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Abstract. We develop further our strategy in [DFS] to show that flat or
Lipschitz free boundaries of two-phase problems with forcing terms are locally

C2,γ .

1. Introduction

Let f± ∈ C0,γ(B1), where B1 denotes the unit ball in R
n, n ≥ 2, centered at 0,

and consider the two-phase problem

(1.1)
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∆u = f+ in B+
1 (u),

∆u = f− in B−
1 (u),

u+ν = G(u−ν ) on F (u) := ∂B+
1 (u) ∩B1.

Here

B+
1 (u) := {x ∈ B1 : u(x) > 0}, B−

1 (u) := {x ∈ B1 : u(x) ≤ 0}◦,

while u+ν and u−ν denote the normal derivatives in the inward direction to B+
1 (u)

and B−
1 (u) respectively. The function G : [0,∞) → R

+ satisfies the usual ellipticity
assumption:

G is strictly increasing, G(0) > 0, and G(b) → ∞ as b→ ∞.(1.2)

For simplicity, we assume that G ∈ C2([0,∞)) and say G(0) = 1.
Typical examples of inhomogeneous two-phase problems are the Prandtl-Bachelor

model in fluid-dynamics (see e.g. [B1, EM]), or the eigenvalue problem in magneto-
hydrodynamics considered in [FL]. Other examples come from limits of singular
perturbation problems with forcing term as in [LW], where the authors analyze
solutions to (1.1), arising in the study of flame propagation with nonlocal effects.

Our main result gives C2,γ∗

regularity of flat free boundaries. Precisely, we
prove the following theorem, where we call universal any constant depending on
n, γ, L := Lip(u), ‖f±‖C0,γ(B1), and ‖G‖C2([0,L+1]).

Theorem 1.1. Let u be a (Lipschitz) viscosity solution to (1.1) in B1. There exists
a universal constant η̄ > 0 such that, if

(1.3) {xn ≤ −η} ⊂ B1 ∩ {u+(x) = 0} ⊂ {xn ≤ η}, for 0 ≤ η ≤ η̄,

then F (u) is C2,γ∗

in B1/2 for a small γ∗ universal, with the C2,γ∗

norm bounded
by a universal constant.
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In view of Theorem 1.3 in [DFS], if (1.3) holds then the free boundary F (u) is
locally C1,γ̄ . Note that the same conclusion holds if F (u) is a graph of a Lipschitz
function (see Theorem 1.4 in [DFS]). Therefore, throughout the paper we will
assume that F (u) is C1,γ̄ and hence u is a classical solution, i.e. the free boundary
condition is satisfied in a pointwise sense. To fix ideas, let us say that 0 < γ ≤ γ̄.

Our result extends without much effort to more general linear uniformly elliptic
equations with C0,γ coefficients and to more general free boundary jump condi-
tions u+ν = G(u−ν , ν, x), where G is C2 with respect to all its arguments. For those
operators, also considering the existence paper [DFS2], the theory of viscosity so-
lutions to inhomogeneous free boundary problems has reached a considerable level
of completeness. Perhaps, the only relevant open question remains the analysis of
singular (“nonflat”) points.

For fully nonlinear operators, we proved in [DFS3] that for a fairly general class
of problems (with right-hand side), Lipschitz viscosity solutions with Lipschitz or
flat (in the sense of (1.3)) free boundaries are indeed classical. The questions of
Lipschitz continuity of solutions and higher regularity of the free boundary remain
open problems.

In order to explain the significance of our main theorem, we describe here the
state of the art about the higher regularity theory for two-phase free boundary
problems. In the seminal paper [KNS], the authors use a zero order hodograph
transformation and a suitable reflection map, to locally reduce a two-phase problem
to an elliptic and coercive system of nonlinear equations (see Appendix B). The
existing literature on the regularity of solutions to nonlinear systems developed in
[ADN, M] can be applied as long as the solution u is C2,α (for some α > 0) up to
the free boundary (from either side). Hence, the following corollary of Theorem 1.1
holds.

Corollary 1.2. Let k be a nonnegative integer. Assume that f± ∈ Ck,γ (B1) and
G is C2+k. Then F (u) ∩ B1/2 is Ck+2,γ∗

. If f± are C∞ or real analytic in B1,
then F (u) ∩B1/2 is C∞ or real analytic, respectively.

