
Just-In-Time Execution Through On-Demand Resource
Allocation in HPC Systems

A. Portero, M. Podhoranyi, D. Hrbac
IT4Innovations, National Supercomputer Center

VSB - Technicka univerzita Ostrava 17. listopadu 15/2172
Ostrava-Poruba, The Czech Republic 708 00

antonio.portero@vsb.cz

S. Libutti, G. Massari, W. Fornaciari
DEIB – Politecnico di Milano

Via Ponzio, 34/5
Milano, Italy 20133

ABSTRACT

This article is centred on a mathematical weather forecasting

model that must run regularly (i.e. 24/7) on an HPC system.

Depending on the environmental conditions, each execution of the

model may have a different deadline and a different accuracy

requirement. In order to minimize power consumption and heat,

we minimize resource allocation as far as the deadlines allow,

thus evenly spreading resource usage over time while nonetheless

complying with the deadlines. Our work relies on a run-time

resource manager that adapts resource allocation to the runtime-

variable performance demand of applications. The resource

assignment is temperature-aware: the application is dynamically

migrated on the coolest cores, and this has a positive impact on

the system reliability.

CCS Concepts

• Computing methodologies ➝ Simulation evaluation

• Computing methodologies ➝ Simulation environments

• Computing methodologies ➝ Concurrent algorithms.

Keywords

Parallel execution; HPC; Monte-Carlo simulation; Reliability;

Runtime

1. INTRODUCTION
Transistors miniaturization induces increasing power density and

higher chip temperatures. This in turn leads to performance

degradation, greater device leakage, accelerated chip aging and a

significant increase in the system cooling costs. Dynamic thermal

management (DTM) addresses thermal hot-spots and temperature

variation problems: depending on its current temperature, a

processing element (PE) may be accordingly set on a different

voltage/frequency configuration.

Our framework is based on the idea of making the application

terminate its execution just before the deadline (just-in-time, jit).

This way, the amount of allocated processing elements is

minimized. This in turn allows the resource manager to evenly

level power consumption throughout the chip and to dynamically

migrate the application on the coolest cores, thus evenly spreading

heat and increasing the reliability of the silicon.

2. STATE OF THE ART
Rahimi et al. [1] present a task-scheduling approach that takes

into account the measured hardware variability and the system

workload to minimize the likelihood of timing errors. Wu et al. [2]

propose to employ an OS resident software module to generate

power and thermal profiles of the processor. Huang et al. [3]

propose an analytical model to estimate the lifetime reliability of

multiprocessor platforms when executing periodical tasks.

Bolchini et al. [4] present a framework that employs the Monte

Carlo (MC) simulation approach to estimate the lifetime reliability

of multicore systems. Haghbayan et al. [5] propose a lifetime

reliability-aware resource management approach for many-core

architectures. The approach is based on a monitor that analyses

the aging status of the processing elements and a runtime allocator

that suitably maps newly arrived applications on the available

resources. Several works also focus on temperature [6, 7].

Ganeshpure et. al [8] propose a solution that employs a

temperature prediction scheme to trigger dynamic task

rescheduling.

3. RUN-TIME RESOURCE MANAGER
In the context of this work, we employ the HARPA-OS runtime

resource manager [9, 10]. HARPA-OS enables the management of

multiple applications that compete on the usage of multiple many

core computation devices. It also exposes a run-time library [11,

12] that is in charge of: a) synchronizing the execution of

applications with the runtime-variable resource allocations; and b)

notifying to the resource manager the runtime-variable Quality of

Service goals of applications, so that the HARPA-OS scheduling

policy, which can be either chosen from a set of predefined ones

or implemented from scratch, is able to take into account the

feedback coming from applications when computing resource

allocations.

We designed and implemented PerDeTemp (PERformance

DEgradation TEMPerature), a HARPA-OS scheduling policy that

tries to meet the application performance requirements while

minimizing resource allocation. When multiple computing

resources are available, PerDeTemp employs a multi-objective

heuristic to assign to applications only the most healthy and cool

cores. Such allocation aims at leveling the power flux over the

whole chip, thus mitigating the aging process and avoiding

thermal hot-spots.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.
ICACS '17, August 10–13, 2017, Jeju Island, Republic of Korea

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5284-0/17/08…$15.00
https://doi.org/10.1145/3127942.3127951

63

Figure 1. Best-effort vs. JIT scheduling.

