
Role of the Matrix Layers in the Stress-Transfer Mechanism of
FRCM Composites Bonded to a Concrete Substrate

C. Carloni1; T. D’Antino2; L. H. Sneed3; and C. Pellegrino4

in place of the thermosetting organic matrix (usually epoxy) employed 
for FRP strengthening overcomes some important issues such as the 
degradation attributable to ultraviolet (UV) and high-temperature 
exposure and the lack of permeability relative to the concrete substrate.

The literature regarding FRCM composites is still very limited, 
and a comprehensive study of the stress-transfer mechanism in 
FRCM-concrete joints is not available. The limited number of studies 
published report that FRCM-concrete joints fail because of 
debonding of the fibers within the embedding matrix (Carloni et al. 
2013; D’Ambrisi et al. 2012, 2013a). The debonding process is 
complicated by the so-called telescopic behavior, a mechanism that 
leads to a differential slip of the fiber filaments within the fiber bundle 
principally because of the different matrix impregnation of the outer 
filaments with respect to the core filaments (Banholzer 2004).

The study of the stress-transfer mechanism between the com-
posite and the concrete substrate is of fundamental importance to 
determine the load-carrying capacity of FRCM-concrete joints. The 
stress-transfer mechanism between the fibers and the surrounding 
matrix has been recently studied using a fracture mechanics ap-
proach assuming that the shear stresses transferred from the em-
bedded fibers to the two matrix-fiber interfaces are equal 
(D’Ambrisi et al. 2012; D’Antino et al. 2014). This paper examines 
this as-sumption and the role of each matrix layer in the stress 
transfer.

Approach Used in this Paper

The single-lap direct-shear test setup was employed in this work to 
study the interfacial stress transfer of FRCM composites. One layer 
of fibers was embedded between two layers of matrix. The internal 
layer bonded the FRCM composite to the concrete substrate, and 
the external layer covered the fibers. The overarching goal of this 
work was to study the role of the internal and external matrix layers 
in the stress-transfer mechanism. The paper is organized as follows.
1. After a brief description of the experimental results, the

characteristics of the idealized load response of the direct-
shear tests are highlighted.

2. The macroscale fracture mechanics approach used for the FRP-
concrete interface is extended to the matrix-fiber interfaces of

Introduction

In the last few decades, fiber-reinforced polymers (FRPs) compo-
sites have been widely used to strengthen RC structures. Externally 
bonded FRPs have been shown to be an effective strengthening tech-
nique for RC structures (Pellegrino and Modena 2009; Salomoni 
et al. 2011; Carrara et al. 2011; Carloni and Subramaniam 2012; 
Grace et al. 2012; Carrara and Ferretti 2013). Promising newly 
developed composite materials are represented by the so-called 
fiber-reinforced cementitious matrix (FRCM) composites. They are 
comprised of high-strength fibers, usually carbon, glass, or 
polyparaphenylene benzobisoxazole (PBO), embedded within an 
inorganic cementitious matrix. In FRCM composites, the fibers are 
usually bundled, and their pattern can be varied from unidirectional 
to bidirectional textile weaves or fabrics in an attempt to improve 
the bond characteristics. Studies in the literature (Täljsten and 
Blanksvärd 2007; Toutanji and Deng 2007; Hartig et al. 2008; 
D’Ambrisi and Focacci 2011; Ombres 2012; Pellegrino and 
D’Antino 2013; D’Ambrisi et al. 2013b) show that FRCM com-
posites potentially represent a valid alternative to FRPs for strength-
ening and rehabilitating RC structures. The use of an inorganic matrix
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FRCM composites under the hypotheses that the concrete
substrate and the matrix layers are rigid.

3. The fracture energy of the matrix-fiber interface is computed
from the strain measurements using the aforementioned frac-
ture mechanics approach. The additional hypothesis that the
internal matrix layer–fiber and external matrix layer–fiber
interfaces have the same behavior is considered.

4. The nonuniform distribution of the applied load among the
fiber bundles is discussed.

5. The role of the transversal bundles of the fiber net is discussed
to understand whether the force transferred between the fiber
filaments and the two layers of matrix is related to the position
of the transversal bundles.

6. A comparison between specimens with and without the ex-
ternal layer of matrix is carried out in terms of the debonding
load.

7. Finally, three models of the cohesive material laws for the
internal matrix layer–fiber and external matrix layer–fiber
interfaces are proposed, and the hypothesis that the internal
matrix layer–fiber and external matrix layer–fiber interfaces
have the same behavior is removed.

Experimental Tests

The bond behavior of FRCM-concrete joints was studied by the 
authors through an extensive experimental campaign. The push-pull 
single-lap (direct) shear test setup (Carloni and Subramaniam 2012) 
was employed in this work (Fig. 1).

The composite was applied on the face of a concrete prism 
whose surface was sandblasted before the application. Two 
different con-crete prisms were used, both with a 125 3 125-mm 
cross section but different lengths (L 5 375 or 510 mm). The 
composite material was comprised of one layer of bidirectional 
PBO fiber net embedded in two 4-mm-thick layers of a polymer-
modified cementitious matrix. The nominal width bp and average 
thickness tp of one longitudinal fiber bundle were 5 and 0.092 mm, 
respectively. It should be noted that tp defined in this paper is 
different from the equivalent thickness of the fabric given by the 
manufacturer. The equivalent thickness provided by the 
manufacturer is obtained by assuming that the fibers

are spread evenly over the entire width of the composite rather than 
bundled. In this paper, tp represents the thickness of the fiber bundle, 
which is assumed to have a rectangular cross section of width bp. 
The matrix was applied only on the region of the concrete surface 
that corresponded to the bonded area to bond the composite to the 
concrete substrate and embed the fibers (Fig. 1). The me-chanical 
characteristics of the concrete, matrix, and fiber employed are 
reported in D’Antino et al. (2013, 2014) and are provided in Fig. 
1(c).