As noted in the recent work [KL], in the case when the governing equation in
(1.1) is in divergence form the initial assumption to obtain the Corollary above is
that u ∈ C1,α. It is not evident that the general case of linear uniformly elliptic
equations with C0,γ coefficients can also be treated in a similar manner. On the
other hand, the case when the leading operator is say a convex (or concave) fully
nonlinear operator definitely requires the solution to have Hölder second derivatives
(from both sides).

Our purpose is to develop a general strategy that would apply to a larger class
of problems, possibly to include also the case of fully nonlinear operators.

Other related higher regularity results can be found in [E, K].
The overall strategy for the proof of Theorem 1.1 is based, as in Theorem 1.3

of [DFS], on a compactness argument leading to a limiting linearized problem in
which the information for an improvement of flatness is stored. However, reaching
the C2,γ regularity requires a much more involved process because of the possible
degeneracy of the negative part. Indeed this causes a delicate interplay between
the two phases, as we shall try to explain in the next section. Ultimately the
main source of difficulties is due to the presence of a forcing term of general sign
in the negative phase. Indeed, if f− ≥ 0, Hopf maximum principle would imply
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nondegeneracy (also) on the negative side, making the two-phases of comparable
size and considerably simplifying the final iteration procedure. It is worth noticing,
that however even in this easier scenario (and in particular in the homogeneous
case), if one wants to attain uniform estimates with universal constants, then one
must employ the more involved methods developed here for the degenerate case.

The paper is organized as follows. In Section 2 we outline the strategy of the
proof and in Section 3 through 7 we implement it. In Appendix A, we provide a
refinement of the classical pointwise C1,α estimates for elliptic equations. This is a
technical tool used in the paper. In Appendix B we sketch the main steps for the
reduction of our problem (1.1) to a system of nonlinear equations as in [KNS].

2. Outline and strategy

In this section, we outline the main strategy in the proof of Theorem 1.1, trying
to emphasize the key points, also in comparison to the flatness implies C1,γ case
in [DFS]. The first thing to do is to reinforce the notion of flatness, tailoring it for
the attainment of C2,γ regularity. This can be done by introducing a suitable class
of functions that we call two-phase and one-phase polynomials. In principle second
order polynomials should be enough but it turns out that we need a small third
order perturbation.

Given ω ∈ R
n, with |ω| = 1, and let Sω be an orthonormal basis containing ω.

Let M ∈ Sn×n satisfy

Mω = 0

and define

PM,ω(x) = x · ω −
1

2
xTMx.

Set,

V α,β
M,ω,a,b (x) = α(1 + a · x)P+

M,ω (x)− β(1 + b · x)P−
M,ω (x) , α > 0, β ≥ 0, a, b ∈ R

n

where the superscripts ± denote as usual the positive/negative part of a function.
These are our two-phase polynomials, one-phase if β = 0. In the particular case
when M = 0, a = b = 0, ω = en we obtain the two-plane function:

Uβ(x) = αx+n − βx−n .

The unit vector ω establishes the “direction of flatness”.
We shall need to work with a subclass, strictly related to problem (1.1), at least

at the origin. We denote by Vf±,G the class of functions of the form V α,β
M,ω,a,b for

which

2αa · ω − αtrM = f+(0)

2βb · ω − βtrM = f−(0) if β 6= 0,

α = G(β), if β 6= 0,

and

αa · ω⊥ = βG′ (β) b · ω⊥, ∀ω⊥ ∈ Sω.

The role of the last condition will be clear in the sequel (e.g. Proposition 3.3).
When β = 0, then there is no dependence on b and a ·ω⊥ = 0. Thus, we drop the

dependence on β, b,G and f− in our notation above and we indicate the dependence
on aω := a · ω.

We introduce the following definitions.
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Definition 2.1. Let V = V α,β
M,ω,a,b. We say that u is (V, ǫ, δ) flat in B1 if

V (x− ǫω) ≤ u(x) ≤ V (x+ ǫω) in B1

and
|a|, |b′|, ‖M‖ ≤ δǫ1/2, |bn| ≤ δ2, |bn|‖M‖ ≤ δ2ǫ.

Given V = V α,β
M,ω,a,b, set

Vr(x) =
V (rx)

r
and notice that

Vr = V α,β
rM,ω,ra,rb.

Definition 2.2. Let V = V α,β
M,ω,a,b. We say that u is (V, ǫ, δ) flat in Br if the

rescaling

ur(x) :=
u(rx)

r
is (Vr ,

ǫ
r , δ) flat in B1.