Figure 1 shows a comparison between the standard execution of

an application and our relaxed, deadline-aware execution. The

standard application execution is based on the idea of running the

code as fast as possible (best-effort, be) using one thread per

available processing element. This way, the results are available

sooner; however, power consumption is maximized and all the

processing elements are stressed. Conversely, our just-in-time

execution approach is based on the idea that, since applications

are able to dynamically send feedbacks to the resource manager,

resource allocation can be made more elastic: it is adjusted over

time, so that the runtime-variable performance demand of

applications is always complied with, but the execution time of

application is always the maximum allowed one (i.e., applications

terminate just before their deadline). The resource manager

exploits the now-unused resources as a resource pool that can be

used in multiple flavors, e.g., to provide cool cores when the next

resource allocation will be computed.

The HARPA-OS runtime library, which is linked my managed

applications, transparently monitors the applications execution

statistics. Among those, one of the most important ones is the

average throughput. It is worth noticing that each time HARPA-

OS changes the resource allocation of an application, the runtime

library re-sets the throughput statistics; hence, the average

throughput computed by the runtime library always refers to the

current resource allocation. If follows, then, that the average

throughput is a very accurate predictor of how the application will

behave (i.e., whether the application will terminate or not before

the deadline) if the resource allocation remains constant until the

application termination.

In order to provide the scheduling policy with a feedback about

the current resource allocation, applications use the HARPA-OS

run-time library API to retrieve their current execution time and

their average throughput. Basing on that values, the applications

are able to compare their current throughput, i.e. the average

throughput under the current resource allocation, and the ideal

throughput, i.e. the throughput that is needed by the application to

terminate just before the deadline. This information is periodically

sent back to the HARPA-OS as a performance gap:

 throughputcurrent −throughputideal (1)

gapperf ormance =

throughputideal

Performance gaps greater than 1 mean that the application is

executing too fast, which in turn means that the HARPA-OS may

seize some of the allocated processing elements and insert them in

the pool of empty resources. On the contrary, performance gaps

lower than 1 mean that the application needs more resources. In

this case, the HARPA-OS takes some of the healthier and cooler

processing elements from the unused resources pool and adds

them to the set of resources that can be exploited by the

application. Finally, performance gaps equal to 1 mean that the

application is likely going to terminate just in time. Even in this

case, however, the HARPA-OS may decide to change resource

allocation, usually to swap the currently allocated set of

processing elements with a healthier and cooler one.

4. THE WEATHER FORECASTING

MODEL
The application used in this paper is a modular part of the

Floreon
+

project [13]. The primary objective of the project is to

create a platform to support monitoring, modeling, prediction and

decision for disaster management. The modularity of the Floreon
+

platform allows a simple integration of different thematic areas,

regions, and data. The central thematic area of the project is

hydrological modeling and prediction.

We have integrated the most computationally demanding module

of the Floreon
+

platform with HARPA-OS to examine how the

HARPA-OS will influence its execution. The selected module

models the inaccuracies that affect the Rainfall-runoff (RR) model

[14]. It takes as input the precipitation forecast computed by

numerical weather prediction models and projects the inaccuracies

onto the output of the model by constructing confidence intervals,

which are computed using the Monte-Carlo (MC) method.

The confidence intervals accuracy can be positively affected by

increasing the number of MC simulations (also referred to as

samples) and can be determined by estimating the Nash-Sutcliffe

model efficiency coefficient [15] between the original simulation

output and one of the percentiles selected from the Monte-Carlo

results. The percentile simulations describe a possible

development of the situation taking possible inaccuracies (along

with their probability) into account. For example, the 80%

percentile specifies that there is an 80% probability that the real

river discharge will be lower or equal to the simulated one. These

results can then be propagated further into the flood prediction

process, e.g., used as input for hydrodynamic modeling.

4.1 Application Scenarios
Based on the weather, Floreon+ can be subject to different service

level requirements. Indeed, the requirements can be translated to

the parameters of the uncertainty modeling: a shorter response

time in critical situations can, for example, be acquired by

decreasing the number of MC samples – which, however, means

reducing the precision of the results – or by allocating more

computational resources to the application. Depending on the

flood emergency situation, we identified three application

scenarios that have different requirements. According to their

criticality level, we tagged the scenarios as standard, medium, and

critical.

