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ABSTRACT 

This article is centred on a mathematical weather forecasting 

model that must run regularly (i.e. 24/7) on an HPC system. 

Depending on the environmental conditions, each execution of the 

model may have a different deadline and a different accuracy 

requirement. In order to minimize power consumption and heat, 

we minimize resource allocation as far as the deadlines allow, 

thus evenly spreading resource usage over time while nonetheless 

complying with the deadlines. Our work relies on a run-time 

resource manager that adapts resource allocation to the runtime-

variable performance demand of applications. The resource 

assignment is temperature-aware: the application is dynamically 

migrated on the coolest cores, and this has a positive impact on 

the system reliability.   

CCS Concepts 

• Computing methodologies ➝ Simulation evaluation 

• Computing methodologies ➝ Simulation environments 

• Computing methodologies ➝ Concurrent algorithms. 
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1. INTRODUCTION 
Transistors miniaturization induces increasing power density and 

higher chip temperatures. This in turn leads to performance 

degradation, greater device leakage, accelerated chip aging and a 

significant increase in the system cooling costs. Dynamic thermal 

management (DTM) addresses thermal hot-spots and temperature 

variation problems: depending on its current temperature, a 

processing element (PE) may be accordingly set on a different 

voltage/frequency configuration. 

Our framework is based on the idea of making the application 

terminate its execution just before the deadline (just-in-time, jit). 

This way, the amount of allocated processing elements is 

minimized. This in turn allows the resource manager to evenly 

level power consumption throughout the chip and to dynamically 

migrate the application on the coolest cores, thus evenly spreading 

heat and increasing the reliability of the silicon. 

2. STATE OF THE ART 
Rahimi et al. [1] present a task-scheduling approach that takes 

into account the measured hardware variability and the system 

workload to minimize the likelihood of timing errors. Wu et al. [2] 

propose to employ an OS resident software module to generate 

power and thermal profiles of the processor. Huang et al. [3] 

propose an analytical model to estimate the lifetime reliability of 

multiprocessor platforms when executing periodical tasks. 

Bolchini et al. [4] present a framework that employs the Monte 

Carlo (MC) simulation approach to estimate the lifetime reliability 

of multicore systems. Haghbayan et al. [5] propose a lifetime 

reliability-aware resource management approach for many-core 

architectures. The approach is based on a monitor that analyses 

the aging status of the processing elements and a runtime allocator 

that suitably maps newly arrived applications on the available 

resources. Several works also focus on temperature [6, 7]. 

Ganeshpure et. al [8] propose a solution that employs a 

temperature prediction scheme to trigger dynamic task 

rescheduling.   

3. RUN-TIME RESOURCE MANAGER 
In the context of this work, we employ the HARPA-OS runtime 

resource manager [9, 10]. HARPA-OS enables the management of 

multiple applications that compete on the usage of multiple many 

core computation devices. It also exposes a run-time library [11, 

12] that is in charge of: a) synchronizing the execution of 

applications with the runtime-variable resource allocations; and b) 

notifying to the resource manager the runtime-variable Quality of 

Service goals of applications, so that the HARPA-OS scheduling 

policy, which can be either chosen from a set of predefined ones 

or implemented from scratch, is able to take into account the 

feedback coming from applications when computing resource 

allocations. 

We designed and implemented PerDeTemp (PERformance 

DEgradation TEMPerature), a HARPA-OS scheduling policy that 

tries to meet the application performance requirements while 

minimizing resource allocation. When multiple computing 

resources are available, PerDeTemp employs a multi-objective 

heuristic to assign to applications only the most healthy and cool 

cores. Such allocation aims at leveling the power flux over the 

whole chip, thus mitigating the aging process and avoiding 

thermal hot-spots. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. Copyrights 

for components of this work owned by others than ACM must be 

honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior 

specific permission and/or a fee. Request permissions from 

Permissions@acm.org. 
ICACS '17, August 10–13, 2017, Jeju Island, Republic of Korea 

© 2017 Association for Computing Machinery. 

ACM ISBN 978-1-4503-5284-0/17/08…$15.00 
https://doi.org/10.1145/3127942.3127951 

63



 

Figure 1. Best-effort vs. JIT scheduling. 