Notice that if u is (V, ǫ, δ) flat in Br then

V (x − ǫω) ≤ u(x) ≤ V (x+ ǫω) in Br.

The parameter ǫ measures the level of polynomial approximation and δ is a
flatness parameter (also controlling the C0,γ norms of f+ and f−).

Thus roughly our purpose is to show that u is (Vk, λ
2+γ∗

k , δ) flat in Bλk
for

λk = ηk and all k ≥ 0, for some δ, η small and a sequence of Vk converging to a
final profile V0. This would give uniform pointwise C2,γ∗

regularity both for the
solution and the free boundary in B1/2.

The starting point is to show (Section 3, Lemma 3.2) that the flatness condition
(1.3) allows us to normalize our solution so that a rescaling ur̄ of u falls into one of
the following cases, with suitable λ̄, δ̄. This kind of dichotomy parallels in a sense
what happens in [DFS].

Case a). ur̄ is (V, λ̄2+γ , δ̄) flat for some V = V α,β
0,en,a,b

∈ Vf±,G. Moreover, βδ̄

controls the C0,γ seminorms of f−.This case corresponds to a nondegenerate con-
figuration, in which the two phases have comparable size and ur̄ is trapped between
two translations of a genuine two-phase polynomial.

Case b). u+r̄ is (V, λ̄2+γ , δ̄) flat for some V = V 1
0,en,an

∈ Vf+ , and u
−
r̄ is close to a

purely quadratic profile cx2n. This case corresponds to a degenerate configuration,
where the negative phase has either zero slope or a small one (but not negligible)
with respect to u+r̄ , and u+r̄ is trapped between two translations of a one-phase
polynomial. Note that this situation cannot occur if f− ≥ 0, unless u− is identically
zero.

Next we examine how the initial flatness corresponding to cases a) and b) above
improves successively at a smaller scale. In Section 4, we construct the following
“subroutines”, to be implemented in the course of the final iteration towards C2,γ∗

regularity.
Two-phase flatness improvement (Proposition 4.4): if u is (V, λ̄2+γ , δ̄) flat for

some V = V α,β
M,ω,a,b ∈ Vf±,G in Bλ, the C

0,γ seminorms of f+ and f− are controlled

by δ̄ and βδ̄, respectively, then, in Bλη, u enjoys a C2,γ flatness improvement, i.e.

u is (V̄ , (ηλ)
2+γ

, δ̄) flat for some V̄ ∈ Vf±,G, properly close to V .
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One-phase flatness improvement (Proposition 4.3): if u+ is (V, λ̄2+γ , δ̄) flat for
some V = V α

M,ω,aω
∈ Vf+ in Bλ, the C

0,γ seminorm of f+ is controlled by δ̄ and u+ν
is close to α on F (u), then u+ enjoys a C2,γ flatness improvement, with V̄ ∈ Vf+ ,
properly close to V .

The achievement of the improvements above relies on a Harnack inequality, and a
higher order refinement of Theorems 4.1 and 4.4 in [DFS]. This gives the necessary
compactness to pass to the limit in a sequence of suitable renormalizations of u
and obtain a limiting transmission problem (Neumann problem in the one phase-
case). From the regularity of the solution of this problem we get the information
to improve the two-phase or one-phase approximation for u or u+ respectively, and
hence their flatness.

Now we start iterating. As we have seen, according to Lemma 3.2, after a suitable
rescaling, we face a first dichotomy “degenerate versus nondegenerate”.

In the latter case the two-phase subroutine in Proposition 4.4 can be applied
indefinitely to reach pointwise C2,γ∗

regularity for some universal γ∗.
When u falls into the degenerate case a new kind of dichotomy appears. This is

the deepest part of the paper. First of all, to run the subroutine in Proposition 4.3
one needs to make sure that the closeness of u− to a purely quadratic profile makes
u+ to be a (viscosity) solution of a one-phase free boundary problem with u+ν close
to an appropriate α on F (u) . This is the content of Lemma 6.2, in Section 6. At
this point two alternatives occur at a smaller scale (Proposition 6.3).

D1 : either u− is closer to a purely quadratic profile at a proper C2,γ rate and
u+ enjoys a C2,γ flatness improvement;

D2 : or u− is closer (at a C2,γ rate) to a one-phase polynomial profile with
a small non-zero slope but u+ only enjoys an “intermediate” C2 flatness
improvement.