64

Figure 2. Schema of the blade. Since the fan is on the right of

the blade, there is an air cooling gradient between socket 1

and socket 0.

Standard Operation. In this scenario, there is no precipitation, and

the flood activity degree is below the critical threshold. In this

case, the estimated accuracy can be reduced.

Intermediate Operation. Due to a limited presence of

precipitations, the forecast of discharge exceeds a warning

threshold. In this case, in order to decrease the uncertainty of the

model, the number of MC samples that must be performed by the

simulation increases.

Critical Operation. Several days of continuous rain raise the water

in rivers or reservoirs. In this situation, more accurate and

frequent computations are needed, and results should be provided

as soon as possible even if all the computational resources have to

be allocated.

5. EXPERIMENTS
In this section, we run the uncertainty module on 16 nodes of an

HPC cluster. The module uses a hybrid OpenMP and MPI

approach [16, 21, 22] to distribute the computations to multiple

nodes. Given that the performance requirements of the application

are time-variable (e.g., low when sunny, intermediate/critical

when rainy), the HPC center may allocate to the application only

some computing nodes and use the remaining ones to execute

other applications. Therefore, we performed our experiments in

three different configurations: in the first one, we used only one

node (i.e., standard operation); in the second, we used two nodes

(i.e., intermediate operation); in the third, we used all the cluster

(i.e., critical operation).

5.1 Hardware Infrastructure
In our experiments, we use 16 HPC nodes that are connected

through InfiniBand. The nodes are part of the chassis described in

[17]. Each node is a powerful x86-64 computer equipped with 16

cores (two eight-core Intel Sandy Bridge processors), with 64GB

RAM and a local hard drive. The blades in the cluster are the

DL510; Figure 2 shows a simplified representation of their air

cooling system. Given that the fan is not equally distant from the

two sockets, one socket is better cooled than the other one. When

the system is idle, the temperature difference between the two

sockets is approximately 10 Celsius degrees. The system has

several monitors tools installed like power meters, ganglia [18] and

likwid [19].

Figure 3. 4 main catchments (left) and outlet hydrographs

(right) (black line shows a measured discharge, orange line

shows a simulated discharge, X-Axis: time in hours t(h),

YAxis: Discharge, cubic meters per hour, Q(m3/h)).

5.2 Catchments Simulation
The experiment monitors the run-time behavior of 4 concurrent

instances of the uncertainty module. Each of these instances

models the RR uncertainty for a different catchment of the

Moravian Silesian region: the Opava, Odra, Ostravice and Olza

catchments (see Fig. 3). The catchments are ordered according to

the impact in case of flooding (the lower the index, the higher is

the importance):

• C1: Ostravice - Functional urban areas with high

population density and industrial areas in floodplain zones.

• C2: Olza - Flood sensitive zones in urban areas.

• C3: Odra - Mountains in the upper part of the catchment

can cause significant runoff. Less exposed urban areas.

• C4: Opava - Soils with low infiltration capacity.

Each catchment is simulated independently, and individual

instances do not interact with each other.

6. RESULTS
Table 1 presents the set of experiments performed in the cluster.

The experiments tagged α refer to the single node scenario, while

those tagged with β and γ respectively refer to the dual node and

entire cluster scenarios.

One node configurations. Figures 4.a.1, 4.b.1, 4.c.1 and 4.d.1

show the number of cores allocated during the 10 minutes

execution for each catchment, while Figures 4.a.2, 4.b.2, 4.c.2 and

4.d.2 show the monitored performance gap (дp equations 1) (as

already mentioned, the closer to 100% is the gap, the better is the

performance).

Table 1. For each experiment, number of Monte Carlo

samples to be performed by the instance that models each

catchment

Thousand of MC samples to perform

 Experiment C1 C2 C3 C4

α1 1.5 1.5 1.5 1.5

α2 1.5 3.5 5.0 7.0

α3 7.0 7.0 7.0 7.0

β1 3.5 3.5 3.5 3.5

β2 7.0 7.0 7.0 7.0

β3 3.5 7.0 12.0 15.0

 γ 80.0 between all catchments

65

As shown by the experimental results, the number of allocated

resources gets higher as the number of samples of MC to be

performed increases. The allocation of resources is satisfactory for

α1 and α2 scenarios, but not for α3. In Figure 4.a.2, we can observe

that the performance gap is below 100%, meaning that the

resources required for this experiment are not enough. In this

situation, a second node should be allocated.