The transversal fiber bundles, which are all located on one side 
of the longitudinal fiber bundles, were placed against the matrix in-
ternal layer for some specimens and against the matrix external 
layer for others. For some specimens, the external layer of matrix 
was applied over the PBO fiber net, whereas the fibers were left un-
covered for others (Fig. 1(c). The bonded width (b1) and length 
(ℓ) of  the composite were varied. Two LVDTs were mounted on 
the concrete surface close to the lateral edges of the composite at the 
beginning of the bonded area. The LVDTs reacted off of a thin 
aluminum V-shaped bent plate that was attached to the PBO 
transversal fiber bundle surface adjacent to the beginning of the 
bonded area as shown in Fig. 1. The average of the two LVDT 
measurements is defined as the global slip g. All direct-shear tests 
were conducted in displacement control by increasing the global 
slip g at a rate equal to 0:00084 mm=s (D’Antino et al. 2014).

In previous works, the authors defined the stress as (D’Antino et 
al. 2014)

s ¼ P
nbptp

(1)

where P 5 applied load [Fig. 1(a)]; and n 5 number of longitudinal 
fiber bundles. The value of the peak stress sp 5 Pp=ðnbptpÞ is 
obtained from Eq. (1) when the applied load is equal to the peak 
applied load Pp.

Although a width effect within the single bundle of fibers was 
observed in the literature (Banholzer 2004; Hartig et al. 2008), the sp-
b1 plot showed that a width effect related to the entire composite 
width does not exist (D’Antino et al. 2014), which is not the case for 
FRP-concrete joints (Subramaniam et al. 2011). It should be noted 
that the absence of a global width effect for bonded widths smaller

Fig. 1. (a and b) Single-lap direct-shear test setup (dimensions in millimeters); (c) specimen DS_330_60_L_D_1 (image by T. D’Antino) andmaterial
characteristics



than 34 mm cannot be confirmed by the experiments previously 
conducted by the authors.

Note on the Notation Adopted in this Paper

For specimens with two layers of matrix, the quantities (such as the 
fracture energy and the interfacial shear stress) that require a dis-
tinction between the internal matrix layer–fiber and external matrix 
layer–fiber interfaces are indicated with superscripts i and e, re-
spectively. The interface characteristics between the internal layer 
of matrix and the fibers may vary whether the external layer is 
present or not. Therefore, the interfacial parameters that refer to the 
internal matrix layer are indicated with a subscript L for specimens 
without the external matrix layer, rather than with the superscript i 
used for the internal matrix layer when both layers are present. A 
subscript L is also used for the applied load P when referring to 
specimens without the external matrix layer. The global slip g was 
increased at the same constant rate independently of the type of 
specimen; therefore, it is always indicated without the subscript L.

Idealized Applied Load–Global Slip Response

The specimens herein presented failed because of debonding of the 
fiber net from the embedding matrix. The debonding was charac-
terized by increasing slip at the matrix-fiber interfaces and by the 
presence of friction for the portion of the bonded area where the 
fibers were debonded. In this context, the term friction is used to 
describe the interlocking phenomenon between the fibers or be-
tween the fibers and the matrix. In this paper, the term friction and 
interlocking will be considered as interchangeable, although inter-
locking might be preferable to avoid confusion with dry friction.

The evidence obtained through the single-lap tests, together with 
the results available in the literature (Banholzer 2004; Hartig et al. 
2008), allowed the authors to propose an idealized applied load–
global slip curve (D’Antino et al. 2014), which is reported in Fig. 2. 
The idealized P-g curve is representative of specimens with and 
without the external layer of matrix. For the sake of brevity, the curve 
shown in Fig. 2 refers to specimens with the external matrix layer.

After a first linear branch (OA), the idealized P-g curve becomes 
nonlinear as a result of the interface microdamage, until the onset of 
debonding (Point B). The applied load at Point B is also referred to 
as the debonding load, Pdeb (or Pdeb,L), or the load-carrying capacity 
of the matrix-fiber interface. The debonding load Pdeb (or Pdeb,L) can 
be achieved only when the composite bonded length, ℓ, is equal to 
or longer than the effective bond length, leff , which is the minimum

length needed to fully establish the stress-transfer mechanism 
(D’Antino et al. 2014).

At the onset of debonding (Point B), the portion of the bonded 
area engaged in the stress transfer corresponds to the part of the 
bonded region close to the loaded end, and its length is equal to the 
effective bonded length leff (if ℓ $ leff ). After Point B, when ℓ . 
leff , as the interfacial crack propagates, the region engaged in the 
stress transfer (attributable to bond only) maintains its length equal 
to leff as it translates along the bonded length toward the free end. 
The region that has already debonded behind the stress-transfer 
zone is subject to friction (interlocking) between single fiber 
filaments and between fibers and matrix (Banholzer 2004; Hartig et 
al. 2008), which calls for an increase of the applied load. The 
applied load increases until it reaches the peak applied load (Pp or 
Pp
L) at Point C. At Point C (g 5 gp), the residual bonded length has 

reached the free end, and its length is still equal to leff . After Point 
C, the residual bonded length is less than leff , and the applied load 
decreases until the bond mech-anism is no longer present. As a 
result, the load-transfer capacity of the matrix-fiber interface is 
provided only by friction (Point D, g 5 gf ). After Point D, the load 
response becomes constant, and the applied load value is only 
associated with friction (Pf or Pf ,L). A schematic representation of 
the translation of the stress-transfer zone can be found in D’Antino 
et al. (2014). It should be noted that, in the tests conducted by the 
authors, the fibers extended beyond the bonded area at the free end 
(Sneed et al. 2014). After Point C, slippage of the fibers at the free 
end was observed. No measurement of the free end slip was 
considered in this study.