If D1 occurs indefinitely we are done. If not, we prove that (Proposition 7.1) the
intermediate improvement in D2 is kept for a while, at smaller and smaller scale.
The final and crucial step is to prove (Proposition 7.2) that, at a given universally
small enough scale, the C2,γ one-phase approximation of u−, together with the
intermediate C2 flatness improvement of u+, is good enough to recover a full C2,γ∗

two-phase improvement of u with a universal γ∗ < γ.
As we have mentioned at the end of Section 1, we emphasize that it is the

interplay between the parallel improvements on both sides of the free boundary
that makes possible to obtain the full two-phase improvement, at the price of a
little decrease of the Hölder exponent. This kind of situation has no counterpart in
the flatness implies C1,γ case of [DFS].

From this point on we can go back to subroutine of Proposition 4.4 and finally
reach pointwise C2,γ∗

regularity.

In the next section we start implementing the above strategy. In the course of
a proof, universal constants possibly changing from line to line will be denoted by
c, C. Dependence on other parameters, will be explicitly noted.

3. Initial configurations

As we mentioned in Section 2, we start by showing that the flatness condition
(1.3) allows us to normalize our solution so that a rescaling ur̄ of u satisfies a
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suitable (V, ε, δ) flatness. We first recall the following result proved in [DFS]. Set

ur(x) :=
u(rx)

r
, f±r(x) = rf±(rx), x ∈ B1.

Lemma 3.1. Let u be a (Lipschitz) solution to (1.1) in B1 with Lip(u) ≤ L and
‖f±‖L∞ ≤ L. For any ǫ > 0, ǫ < ǫ0 = ǫ0(n, L), there exist η̄ depending on ǫ, n and
L, η̄ ≤ ǫ4, such that if u satisfies (1.3) for some η ≤ η̄ then

(3.1) ‖ur − Uβ‖L∞(B1) ≤ ǫ, for some 0 ≤ β ≤ L,

(3.2) ‖f±r‖∞ ≤ ǫ, |f±r(x) − f±r(0)| ≤ ǫ|x|γ

(3.3) {xn ≤ −ǫ} ⊂ {u+r = 0} ⊂ {xn ≤ ǫ},

and r = ǫ3.

Let u be as in Lemma 3.1 and for a given ǫ, let η̄(ǫ) and r(ǫ) be the corresponding
parameters provided by the lemma.

In the next Lemma, we denote by δ̄, λ̄ the universal constants which will be
chosen later in Proposition 4.4 and Proposition 6.3 (say for β1 = L+ 1).

Lemma 3.2. There exists ǭ universal such that if u satisfies (1.3) with η̄ = η̄(ǭ)
then either of these flatness conditions holds with r̄ = r̄(ǭ).

(i) Degenerate case:
u+r̄ is (V, λ̄2+γ , δ̄) flat in B1, for V = V 1

0,en,an
∈ Vf+ ,

|u−r̄ +
1

2
f−r̄(0)x

2
n| ≤ δ̄1/2λ̄2+γ in B−

1 (ur̄)

and
‖f−r̄‖∞ ≤ δ̄, |f±r̄(x) − f±r̄(0)| ≤ δ̄|x|γ

(ii) Non-degenerate case:

ur̄ is (V, λ̄2+γ , δ̄) in B1, with V = V α,β
0,en,a,b ∈ Vf± r̄

,G,

a′ = b′ = 0, β ≥
1

2
δ̄1/2λ̄2+γ ,

and

|f+r̄(x) − f+r̄(0)| ≤ δ̄|x|γ |f−r̄(x)− f−r̄(0)| ≤ βδ̄|x|γ .

Proof. Call ǫ∗ = λ̄2+γ and δ̃ = 1
2 δ̄

1/2ǫ∗. Let ǭ << δ̃ < ǫ∗ and ǭ < δ̄, to be made
precise later. For such ǭ the conclusion of Lemma 3.1 above gives that in B1

(3.4) ‖ur̄ − Uβ‖∞ ≤ ǭ, ‖f±r̄‖∞ ≤ ǭ, |f±r̄(x)− f±r̄(0)| ≤ ǭ|x|γ

and

(3.5) {xn ≤ −ǭ} ⊂ {u+r̄ = 0} ⊂ {xn ≤ ǭ},

for r̄ = r̄(ǭ) and some 0 ≤ β ≤ L.
We distinguish two cases. For notational simplicity we drop the subindex r̄.