Figure 1 shows a comparison between the standard execution of 

an application and our relaxed, deadline-aware execution. The 

standard application execution is based on the idea of running the 

code as fast as possible (best-effort, be) using one thread per 

available processing element. This way, the results are available 

sooner; however, power consumption is maximized and all the 

processing elements are stressed. Conversely, our just-in-time 

execution approach is based on the idea that, since applications 

are able to dynamically send feedbacks to the resource manager, 

resource allocation can be made more elastic: it is adjusted over 

time, so that the runtime-variable performance demand of 

applications is always complied with, but the execution time of 

application is always the maximum allowed one (i.e., applications 

terminate just before their deadline). The resource manager 

exploits the now-unused resources as a resource pool that can be 

used in multiple flavors, e.g., to provide cool cores when the next 

resource allocation will be computed. 

The HARPA-OS runtime library, which is linked my managed 

applications, transparently monitors the applications execution 

statistics. Among those, one of the most important ones is the 

average throughput. It is worth noticing that each time HARPA-

OS changes the resource allocation of an application, the runtime 

library re-sets the throughput statistics; hence, the average 

throughput computed by the runtime library always refers to the 

current resource allocation. If follows, then, that the average 

throughput is a very accurate predictor of how the application will 

behave (i.e., whether the application will terminate or not before 

the deadline) if the resource allocation remains constant until the 

application termination. 

In order to provide the scheduling policy with a feedback about 

the current resource allocation, applications use the HARPA-OS 

run-time library API to retrieve their current execution time and 

their average throughput. Basing on that values, the applications 

are able to compare their current throughput, i.e. the average 

throughput under the current resource allocation, and the ideal 

throughput, i.e. the throughput that is needed by the application to 

terminate just before the deadline. This information is periodically 

sent back to the HARPA-OS as a performance gap: 

 throughputcurrent −throughputideal (1) 

gapperf ormance =  

throughputideal 

 

Performance gaps greater than 1 mean that the application is 

executing too fast, which in turn means that the HARPA-OS may 

seize some of the allocated processing elements and insert them in 

the pool of empty resources. On the contrary, performance gaps 

lower than 1 mean that the application needs more resources. In 

this case, the HARPA-OS takes some of the healthier and cooler 

processing elements from the unused resources pool and adds 

them to the set of resources that can be exploited by the 

application. Finally, performance gaps equal to 1 mean that the 

application is likely going to terminate just in time. Even in this 

case, however, the HARPA-OS may decide to change resource 

allocation, usually to swap the currently allocated set of 

processing elements with a healthier and cooler one. 

4. THE WEATHER FORECASTING 

MODEL 
The application used in this paper is a modular part of the 

Floreon
+ 

project [13]. The primary objective of the project is to 

create a platform to support monitoring, modeling, prediction and 

decision for disaster management. The modularity of the Floreon
+ 

platform allows a simple integration of different thematic areas, 

regions, and data. The central thematic area of the project is 

hydrological modeling and prediction. 

We have integrated the most computationally demanding module 

of the Floreon
+ 

platform with HARPA-OS to examine how the 

HARPA-OS will influence its execution. The selected module 

models the inaccuracies that affect the Rainfall-runoff (RR) model 

[14]. It takes as input the precipitation forecast computed by 

numerical weather prediction models and projects the inaccuracies 

onto the output of the model by constructing confidence intervals, 

which are computed using the Monte-Carlo (MC) method. 

The confidence intervals accuracy can be positively affected by 

increasing the number of MC simulations (also referred to as 

samples) and can be determined by estimating the Nash-Sutcliffe 

model efficiency coefficient [15] between the original simulation 

output and one of the percentiles selected from the Monte-Carlo 

results. The percentile simulations describe a possible 

development of the situation taking possible inaccuracies (along 

with their probability) into account. For example, the 80% 

percentile specifies that there is an 80% probability that the real 

river discharge will be lower or equal to the simulated one. These 

results can then be propagated further into the flood prediction 

process, e.g., used as input for hydrodynamic modeling. 