Seventy-nine direct-shear tests with different bonded lengths, 
bonded widths, and number of matrix layers are presented in this 
work. Table 1 reports the name and the corresponding peak load 
(Pp or Pp

L) for all specimens presented. The nomenclature of the 
specimens tested is explained in Note 1 of Table 1. Note 2 of Table 
1 refers to the analysis of the load redistribution among the fiber 
bundles, which is presented later in this paper.

Fracture Mechanics Approach

The fracture mechanics approach used for FRP-concrete joints 
(Carloni and Subramaniam 2012) was extended to the case of 
FRCM-concrete joints by the authors in a previous publication 
(D’Antino et al. 2014). In this section, a general approach with 
different responses of the two matrix-fiber interfaces is presented. A 
Mode II failure at the matrix-fiber interface is assumed. As a first 
attempt to study the stress-transfer mechanism between the matrix 
and the fibers, the deformation of the matrix layers and the concrete 
substrate is neglected. The assumption of a rigid matrix will be 
discussed further in a future publication. Digital image correla-tion 
(DIC) was used to measure the displacement field on the surface of 
selected specimens to investigate the deformation of the external 
matrix layer. The results, not included in this work for the sake of 
brevity, indicate that the deformation of the external layer of matrix 
is relatively small. In addition, a three-dimensional numerical 
model of the composite perfectly bonded to the concrete surface 
was de-veloped in D’Antino (2014). The results showed that the 
assumption of a rigid matrix is acceptable to study the stress 
transfer. The free-body diagram of a segment of one fiber bundle is 
illustrated in Fig. 3. The reference system is shown in Fig. 1(a). 
Specifically, y 5 0 and y 5 ℓ correspond to the free and loaded ends of 
the composite strip, respectively. The slip between the PBO fiber and 
the matrix interfaces is denoted by s, whereas the axial stress in the 
fibers and the shear stress at the interfaces are denoted by syy and tjzy, 
re-spectively. The superscript j is equal to i or e to indicate the internal 
or external matrix layer, respectively. As the deformation of the

Fig. 2. Idealized load P versus global slip g response



matrix is neglected, the slip s between the fibers and the two layers
of matrix is the same. Hence, no superscript j is applied to s.

Given the fiber segment represented in Fig. 3, the work done by
the external forces can be written as

Wext ¼
ðsðyÞ

0

PðyÞds2 bp
ðy

0

0
B@

ðsðyÞ

sð0Þ

P
j5i,e

t j
zyds

1
CAdy (2)

The slips is expressed in terms of the axial strain (ɛyy) in the
fibers

s ¼
ðy

0

ɛyydyþ sð0Þ (3)

Table 1. Direct-Shear Test Specimens

Specimen Pp or Pp
L (kN) √ or 3

DS_330_43_L_1 4.96 √
DS_330_43_L_2 4.63 √
DS_330_43_L_3 4.61 √
DS_330_43_L_4 3.98 √
DS_330_43_L_5 3.96 √
DS_330_43_L_6 3.82 √
DS_330_43_L_7T 2.67 3
DS_330_43_L_8T 3.67 √
DS_330_43_L_9T 3.09 3
DS_330_43_L_10 4.45 3
DS_330_43_L_11 4.72 √
DS_330_43_L_S_1T 3.24 √
DS_330_43_L_S_2 4.69 √
DS_330_60_L_1 5.80 √
DS_330_60_L_2 5.49 √
DS_330_60_L_3 6.60 √
DS_330_60_L_4 5.46 √
DS_330_60_L_5 5.26 √
DS_330_60_L_D_1 5.19 √
DS_330_60_L_D_2 6.13 √
DS_330_60_L_D_3 5.47 √
DS_330_60_L_D_4 4.90 √
DS_330_60_L_S_1 5.97 √
DS_450_60_L_1 6.90 √
DS_450_60_L_2 5.96 √
DS_450_60_L_3 6.43 3
DS_450_60_L_4 6.23 3
DS_450_60_L_5 6.91 √
DS_330_43_1T 4.43 3
DS_330_43_2T 5.25 √
DS_330_43_3 5.27 √
DS_330_43_5 4.79 3
DS_330_43_6 5.09 √
DS_330_43_S_1T 4.48 3
DS_330_43_S_2T 5.12 √
DS_330_43_S_3T 3.03 √
DS_330_43_S_5 4.03 3
DS_330_60_1T 7.05 √
DS_330_60_2T 6.56 √
DS_330_60_3T 6.06 √
DS_330_60_4T 6.50 √
DS_330_60_5T 6.28 √
DS_330_60_6 7.01 3
DS_330_60_D_1 8.29 √
DS_330_60_D_2 7.12 √
DS_330_60_D_3 6.56 √
DS_330_60_D_4 5.24 √
DS_330_60_D_5 6.69 √
DS_330_60_S_1 6.30 3
DS_330_60_S_2 7.31 √
DS_330_60_S_3 6.55 √
DS_330_60_T_1 6.62 √
DS_330_60_T_2 6.27 √
DS_330_60_T_3 6.59 √
DS_330_80_1 8.47 √
DS_330_80_2 8.84 3
DS_330_80_3 8.28 √
DS_330_80_D_1 8.90 √
DS_330_80_D_2 8.68 √
DS_330_80_D_3 8.90 3

Table 1. (Continued.)