Degenerate Case. β < δ̃. In this case we wish to show that

(3.6) V (xn − ǫ∗) ≤ u+(x) ≤ V (xn + ǫ∗)

with

V (xn) := (1 + anxn)x
+
n , an =

f+(0)

2
.
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We prove the upper bound, as the lower bound can be obtained similarly. From
the first two equations in (3.4) we get (for ǭ << ǫ∗, α = G(β))

u+ ≤ αx+n + ǭ ≤ αV (xn) + cǭ ≤ αV (xn + 2ǫ∗),

hence

u+ ≤ V (xn + 2ǫ∗) + 2δ̃ ≤ V (xn + ǫ∗)

as long as δ̃ ≤ 1
4ǫ

∗ (which is clearly satisfied because δ̄ is very small).
The bound for u− follows immediately by noticing that in view of (3.4) and

(3.5),

|u− +
1

2
f−(0)x

2
n| ≤ ǭ+ αǭ+ δ̃ in B−

1 (u).

Non-degenerate Case. β ≥ δ̃. In this case we want to show that

V (xn − ǫ∗) ≤ u(x) ≤ V (xn + ǫ∗) in B1

with

V (xn) = α(1+anxn)x
+
n−β(1+bnxn)x

−
n , 2αan = f+(0), 2βbn = f−(0) α = G(β).

Let us prove the upper bound. In view of (3.4) we get,

u ≤ V (xn) + 2ǭ ≤ v(xn + ǫ∗)

where in the last inequality we have used that V ′ ≥ 1
2 δ̃ and ǭ << δ̃ < ǫ∗. The

bound on the modulus of continuity of f− also follows because β ≥ δ̃ >> ǭ. �

We conclude this section by providing sufficient conditions for a two-phase/one-
phase polynomial V to be a strict subsolution (resp. supersolution). We will work
simultaneously with the two-phase problem (1.1) and with the one-phase problem

(3.7)

{

∆v = f+ in B+
1 (v),

|v+ν − α| ≤ δ1/2ǫ on F (v),

with δ and ǫ sufficiently small constants. The free boundary will always be C1,γ .
The two-phase results are needed to deal with the non-degenerate case, that is

the case when our flat solution u to (1.1) is trapped between two translates of a
function V ∈ Vf±,G with a positive slope β (not too small). The one-phase results
will be of use when we will deal with the degenerate case, that is when the flatness
of the free boundary only guarantees closeness of the positive part u+ to a quadratic
profile, i.e. β = 0.

Precisely we prove the following Proposition. The corresponding statement for
V to be a strict supersolution can also be obtained. Here, 0 ≤ β ≤ β1, 1 = G(0) ≤
α ≤ α1 = G(β1). Dependence of the constants on β1 is not noted (as it will be
fixed universal.)

Proposition 3.3. Assume that in B1

(3.8) |f+(x) − f+(0)| ≤ δǫ, and |f−(x)− f−(0)| ≤ βδǫ if β 6= 0.

Given V = V α,β
M,ω,a,b with

(3.9) ‖M‖, |a|, |b′| ≤ δǫ1/2,

(3.10) |bn| ≤ C̄δ2, |bn|‖M‖ ≤ C̄δ2ǫ,
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V is a strict subsolution to (1.1) for β 6= 0 or to (3.7) for β = 0, if

(3.11) 2αa · ω − αtrM ≥ f+(0) + 2δǫ

(3.12) 2βb · ω − βtrM ≥ f−(0) + 2βδǫ if β 6= 0

and

(3.13) α+ αta · ω⊥ ≥ G(β) + βG′(β)tb · ω⊥ + δ1/2ǫ, ∀t ∈ [0, 1]

as long as δ is small (depending on C̄).

Proof. Say ω = en. Since |a|, |b| < 1, we have that

V (x) = α(xn −
1

2
xTMx)(1 + a · x), in B+

1 (V ).

Thus,

∆V = −αtrM(1 + a · x) + 2α(en −
1

2
Mx) · a in B+

1 (V ).

Using assumptions (3.8)-(3.9)-(3.10)-(3.11) we get

∆V ≥ f+(0) + δǫ − Cδ2ǫ ≥ f+(x) + δǫ− Cδ2ǫ > f+(x)

if δ is chosen universally small. The computation in the negative phase follows
similarly.