Two nodes. Similarly, Figure 5 shows the results for the dual-node

configurations. In this case, β2 has an equal number of samples to

operate than α3, and, since in this case we have two computing

nodes at our disposal, the computation is performed without issues.

However, in this case, the resources are again not enough for all

the scenarios: Figure 5.b.2 shows that the performance gap of β3 is

below 100%.

Figure 4. Standard Operation: Light or not precipitation, low

water level, (α experiments).

Multi-node results. In the last experiment of this set, we executed

the γ scenario on 16 nodes with a requirement 80K MC samples.

This time, all the instances terminated just-in-time, i.e., exactly at

the deadline. Using the likwid power monitor, we monitored the

power consumption in both the jit and the be configurations.

Whereas just-in-time execution leads to a consumption of

maximum 100W, the best-effort execution leads to a peak of

160W per node. Therefore, we saved around 44% in maximum

power consumption, while nonetheless complying with the

deadline.

Figure 5. Intermediate Operation: Intermediate execution,

medium precipitation or water level warning threshold

exceeded (β experiments).

6.1 Reliability
Figures 6 and 7 present the heat-map of a single node when

running an uncertainty module instance (12K RR MC samples)

using a justin-time and a best effort configuration, respectively.

We obtained the heat-maps by using the ganglia monitoring tool.

In both figures, the X axis presents time and the Y axis represents

the cores IDs. The Diff per Core (see left part of the figures) is the

difference in temperature per each core ci (0<i<16). The Diff per

Timestep (lower part of the figures) is the difference in

temperature among all cores given a timestep. The Median (upper

part) provides the median temperature per timestep. As can be

seen in Figure 6 (best effort execution with cpufreq performance

governor), there is a hotspot in socket 0, which, as already shown

in Figure 2, is the socket that is further from the fan. Conversely,

Figure 7 shows the execution with HARPA-OS-PerDeTemp. In

this case, there are not hotspots and, thanks to the temperature-

aware tasks migration performed by PerDeTemp, the temperature

is perfectly distributed throughout all the available processing

elements.

The presence of hotspots is known to have negative effects on the

Mean Time Between Failures of the system (MTBF), and the

aging acceleration factor depends on the difference (∆) of

temperature. According to the MTBF estimation presented in [20],

running the application in a HARPA-OS-PerDeTemp

configuration improves the reliability of the system from 17% to

43% in case of bad cooling (socket 0). With a better cooling

(socket 1), the MTBF for the besteffort relatively grows, but it is

still 11% to 30% better if we manage the system with PerDeTemp

(jit) instead of using the best-effort (be) policy.

7. CONCLUSIONS
In this paper, we presented a framework that, based on the

runtimevariable computational resources demand of applications,

strives to minimize the resource usage of applications while

making them comply with their deadlines. We call this practice

just-in-time execution, since the applications termination is always

as near as possible to the deadline. The framework is able to use

the pool of unused resources in multiple fashions, e.g., to swap

allocated faulty processing elements with healthier ones, or to

periodically assign to applications cool processing elements,

hence evenly leveling the generated heat throughput the chip even

in case of asymmetrical cooling.

Figure 6. Shows the heat map in the case of best-effort

performance GNU/Linux governor (12K in total).

66

Figure 7. Shows the heat map in case of HARPA Perdetemp

runtime with GNU/Linux performance governor (12K in

total).

8. ACKNOWLEDGEMENTS
This work was supported by The Ministry of Education, Youth

and Sports from the National Programme of Sustainability (NPU

II) project fiIT4Innovations excellence in science - LQ1602fi and

by the European Union FP-7 program through the HARPA project

(grant no. 612069).

9. REFERENCES
[1] Rahimi, A., Cesarini, D., Marongiu, A., Gupta, R. K., &

Benini, L. 2015. Task scheduling strategies to mitigate

hardware variability in embedded shared memory clusters. In

52nd ACM/EDAC/IEEE Design Automation Conference

(DAC).

[2] Wu, W., Jin, L., Yang, J., Liu, P., & Tan, S. X. D. 2008.