Specimen Pp or Pp
L (kN) √ or 3

DS_330_80_D_4 8.42 √
DS_330_80_D_5 8.58 √
DS_450_60_1 6.40 √
DS_450_60_2 6.34 √
DS_450_60_3 6.44 3
DS_450_60_4 5.77 √
DS_450_60_5 6.51 √
DS_450_60_6 6.79 √
DS_450_60_7 6.65 √
DS_450_60_D_1 7.01 √
DS_450_60_D_2 6.67 √
DS_450_60_D_3 7.33 √
DS_450_60_S_1 6.63 √
DS_450_60_S_2 6.86 √
DS_450_80_1 8.62 √
DS_450_80_2 9.07 √
DS_450_80_3 9.32 3
DS_450_80_4 8.86 3
DS_450_80_5 10.04 3

Note: DS_X_Y_ðL, S, T, and=or DÞ_ZðTÞ, where X 5 bonded length (ℓ) in
millimeters, Y 5 bonded width (b1) in millimeters, L 5 absence of the
external layer of matrix, S 5 presence of strain gauges mounted on the
fiber net, T 5 transversal bundles removed before applying the matrix,
D 5 specimen tested until a constant load at the end of the test was
measured, Z 5 specimen number, and superscript T5 fiber net oriented
with the transversal fiber bundles directly against the matrix internal layer;

√5D# sf ;35D. sf ; Pp 5 peak load; and Pp
L 5 peak load of specimens

without the external layer of matrix.

Fig. 3. Free-body diagram of a segment of one fiber bundle



If the behavior of the fibers is assumed linear elastic and E is the
elastic modulus of the fibers, then the external work can be rewritten
using Eq. (3) as

Wext ¼ bptp

E

ðy

0

s2
yydy2 bp

ðy

0

0
B@

ðsðyÞ

sð0Þ

P
j5i,e

t j
zyds

1
CAdy (4)

IfC5 bptpy is the volume of the PBO fiber segment, then the work
done by the internal forces is

Wint ¼
ð

C

2
4 ðɛyy

0

syy
�
ɛyy

�
dɛyy

3
5dC ¼ bptp

2E

ðy

0

s2
yydy (5)

Equating the internal and external works yields

bptp

E

ðy

0

s2
yydy2 bp

ðy

0

0
B@

ðsðyÞ

sð0Þ

P
j5i,e

t j
zyds

1
CAdy ¼ bptp

2E

ðy

0

s2
yydy (6)

Because Eq. (6) must be satisfied for each y along the bonded length

bptp

2E
s2
yy 2 bp

ðsðyÞ

sð0Þ

P
j5i,e

tjzy ds ¼ 0 (7)

Gi
F ¼

ð

Assuming that there is no slip at the free end, i.e., sð0Þ 5 0, if y 5 leff , 
then the second term of Eq. (7) is integrated between 0 and 
sðleff Þ 5 sf

sf

0

tizyds (8)

Ge
F ¼

ðsf

0

tezyds (9)

Eqs. (8) and (9) represent the fracture energies needed to create and
fully break a unit crack of the internal matrix layer–fiber and external
matrix layer–fiber interfaces, respectively. The term fully break
refers to the bond mechanism without including friction as dis-
cussed in D’Antino et al. (2014).

Fig. 4(a) shows the idealized cohesive material law tjzy-s valid for
both the internal matrix layer fiber– and external matrix layer–fiber
interfaces and put forward by the authors (D’Antino et al. 2014). The
idealized cohesive material law depicted in Fig. 4(a) is also rep-
resentative of the matrix-fiber interface of specimens without the
external matrix layer (tzy,L-s), the parameters of which are indicated
within parentheses in Fig. 4. In this paper, it is assumed that s5 sL,
which implies that the slip is not affected by the absence of the
external matrix layer. Debonding occurs when the slip reaches the
value sf . When s. sf , friction (interlocking) between single fiber
filaments and between matrix and fibers provides a constant value
of the shear stress equal to t j

f (tf ,L). Fig. 4(b) represents a simplified
t j
zy-s curve that will be used in the section “Proposed Bond-Slip
Relationships” to study the role of the two layers of matrix in the
stress transfer.

The relationship between the points of the idealized P-g curve
and the area under the tzy-s curve is shown in Fig. 2, under the
hypothesis that tizy 5 tezy 5 tzy. A simplified trilinear tzy-s curve
[Fig. 4(b)] is used in Fig. 2. Point A corresponds to the engagement
of the linear part of the bond behavior. At Point B, the load is related
to the fracture energy of the interface (attributable to the bond only),
and at the loaded end, the global slip is equal to the slip sf , which
implies that the interfacial crack has formed. Between Points B and
C, the interfacial crack propagates, and the debonded region behind
the crack is subject to friction, which calls for an increase of the load
related to the area of the bond-slip relation for sf # s# g. [Note that
g5 sðℓÞ.] After Point D, the entire strip of fibers has debonded, and
the slip of the fibers increases, which corresponds to a translation of
a constant area tfDs under the bond-slip relation for s. sf .