To check the free boundary condition we must verify that, say for β > 0,

(3.14) |∇V +| −G(|∇V −|) > 0 on F (V ).

We compute that on F (V ), since M · en = 0,

|∇V +| = α|en −Mx|(1 + a · x) ≥ α(1 + a · x).

Similarly, using assumption (3.9)

|∇V −| = β|en −Mx|(1 + b · x) ≤ β(1 + b · x) + Cδ2ǫ.

Thus,

G(|∇V −|) ≤ G(β) + βG′(β)b · x+ Cδ2ǫ

and (3.14) is satisfied in view of (3.9)-(3.10)-(3.13), as long as δ is small enough.
In fact, (3.13) gives that

α(1 + a · x) ≥ G(β) + βG′(β)b · x+ αanxn − βG′(β)bnxn + δ1/2ǫ.

Using that on F (V ) the size of xn is bounded by ‖M‖ and from assumptions (3.9)-
(3.10), we conclude that

α(1 + a · x) ≥ G(β) + βG′(β)b · x− Cδ2ǫ+ δ1/2ǫ,

from which the desired claim follows.

A similar computation holds for β = 0. �

Remark 3.4. We can consider the larger class of functions

P := x · ω + ξ′ · x′ −
1

2
xTMx,

and the corresponding V ’s (for A ∈ R)

V = α(1 + a · (x +Aen))P
+ − β(1 + b · (x+Aen))P

−.

The proposition above remains valid if |ξ′|, |A| ≤ C̄δǫ1/2, |bn||A| ≤ C̄δ2ǫ.
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4. The Improvement of flatness

In this section we prove our main improvement of flatness theorem. Let u solve

∆u+ = f+ in B+
1 (u), ∆u− = f− in B−

1 (u), if β > 0

or
∆u+ = f+ in B+

1 (u), if β = 0

with 0 ∈ F (u) ∈ C1,γ .

Denote by V = V α,β
M,en,a,b

∈ Vf±,G with 0 ≤ β ≤ β1, 1 = G(0) ≤ α ≤ α1 := G(β1).
In what follows, given V , for any function v defined in B1, we will use the notation:

(4.1) ṽǫ(x) =































v(x) − α(1 + a · x)PM,en

αǫ
, x ∈ B+

1 (u) ∪ F (u),

v(x) − β(1 + b · x)PM,en

βǫ
, x ∈ B−

1 (u), β > 0,

0, x ∈ B−
1 (u), β = 0.

Proposition 4.1 (Improvement of Flatness). There exist η̄, δ̄, ǭ universal, such
that

(i) Two-phase case: β > 0, if

(4.2) u is (V, ǫ, δ̄) flat in B1, 0 < ǫ ≤ ǭ

(4.3) |f+(x) − f+(0)| ≤ δ̄ǫ, |f−(x)− f−(0)| ≤ βδ̄ǫ,

and

(4.4) u+ν = G(u−ν ) on F (u) ∩B2/3

then
u is (V̄ , η̄2+γǫ, δ̄) flat in Bη̄

with V̄ = V ᾱ,β̄

M̄,ν̄,ā,b̄
∈ Vf±,G and |β − β̄| ≤ Cǫ, for C universal.

(ii) One-phase case: β = 0, if

(4.5) u+ is (V, ǫ, δ̄) flat in B1, 0 < ǫ ≤ ǭ,

(4.6) |f+(x) − f+(0)| ≤ δ̄ǫ,

and

(4.7) |u+ν − α| ≤ δ̄1/2ǫ on F (u) ∩B2/3

then

(4.8) u+ is (V̄ , η̄2+γǫ, δ̄) flat in Bη̄

with V̄ = V α
M̄,ν̄,āν̄

∈ Vf+ .

Proof. Let η̄ be given (to be specified later).
Step 1. By contradiction assume that there exist ǫk, δk → 0 and uk, Vk, f±k, Gk

as above, with ‖Gk‖ ≤ L,Gk(0) = 1, for which the assumptions above hold but
the conclusion does not. Now, let us define the corresponding ũǫkk as in (4.1). For
notational simplicity we call wk := ũǫkk

Then (4.2)-(4.5) give,

(4.9) − 2 ≤ wk(x) ≤ 2 for x ∈ B1.
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Up to a subsequence, Gk converges, locally uniformly in C1, to some C1 function
G0, while βk → β̃ so that αk → α̃ = G0(β̃). Moreover, by Harnack inequality (see
Lemma 5.1 in the next section) the graphs of wk converge in the Hausdorff distance
to a Hölder continuous w.