4.1 Application Scenarios 
Based on the weather, Floreon+ can be subject to different service 

level requirements. Indeed, the requirements can be translated to 

the parameters of the uncertainty modeling: a shorter response 

time in critical situations can, for example, be acquired by 

decreasing the number of MC samples – which, however, means 

reducing the precision of the results – or by allocating more 

computational resources to the application. Depending on the 

flood emergency situation, we identified three application 

scenarios that have different requirements. According to their 

criticality level, we tagged the scenarios as standard, medium, and 

critical. 
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Figure 2. Schema of the blade. Since the fan is on the right of 

the blade, there is an air cooling gradient between socket 1 

and socket 0. 

Standard Operation. In this scenario, there is no precipitation, and 

the flood activity degree is below the critical threshold. In this 

case, the estimated accuracy can be reduced. 

Intermediate Operation. Due to a limited presence of 

precipitations, the forecast of discharge exceeds a warning 

threshold. In this case, in order to decrease the uncertainty of the 

model, the number of MC samples that must be performed by the 

simulation increases. 

Critical Operation. Several days of continuous rain raise the water 

in rivers or reservoirs. In this situation, more accurate and 

frequent computations are needed, and results should be provided 

as soon as possible even if all the computational resources have to 

be allocated. 

5. EXPERIMENTS 
In this section, we run the uncertainty module on 16 nodes of an 

HPC cluster. The module uses a hybrid OpenMP and MPI 

approach [16, 21, 22] to distribute the computations to multiple 

nodes. Given that the performance requirements of the application 

are time-variable (e.g., low when sunny, intermediate/critical 

when rainy), the HPC center may allocate to the application only 

some computing nodes and use the remaining ones to execute 

other applications. Therefore, we performed our experiments in 

three different configurations: in the first one, we used only one 

node (i.e., standard operation); in the second, we used two nodes 

(i.e., intermediate operation); in the third, we used all the cluster 

(i.e., critical operation). 

5.1 Hardware Infrastructure 
In our experiments, we use 16 HPC nodes that are connected 

through InfiniBand. The nodes are part of the chassis described in 

[17]. Each node is a powerful x86-64 computer equipped with 16 

cores (two eight-core Intel Sandy Bridge processors), with 64GB 

RAM and a local hard drive. The blades in the cluster are the 

DL510; Figure 2 shows a simplified representation of their air 

cooling system. Given that the fan is not equally distant from the 

two sockets, one socket is better cooled than the other one. When 

the system is idle, the temperature difference between the two 

sockets is approximately 10 Celsius degrees. The system has 

several monitors tools installed like power meters, ganglia [18] and 

likwid [19].  

 

Figure 3. 4 main catchments (left) and outlet hydrographs 

(right) (black line shows a measured discharge, orange line 

shows a simulated discharge, X-Axis: time in hours t(h), 

YAxis: Discharge, cubic meters per hour, Q(m3/h)). 

5.2 Catchments Simulation 
The experiment monitors the run-time behavior of 4 concurrent 

instances of the uncertainty module. Each of these instances 

models the RR uncertainty for a different catchment of the 

Moravian Silesian region: the Opava, Odra, Ostravice and Olza 

catchments (see Fig. 3). The catchments are ordered according to 

the impact in case of flooding (the lower the index, the higher is 

the importance): 

• C1: Ostravice - Functional urban areas with high 

population density and industrial areas in floodplain zones. 

• C2: Olza - Flood sensitive zones in urban areas. 

• C3: Odra - Mountains in the upper part of the catchment 

can cause significant runoff. Less exposed urban areas. 

• C4: Opava - Soils with low infiltration capacity. 

Each catchment is simulated independently, and individual 

instances do not interact with each other. 

6. RESULTS 
Table 1 presents the set of experiments performed in the cluster. 

The experiments tagged α refer to the single node scenario, while 

those tagged with β and γ respectively refer to the dual node and 

entire cluster scenarios. 

One node configurations. Figures 4.a.1, 4.b.1, 4.c.1 and 4.d.1 

show the number of cores allocated during the 10 minutes 

execution for each catchment, while Figures 4.a.2, 4.b.2, 4.c.2 and 

4.d.2 show the monitored performance gap (дp equations 1) (as 

already mentioned, the closer to 100% is the gap, the better is the 

performance). 