If y5 leff , then syy 5sdeb 5Pdeb=ðnbptpÞ. Eqs. (7)–(9) can be
used to derive the debonding load Pdeb, which is written in Eq. (10)
for n fiber bundles, because no width effect related to the entire
composite width was observed

Pdeb ¼ nbp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Etp

�
Gi
F þ Ge

F

�q
(10)

Eq. (10) represents the relationship between the debonding load and
the fracture energies Gi

F and Ge
F .

Under the same fracturemechanics approach, the debonding load
of n fiber bundles without the external matrix layer can be written as

Pdeb,L ¼ nbp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EtpGF,L

p
(11)

where GF,L 5 fracture energy of the internal matrix layer–fiber
interface when the external layer of matrix is not present. It is
important to observe that in general, GF,L �Gi

F; however, in the
sections “Results of the Fracture Mechanics Approach” and
“Proposed Bond-Slip Relationships” it will be assumed that
GF,L 5Gi

F in an attempt to determine the cohesivematerial laws for
the two interfaces from the experimental results.

Results of the Fracture Mechanics Approach

In this section, the fracture parameters of the matrix-fiber interface
are derived under the assumption that the twomatrix-fiber interfaces

Fig. 4. (a) Idealized shear stress–slip curve; (b) simplified shear stress–
slip curve



have the same role (tizy 5 tezy 5 tzy). The fracture parameters are
derived directly from the strain measurements along the fiber
bundles. This approach was previously used by the authors in
D’Antino et al. (2014). Strain gauges were applied directly on the
fiber bundles along the bonded length to capture the distribution of
the axial strain along the direction of the applied load. Twelve
specimens were instrumented with strain gauges applied to the
central fiber bundle. The position of the strain gauges can be found in
D’Antino et al. (2014).

The strain profiles corresponding to four points of the load re-
sponse located in a small region around the assumed position of
Point B (Fig. 2), which is the unique point along the load response
at which the bond mechanism is fully established and friction
(interlocking) is not yet present, were considered (D’Antino et al.
2014). The range of load that defines the small region around Point B
is named (P1, P2) or (P1,L, P2,L), whereas the corresponding range of
g is termed (g1, g2). The average values of the debonding loadPdeb or
Pdeb,L corresponding to the four points in the region (P1,P2) or (P1,L,
P2,L) are reported in Table 2, as well as the range (P1, P2) or (P1,L,
P2,L) and the range (g1, g2).

The strain profiles corresponding to the four points in the P-g
curve around Point B (Fig. 2) were approximated using a nonlinear
function that takes into account the bond mechanism and friction
(interlocking) mechanism after debonding as follows (D’Antino
et al. 2014):

ɛyy ¼ ɛ0 þ aþ ky
1þ e2ðy2y0Þ=b (12)

The values of ɛ0, a, b, and y0 were determined using nonlinear
regression analysis of the measured strains. The parameter k is
dependent onwhether the strain profile refers to specimenswith both
the internal and external matrix layers

k ¼ 2tf
Etp

(13a)

or to specimens with only the internal matrix layer

k ¼ tf ,L
Etp

(13b)

where tf ,L and tf 5 average shear stresses associated with friction
(interlocking) for specimens with one and two layers of matrix,
respectively. Specifically, tf and tf ,L are equal to 0.06 and 0.08 MPa,
respectively, and were evaluated experimentally according to
Eqs. (14a) and (14b), respectively

tf ¼ Pf

2nbpℓ
(14a)

tf ,L ¼ Pf ,L

nbpℓ
(14b)

wherenbpℓ5 nominal bonded area of onematrix-fiber interface; and
Pf and Pf ,L 5 average of the load values associated with friction
(interlocking) between fibers and matrix, which are obtained from
those specimens denoted with D [tested until the constant load
associated with friction (interlocking) was reached]. The average
value of leff , corresponding to the four points within the small region
around Point B for each specimen equipped with strain gauges, is
reported in Table 2. Specifically, leff can be determined from the
strain profile as outlined in D’Antino et al. (2014). Under the as-
sumption that leff is not influenced by the presence of the external
matrix layer, the average value for the 11 specimens presented was
computed as leff 5 260 mm (with coefficient of variation 0.084).
The value of leff for specimen DS 330 43 L S 1T, not reported
in Table 2, was not used to compute the average value leff , because
the presence of the transversal bundles directly against the internal
matrix layer influenced the results as will be explained in the section
“Effects of the Transversal Fiber Bundles.”

The experimental curve tzy-s, under the hypothesis that the two
layers are assumed to have the same role (tizy 5 tezy 5 tzy), was
constructed by using the strain profile obtained through the fitting
procedure of Eq. (12) and considering the equilibrium condition for
an infinitesimal segment of fibers (D’Antino et al. 2014)

tzy ¼ tizy ¼ tezy ¼
1
2
Etp

dɛyy
dy

(15)

The slip between the fibers and the two layers ofmatrixwas obtained
by integrating the strain ɛyy[Eq. (3) and sð0Þ5 0]. Hence, the co-
hesive material law for the interfaces was obtained, and the fracture
energy Gi

F 5Ge
F 5GF was calculated as the area under the curve

tzy-s for 0# s# sf . Similarly, for specimens without the external
matrix layer, the tzy,L-s curve was obtained directly from the strain
profiles of those specimens equipped with strain gauges and without
the external matrix layer. It should be noted that the shear stress tzy,L,
for those specimens without the external layer of matrix, was cal-
culated from Eq. (15) without considering the factor 1=2. Fig. 4(a)
shows the shape of the tzy-s and tzy,L-s curves associated with the
strain profile described in Eq. (12). Examples of experimental tzy-s
curves obtained from the strain profiles following the aforemen-
tioned procedure can be found in D’Antino et al. (2014).

