj andCj parameters are set equal to zero, the conventional
Arrhenius’ expression is recovered.

Janev–Langer–Evans–Post formulation

The formulation proposed by Janev, Langer, Evans and Post [96]
is based on apolynomial fit to the logarithmof the temperature and
assumes that the kinetic constant can be expressed as reported in
the following:

k f
j = AjTβje

Ej
T +

9
n=1

bj,n(ln T )n−1

. (A.13)

The nine bj,n parameters have to be specified by the user.

Power-series formulation

An alternative formulation can be applied, based on a power
series within the exponential of a modified Arrhenius’ expres-
sion [30]:

k f
j = AjTβje

4
n=1

bj,n
Tn

. (A.14)

The bj,n four parameters have to be specified by the user.
Appendix B. Adjustment of thermodynamic coefficients

The thermodynamic properties are calculated using the stan-
dard approach already described in Section 3.1. In particular, for
each species the constant pressure specific heat is evaluated us-
ing a fourth-order polynomial (Eq. (1)), which is defined on two
adjacent temperature intervals, respectively from Tmin to Tcom and
from Tcom to Tmax. Therefore, 10 thermodynamic coefficients are re-
quired (5 per interval). Obviously the two sets of coefficients must
ensure the continuity of the specific heat at Tcom. OpenSMOKE++
checks the continuity, whichmust be satisfied within a relative er-
ror of 0.1%. If the relative error is larger, the user is asked tomodify
the sets of thermodynamic coefficients to meet the OpenSMOKE++
requirements.

For most detailed kinetic mechanisms available in the litera-
ture, only the continuity of CP is ensured at Tcom. OpenSMOKE++
allows to apply small adjustments to the thermodynamic coef-
ficients in order to ensure also the continuity of first-, second-,
and/or third-order derivatives. This adjustment can result in pos-
itive effects during the integration of the ODE systems describing
many chemical reactors (see Section 6). The procedure, which can
be automatically applied only if the provided thermodynamic co-
efficients satisfy the continuity requirements described above, is
described below.

After defining an intermediate temperature T (not necessarily
equal to Tcom), the adjusted specific heatsCadj

P are written as:

Cadj
P

R
= aLT1 + aLT2 T + aLT3 T 2

+ aLT4 T 3
+ aLT5 T 4

if Tmin ≤ T ≤ TCadj
P

R
= aLT1 + aLT2 T + aLT3 T 2

+ aLT4 T 3
+ aLT5 T 4

+ α1

T − T

4
+ · · · + α2


T − T

3
+ α3


T − T

2
if T < T ≤ Tmax.

(B.1)

The objective is to find the coefficients aLT1 − aLT5 and α1 − α3
which best fit (in the least square sense) the original specific heat
over the range Tmin ÷ Tmax. The formulation (B.1) automatically
satisfies the continuity of theCadj

P function and of its first derivative.
If α3 is assumed equal to zero, the resulting formulation ensures
also the continuity of the second derivative. Eventually, if both
α2 and α3 are set equal to zero, the continuity of first-, second-
and third-order derivatives is automatically satisfied. Once the
coefficients are calculated using the method of least squares, the
specific heat in the high-temperature region can be recast in the
usual form:Cadj

P

R
= aHT1 + aHT2 T + aHT3 T 2

+ aHT4 T 3
+ aHT5 T 4

if T < T ≤ Tmax (B.2)
where:

aHT1 = aLT1 + α1T
4
− α2T

3
+ α3T

2

aHT2 = aLT2 − 4α1T
3
+ 3α2T

2
− 2α3T

aHT3 = aLT3 + 6α1T
2
− 3α2T + α3

aHT4 = aLT4 − 4α1T + α2

aHT5 = aLT5 + α1.

(B.3)

The intermediate temperature T is chosen in order to minimize
the error between the originalCP and the reformulatedCadj

P specific
heats:

e =

 Tmax

Tmin

CP −Cadj
P

2
dT . (B.4)

A simple iterative procedure is applied to search the best value.



Fig. C.1. Concentration of Awith (blue line) andwithout (red line) the linearization
(CA0 = 0.09 mol/l; α = −0.3; k = 10 mol0.3/l0.3/s). The small figure zooms in the
zone where the functions approach zero. The constants σ and τ are chosen equal to
23 and 17 respectively.

Appendix C. Reaction orders lower than 1

Non-elementary reactions with arbitrary reaction orders might
cause numerical problems when orders lower than 1 are adopted,
because of possible negative values of the concentration of the
species. The solution which is adopted in OpenSMOKE++ to
circumvent this problem is the linearization of the rate expression
when the concentration of the reactants becomes lower than a
certain specified value. A simple example can show this approach.
The species A is consumed with a reaction rate r = kCα

A , where α
is less than one. The mass balance can be then written as:
dCA

dt
= −kCα

A (C.1)

whose solution is:

CA =

C1−α
A0 − (1 − α) kt

1/(1−α)
(C.2)

being CA0 the initial concentration of species A. When the time is
higher than:

t =
C1−α
A0

(1 − α) k
. (C.3)

CA becomes lower than zero with several problems arising if
a numerical solution is adopted. To overcome these difficulties it
is possible to identify a small threshold value (CAT ) of CA, below
which an order one reaction is assumed: r = k̃Cα

A , where k̃ is
estimated making equal the two reaction rates for CA = CAT :
kCα

AT = k̃CAT ⇒ k̃ = kCα−1
AT . The transition between the two

reaction rates is obtained through an expression, able to avoid
discontinuities in the function and in its derivatives. The final rate
constant expression covering the whole time range is then:

r = ξkCα
A + (1 − ξ) kCα−1

AT CA (C.4)

where ξ is a proper function based on hyperbolic tangent, which
allows the continuous transition:

ξ =
1
2


tanh


σ

CA

CAT
− τ


+ 1


(C.5)

where σ and τ are two constants. Fig. C.1 shows the impact of this 
approach on the solution. The two results are very similar and only 
zooming at very low concentrations, it is possible to observe the 
entity of the correction introduced by the linearization.

Appendix D. Supplementary material

Supplementary material related to this article can be found 
online.
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