Table 1. For each experiment, number of Monte Carlo 

samples to be performed by the instance that models each 

catchment 

Thousand of MC samples to perform 

 Experiment C1 C2 C3 C4 

α1 1.5 1.5 1.5 1.5 

α2 1.5 3.5 5.0 7.0 

α3 7.0 7.0 7.0 7.0 

β1 3.5 3.5 3.5 3.5 

β2 7.0 7.0 7.0 7.0 

β3 3.5 7.0 12.0 15.0 

 γ 80.0 between all catchments 
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As shown by the experimental results, the number of allocated 

resources gets higher as the number of samples of MC to be 

performed increases. The allocation of resources is satisfactory for 

α1 and α2 scenarios, but not for α3. In Figure 4.a.2, we can observe 

that the performance gap is below 100%, meaning that the 

resources required for this experiment are not enough. In this 

situation, a second node should be allocated. 

Two nodes. Similarly, Figure 5 shows the results for the dual-node 

configurations. In this case, β2 has an equal number of samples to 

operate than α3, and, since in this case we have two computing 

nodes at our disposal, the computation is performed without issues. 

However, in this case, the resources are again not enough for all 

the scenarios: Figure 5.b.2 shows that the performance gap of β3 is 

below 100%. 

 

Figure 4. Standard Operation: Light or not precipitation, low 

water level, (α experiments). 

Multi-node results. In the last experiment of this set, we executed 

the γ scenario on 16 nodes with a requirement 80K MC samples. 

This time, all the instances terminated just-in-time, i.e., exactly at 

the deadline. Using the likwid power monitor, we monitored the 

power consumption in both the jit and the be configurations. 

Whereas just-in-time execution leads to a consumption of 

maximum 100W, the best-effort execution leads to a peak of 

160W per node. Therefore, we saved around 44% in maximum 

power consumption, while nonetheless complying with the 

deadline. 

 

Figure 5. Intermediate Operation: Intermediate execution, 

medium precipitation or water level warning threshold 

exceeded (β experiments). 

6.1 Reliability 
Figures 6 and 7 present the heat-map of a single node when 

running an uncertainty module instance (12K RR MC samples) 

using a justin-time and a best effort configuration, respectively. 

We obtained the heat-maps by using the ganglia monitoring tool. 

In both figures, the X axis presents time and the Y axis represents 

the cores IDs. The Diff per Core (see left part of the figures) is the 

difference in temperature per each core ci (0<i<16). The Diff per 

Timestep (lower part of the figures) is the difference in 

temperature among all cores given a timestep. The Median (upper 

part) provides the median temperature per timestep. As can be 

seen in Figure 6 (best effort execution with cpufreq performance 

governor), there is a hotspot in socket 0, which, as already shown 

in Figure 2, is the socket that is further from the fan. Conversely, 

Figure 7 shows the execution with HARPA-OS-PerDeTemp. In 

this case, there are not hotspots and, thanks to the temperature-

aware tasks migration performed by PerDeTemp, the temperature 

is perfectly distributed throughout all the available processing 

elements. 

The presence of hotspots is known to have negative effects on the 

Mean Time Between Failures of the system (MTBF), and the 

aging acceleration factor depends on the difference (∆) of 

temperature. According to the MTBF estimation presented in [20], 

running the application in a HARPA-OS-PerDeTemp 

configuration improves the reliability of the system from 17% to 

43% in case of bad cooling (socket 0). With a better cooling 

(socket 1), the MTBF for the besteffort relatively grows, but it is 

still 11% to 30% better if we manage the system with PerDeTemp 

(jit) instead of using the best-effort (be) policy. 

7. CONCLUSIONS 
In this paper, we presented a framework that, based on the 

runtimevariable computational resources demand of applications, 

strives to minimize the resource usage of applications while 

making them comply with their deadlines. We call this practice 

just-in-time execution, since the applications termination is always 

as near as possible to the deadline. The framework is able to use 

the pool of unused resources in multiple fashions, e.g., to swap 

allocated faulty processing elements with healthier ones, or to 

periodically assign to applications cool processing elements, 

hence evenly leveling the generated heat throughput the chip even 

in case of asymmetrical cooling. 

 

Figure 6. Shows the heat map in the case of best-effort 

performance GNU/Linux governor (12K in total). 
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Figure 7. Shows the heat map in case of HARPA Perdetemp 

runtime with GNU/Linux performance governor (12K in 

total). 
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