Table 2. Results of the Fracture Mechanics Analysis (Gi
F 5Ge

F 5GF)

Specimen leff (mm) (g1, g2) (mm) (P1, P2) or (P1,L, P2,L) (kN) Pdeb or Pdeb,L (kN) Gfit
F or Gfit

F,L (J=m2)

DS_330_43_L_S_2 250 (1,2, 1.4) (4.13, 4.23) 4.18 880
DS_330_43_S_1T 300 (1.7, 2.3) (3.90, 4.11) 3.96 450
DS_330_43_S_2T 280 (1.5, 1.8) (3.98, 4.39) 4.17 680
DS_330_43_S_3T 280 (1.2, 1.5) (2.63, 2.72) 2.71 240
DS_330_43_S_5 230 (0.7, 1.0) (3.42, 3.64) 3.51 300
DS_330_60_S_1 260 (0.9, 1.2) (5.51, 5.91) 5.74 360
DS_330_60_S_2 225 (0.7, 0.9) (6.49, 6.75) 6.65 550
DS_330_60_S_3 240 (1.1, 1.4) (5.63, 5.90) 5.75 470
DS_330_60_L_S_1 250 (1.0, 1.4) (5.67, 5.91) 5.80 950
DS_450_60_S_1 255 (1.1, 1.3) (5.50, 5.91) 5.70 540
DS_450_60_S_2 255 (0.9, 1.1) (5.67, 5.91) 5.77 430



The experimental values of the fracture energy are termed Gfit
F

and Gfit
F,L to indicate that they were derived through the strain fitting

of Eq. (12), and their average values for the four points of the load
response are reported in Table 2 for each specimen equipped with
strain gauges. The theoretical debonding load for the specimens
reported in Table 2, obtained through Eq. (10) (Gi

F 5Ge
F 5GF) and

Eq. (11), is in good agreement with the corresponding experimental
debonding load (Table 2).

Distribution of Applied Load among Bundles

The different impregnation of the matrix along the fiber bundles
caused a different behavior and performance of the fiber bundles in
some specimens, which in turn resulted in a nonuniform distribution
of the applied load among the bundles. The nonuniform load dis-
tribution, evidenced by a rigid rotation of the V-shaped plate, had
a strong influence on the test results and especially on the peak loads
Pp and Pp

L (Sneed et al. 2014).
The load redistribution among bundles was studied by compar-

ing the displacements, ga and gb, measured by the two LVDTs used
to control the test. The points of theV-shaped plate off of which the
LVDTs tips reacted had a distance h from the edges of the composite
strip (Fig. 5). Simple geometrical relations were used to compute the
displacements corresponding to the edge of the composite strip,
termed gLa and gRb (Fig. 5). In Fig. 5, r defines the center of rotation
measured from the left edge of the composite strip, h is the distance
between the edge of the composite and the centerline of the adjacent
LVDT, and d is the distance between the centerlines of the LVDTs.

The P-ga, P-gb, PL-ga, and PL-gb curves obtained from the two
LVDTs were plotted to compare their behavior. In addition, the
difference between the displacements at the two edges of the
composite D5

��gLa 2 gRb
�� was computed for the entire range of g for

all specimens. To define a limit beyond which the nonuniform load
distribution compromised the results reliability, the tzy-s and tzy,L-s
curves obtained from the strain analysis described in the “Results
of the Fracture Mechanics Approach” section were employed. The
values of the slip corresponding to the peak shear stress, s0, and to the
complete debonding of the fibers, sf , were collected from the 11 tests
reported in Table 2. The average values are s0 5 0:18 mm and
sf 5 1:57 mm. The average values were obtained by considering
together all specimens with one or two layers of matrix. Only those
specimens for whichD# sf forP#Pp andPL #Pp

L were considered
reliable and used for the following analysis, whereas the others were
disregarded. This criterion was adopted to ensure that, at the peak
load (Pp or Pp

L), if the residual bonded length was equal to leff for the
bundle on one edge of the composite, then the bundle on the other
edge was still bonded for a length greater than leff . The criterion
adopted in this work is not unique, and further results are necessary
to evaluate if other criteria can be used. Specimens for which D# sf
for P#Pp and PL #Pp

L are marked with a check symbol (√) in

Table 1, whereas specimens for which D. sf for P#Pp and
PL #Pp

L are marked with a cross symbol (3). Sixty-two specimens
were considered reliable (78% of all specimens reported in Table 1),
whereas 17 specimens were disregarded (22% of all specimens
reported in Table 1). Only 10 specimens reported D# s0 for P#Pp

and PL #Pp
L.