Efficient power modeling and software thermal sensing for

runtime temperature monitoring. ACM Trans. Des. Autom.

Electron. Syst., 12(3):25:1–25:29, May 2008.

[3] Huang, L., Yuan, F., & Xu, Q. 2009. Lifetime reliability-

aware task allocation and scheduling for MPSoC platforms,

DATE ’09.

[4] Bolchini, C., Carminati, M., Gribaudo, M., & Miele, A. 2014.

A lightweight and open-source framework for the lifetime

estimation of multicore systems. In IEEE 32nd International

Conference on Computer Design (ICCD).

[5] Haghbayan, M. H., et al. A Lifetime-Aware Runtime

Mapping Approach for Many-core Systems in the Dark

Silicon Era, DATE 2016.

[6] Hartman, A. S., & Thomas, D. E. 2012. Lifetime

improvement through runtime wear-based task mapping. In

Proceedings of the Eighth IEEE/ACM/IFIP International

Conference on Hardware/Software Codesign and System

Synthesis, CODES+ISSS’12, pages 13–22, New York, NY,

USA, 2012. ACM.

[7] Oh, D., Kim, N. S., Chen, C. C. P., Davoodi, A., & Hu, Y. H.

2010. Runtime temperature-based power estimation for

optimizing throughput of thermal-constrained multi-core

processors. In Proceedings of the 2010 Asia and South

Pacific Design Automation Conference, ASPDAC ’10, pages

593–599, Piscataway, NJ, USA, 2010. IEEE Press.

[8] Ganeshpure, K., & Kundu, S. 2014. Performance-driven

dynamic thermal management of mpsoc based on task

rescheduling. ACM Trans. Des. Autom. Electron. Syst.,

19(2):11:1–11:33, March 2014.

[9] Harpa harnessing performance variability fp7 project,

http://www.harpaproject.eu, 2013.

[10] Massari, G., Libutti, S., Portero, A., Vavrik, R., Kuchar, S.,

Vondrak, V., Borghese, L., Fornaciari, W. 2015. Harnessing

Performance Variability: A HPC-oriented Application

Scenario, Euromicro Conference on Digital System Design

(DSD) 2015 Funchal, Madeira, Portugal.

[11] Portero, A., Kuchař, Š., Vavřík, R., Golasowski, M., &

Vondrá, V. 2014. System and Application Scenarios for

Disaster Management Processes, the Rainfall-Runoff Model

Case Study. CISIM 2014 pp. 315-326.

[12] Bellasi, P., Massari, G., & Fornaciari, W. 2012. A RTMR

proposal for multi/many-core platforms and reconfigurable

applications. ReCoSoC 2012.

[13] Martinovic, J., Kuchar, S., Vondrak, I., Vondrak, V., Nir, B.,

& Unucka, J. 2010. Multiple Scenarios Computing In The

Flood Prediction System FLOREON. ECMS 2010 pp.182-

188.

[14] Golasowski, M., et al. Uncertainty modelling in Rainfall-

Runoff simulations based on parallel Monte Carlo method,

NNW 2015.

[15] Nash, J. E., and Sutcliffe, J. V. 1970. River flow forecasting

through conceptual models part I A discussion of principles,

Journal of Hydrology, 1970, 10 (3), pp. 282-290.

[16] Portero et al. Using an adaptive and time predictable runtime

system for poweraware HPC-oriented applications. IGSC

2016

[17] Sliva R., Stanek F. Best Practice Guide Anselm, Bull

Extreme Computing at IT4Innovations PRACE, 2013.

[18] Sacerdoti, F. D., Katz, M. J., Massie, M. L., & Culler, D. E.

2003. Wide area cluster monitoring with Ganglia. In

CLUSTER volume 3, pages 289–289, 2003.

[19] Treibig, J., Hager, G., & Wellein, G. 2010. A lightweight

performance-oriented tool suite for x86 multicore

environments. In Proceedings of the 39th International

Conference on Parallel Processing Workshops (ICPPW),

pages 207–216, 2010, IEEE.

[20] Ellerman, P. 2012. Calculating Reliability using FIT &

MTTF: Arrhenius HTOL Model. In MICROSEMI, Tech.

Rep., 2012.

[21] Mpi: A message-passing interface standard version 3.0, 2012.

[22] Openmp: Application program interface, version 4.0, 2013.

67