Fig. 6 shows, as an example, the P-ga and P-gb curves for one
reliable specimen [DS_450_60_D_1, Fig. 6(a)] and one dis-
regarded specimen [DS_450_60_3, Fig. 6(b)]. The corresponding
P-g curves are plotted with a light-gray line for reference. When
D# sf , the P-ga and P-gb curves are plotted with a black line,
whereaswhenD. sf , the same curves are depictedwith a dark gray
line. A black dot marks the points for whichD5 sf . Fig. 6(a) shows
one of the specimens that were tested until complete debonding
of the fiber net from the matrix. It can be observed that, for
specimen DS_450_60_D_1 [Fig. 6(a)], the applied load reached
the constant value corresponding to Pf , as reported in the idealized
P-g curve (Fig. 2).

Effects of the Transversal Fiber Bundles

Twelve of the 79 specimens presented in thisworkwere cast with the
transversal fiber bundles directly against the internal matrix layer
(specimens denoted with a superscript T after the sequential number
in Table 1). Sixty-four of the 67 remaining specimens had the
longitudinal fiber bundles directly against the internal matrix layer,
whereas for three specimens, the transversal bundles were removed
prior to applying the matrix layers (specimens with a T before the

Fig. 5. Position of the LVDTs
Fig. 6. Applied load P versus LVDT measurements for (a) specimen
DS_450_60_D_1; (b) specimen DS_450_60_3



sequential number inTable 1).Aphotograph of thefiber longitudinal
bundles after the removal of the transversal bundles is shown in
Fig. 7(b).

The specimens with the external matrix layer and without the
transversal fiber bundles, DS_330_60_T_1, DS_330_60_T_2, and
DS_330_60_T_3, presented the same behavior as the specimens
with the external matrix layer and the transversal fiber bundles
placed directly against either the matrix external or internal layer.
Furthermore, for all three specimens without the transversal bun-
dles,D# sf forP#Pp (i.e., square root symbol in Table 1). The load
responses of these specimens are particularly important, because
they confirm that the matrix external layer provides a different
contribution with respect to the matrix internal layer even when the
bond between the longitudinal fiber bundles and the matrix is not
interrupted by the transversal fiber bundles. Fig. 7(a) reports the load
responses of the specimens without the transversal fiber bundles and
of specimen DS 330 60 2T for comparison. The P-ga and P-gb
curves of specimen DS_330_60_T_3 are reported in Fig. 7(b) with
the corresponding P-g plot for comparison.

Specimens that are considered as reliable (i.e., square root
symbol in Table 1) with two layers of matrix, bonded length
ℓ5 330 mm, and different widths were compared in terms of the
peak stress sp. An 8% difference was observed when comparing the
average of sp between specimens with the transversal bundles
placed against the internal matrix layer and specimens with the
transversal bundles placed against the external matrix layer. This

indicates that, when both layers of matrix are present, the peak stress
is not significantly influenced by the position of the transversal
bundles. Further, the results obtained considering only reliable
specimens with bonded length ℓ5 330 mm showed that, for
specimens with two layers of matrix, the presence of the transversal
bundles against either the internal or the external matrix layer
appears to have no influence if compared with the three specimens
without the transversal bundles (3%difference in terms of average of
the peak stress sp). When comparing the peak stress sp

L of reliable
specimens that have bonded length ℓ5 330 mm and that have the
transversal bundles placed against the internal matrix layer versus
those that have the longitudinal bundles placed against the internal
matrix layer, it can be noted that the position of the transversal fiber
bundles influences the peak stress sp

L (18% of difference). This
effect, observed by the authors in a previous publication without
distinguishing between reliable and not reliable specimens (Sneed
et al. 2014), is affected by the limited number of reliable specimens
without the external matrix layer and with the transversal bundles
placed against the internal matrix layer. It is interesting to notice that,
when the fiber bundles are placed against the internal layer and both
layers are present, the peak load is not significantly affected.

Role of the Internal and External Matrix Layers in the
Stress-Transfer Mechanics

The discussion of the experimental results relative to the reliable
specimens indicates that the two layers of matrix have a different
role. The debonding loads for all reliable specimens with two layers
of matrix (Pdeb) and without the external layer of matrix (Pdeb,L) can
be obtained by

Pdeb ¼ Pp 2 tf 2nb
p
�
ℓ2 leff

�
(16a)

Pdeb,L ¼ Pp
L 2 tf ,Lnb

p
�
ℓ2 leff

�
(16b)

Both values tf 5 0:06 MPa and tf ,L 5 0:08 MPa, introduced earlier
via Eqs. (14a) and (14b), were obtained by including all specimens
marked with square root and multiplication symbols and denoted
with a D (Table 1). In fact, when the fibers are completely debonded
from the matrix, the applied load was assumed to be evenly dis-
tributed across the compositewidth. The ratio of the debonding loads
can be introduced in terms of stresses

hdeb ¼ sdeb,L
�
sdeb (17)

where sdeb,L 5Pdeb,L=ðnbptpÞ and sdeb 5Pdeb=ðnbptpÞ.
If Eqs. (10) and (11) are employed and it is assumed that

Gi
F 5GF,L, which implies that the interfacial behavior between the

fibers and the internal matrix layer is not influenced by the presence
of the external matrix layer, then Eq. (18) provides the ratio between
fracture energies associated with the internal and external matrix–
fiber interfaces

Gi
F

Ge
F
¼ h2deb�

12 h2deb

� (18)

Given the results of the reliable specimens tested (i.e., square root in
Table 1), Eq. (18) provided a value of hdeb 5 0:93, which calls for
a ratio between the internal- and external-layer fracture energy equal
to Gi

F=G
e
F 5 6:40. It should be noted that Eq. (18) can be applied

only if the stress-transfer mechanism is fully established at the in-
ternal and external matrix–fiber interfaces simultaneously. Because

Fig. 7. (a) P-g curves of specimens without the transversal bundles
and DS_330_60_2T for comparison; (b) applied load P versus LVDT
measurements for specimen DS_330_60_T_3



the fracture energy is independent of the shape of the shear stress–
slip function, Eq. (18) does not provide information on the tjzy-s
curves.

Proposed Bond-Slip Relationships

The results of the fracture mechanics approach were presented
earlier considering the contributions of the internal and external
matrix layers as equal. Although the results in terms of the load-
carrying capacity are in good agreement with experimental values
(D’Antino et al. 2014), such an approach may not be able to provide
accurate results in the case of multilayer strengthening applications,
because it does not take into account the different contributions to
the load-carrying capacity of the external matrix layers with respect
to the internal matrix layer.

In an attempt to investigate the different roles of the external and
internal matrix layers, the authors introduced the ratio between the
internal and external fracture energies,Gi

F andG
e
F , through Eqs. (17)

and (18). The ratio was obtained under the assumption that
Gi

F 5GF,L. In this section, the same assumption is adopted to further
study the role of the internal and external matrix layers and identify
the fracture parameters needed to describe the tjzy-s curves. In this
section, it is also assumed that tizy 5 tzy,L and s5 sL, which implies
that the shape of the cohesive material law of the internal matrix
layer–fiber interface is not influenced by the presence of the external
matrix layer.

In this section, the hypothesis that tizy 5 tezy is removed to de-
scribe the different roles of the twomatrix layers with two different
cohesive material laws. Because the fracture energies Gj

F do not
depend on the shape of the corresponding tjzy-s curves, each of the
shear stress–slip curves can be simplified into a three-branch linear
relationship with the same corresponding fracture energy [Fig.
4(b)]. The subscript sim, which is adopted in Fig. 4(b) to indicate
values of the simplified shear stress–slip curve, is omitted in this
section.

The simplified tizy-s curve for the internal layer was derived from
the experimental tzy,L-s curves obtained from the strain measure-
ments of the specimens equipped with strain gauges and without
the external matrix layers. Only those (two) specimens without the
external layer and marked with a square root in Table 1 were

considered. Specimen DS 330 43 L S 1T was not considered,
because the transversal fiber bundleswere placed against the internal
matrix layer. To build the simplified tizy-s curve, the maximum shear
stress timax, the frictional shear stress t

i
f , and the slope of the linear

ascending part were kept the same for the experimental and sim-
plified curves. The maximum shear stress timax and the slope of the
linear ascending part of the simplified tizy-s curve were obtained
as the average values of the corresponding values of the ex-
perimental tzy,L-s curves of specimens DS_330_43_L_S_2 and
DS_330_60_L_S_1. Eq. (14b) was used to compute the average of
the shear stress tif (t

i
f 5 tf ,L) of specimens DS_330_43_L_S_2 and

DS_330_60_L_S_1. The corresponding slip sf for the simplified
curve was obtained by imposing that the fracture energy Gi

F was
equal for the curve associated with the strain profiles described in
Eq. (12) and the simplified curves (Fig. 4).

Eq. (18) was used to identify the simplified tezy-s curve for the
external matrix layer, provided that tef 5 2tf 2 tf ,L. Three different
theoretical models for the simplified tezy-s curve are proposed in this
section. Fig. 8 shows the three models and the necessary conditions
to determine the parameters of the external matrix layer–fiber
interface.

It should be noted that if the matrix layers are considered rigid
andModel C is applied, then the ratio provided byEq. (18) should be
adjusted, because the denominator would include not only the
fracture energy of the external matrix layer–fiber interface but also
a friction (interlocking) contribution, which corresponds to the area
under the tezy-s curve from sef to s

i
f [Fig. 8(c)]. The fracture parameters

of the simplified curves are listed in Table 3.

Conclusions

The experimental and analytical investigation of the PBO FRCM-
concrete interface was presented in this paper. The stress-transfer
mechanism between the PBO fibers and the cementitious matrix
was investigated through the application of a fracture mechanics
approach. Based on the experimental evidence and the discussion
presented, the following conclusions can be drawn.
1. The load response of specimens with both the internal and

external matrix layers is not affected by the orientation of the
transversal fiber bundles. However, for specimens without the

Fig. 8. Proposed shear stress versus slip curves according to (a) Model A; (b) Model B; (c) Model C

Table 3. Internal and External Shear Stress and Corresponding Slip for the Proposed Shear Stress–Slip Relationships

Model timax (MPa) si0 (mm) temax (MPa) se0 (mm) tif (MPa) sif (mm) tef (MPa) sef (mm)

A 1.68 0.08 0.24 0.01 0.08 1.04 0.04 1.04
B 1.68 0.08 0.24 0.08 0.08 1.04 0.04 1.04
C 1.68 0.08 1.68 0.08 0.08 1.04 0.04 0.17



external matrix layer, the presence of the transversal bundles
against the internal matrix layer influences the load response.

2. Under the assumption that the presence of the external matrix
layer does not influence the behavior of the internal matrix
layer, the role of the two layers of matrix can be expressed by
the ratio of the fracture energies associated with the internal
matrix layer–fiber and external matrix layer–fiber interfaces.

3. Simplified shear stress–slip relationships are proposed to de-
scribe the behavior of the internal and external matrix layers,
which can be used to investigate the stress-transfer mechanism
at the different matrix-fiber interfaces.
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