Step 2 – Limiting Solution. We now show that, say in the case βk > 0 for
all k’s, w solves the following linearized problem

(4.10)











∆w = 0 in B1/2 ∩ {xn 6= 0},

α̃w+
n − β̃G′

0(β̃)w
−
n = 0 on B1/2 ∩ {xn = 0}.

One can argue similarly in the case βk = 0 for all k’s, with w satisfying:

(4.11)











∆w = 0 in B1/2 ∩ {xn > 0},

wn = 0 on B1/2 ∩ {xn = 0}.

It is easy to check that, from our assumptions,

|∆wk| ≤ Cδk in B+
1 (uk) ∪B

−
1 (uk),

hence one easily deduces that w is harmonic in B1/2 ∩ {xn 6= 0}.
Next, we prove that w satisfies the boundary condition in (4.10) in the viscosity

sense.
Let φ be a function of the form

φ(x) = A+ px+n − qx−n + ξ′ · x′ +
1

2
xTNx

with
N ∈ Sn×n, trN = 0, A ∈ R,

and

(4.12) α̃p− β̃G′
0(β̃)q > 0.

Then we must show that φ cannot touch w strictly by below at a point x0 =
(x′0, 0) ∈ B1/2 (the analogous statement by above follows with a similar argument.)

Suppose that such a φ exists and let x0 be the touching point. Without loss of
generality, we can assume that φ is globally below w (this observation will be used
in the Remark 4.2.)

We construct now a subsolution to the free boundary problem satisfied by the
uk’s. We will use these computations also in the proof of Lemma 5.1 in the next
section.

Call

Wk(x) = α̃k(1 + c̃k · (x+ ǫkAen))Q
+ − β̃k(1 + d̃k · (x+ ǫkAen))Q

−,

where
Q = PM̃k,en

+ ǫkξ
′ · x′ +Aǫk, M̃k =Mk − ǫkN,

α̃k = αk(1 + ǫkp), β̃k = βk(1 + ǫkq)

c̃k = ak + ǫkc, d̃k = bk + ǫkd

and c, d to be specified later.
From Proposition 3.3 and Remark 3.4, Wk is a strict subsolution for k large as

long as
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2α̃k c̃k · en − α̃ktrMk ≥ f+k(0) + 2δkǫk

2β̃kd̃k · en − β̃ktrMk ≥ f−k(0) + 2β̃kδkǫk

and
α̃k + α̃k c̃k · x′ ≥ Gk(β̃k) + β̃kG

′
k(β̃k)d̃k · x

′ + δ
1/2
k ǫk.

The first two equations are satisfied if we choose

cn = C(p)δk, dn = C(q)δk.

Indeed, say for the first one, we compute,

2α̃kc̃k · en − α̃ktrMk = f+k(0) + 2αkǫkcn + 2αkǫkpak · en + 2αkǫ
2
kpcn − ǫkαkptrMk

≥ f+k(0) + 2α0ǫkcn +O(pǫ
3/2
k δk),

and the conclusion follows with an appropriate choice of C.
We will also choose c′ = d′ = 0. Then, the third equation is satisfied for k large

in view of (4.12).
In fact,

Gk(β̃k)+β̃kG
′
k(β̃k)d̃k ·x

′ ≤ Gk(βk)+βkG
′
k(βk)qǫk+βkG

′
k(βk)bk·x

′+ǫkO(|q|(ǫk+δk))

= αk + αkak · x
′ + βkG

′
k(βk)qǫk + ǫkO(|q|(ǫk + δk)).

Thus we need,

αkp− βkG
′
k(βk)q ≥ C(p, q)δk + δ

1/2
k

which is satisfied for k large in view of (4.12).

Define now, as in (4.1), W ∗
k := W̃ ǫk

k . We observe that W ∗
k converges uniformly

to φ on B1/2. Indeed, one can easily compute that in B+
1 (Wk)

Wk(x)− αk(1 + ak · x)PMk ,en = αkǫk(pxn +
1

2
xTNx+ ξ′ · x′ +A) + αkǫkO(δk)

and similarly, in B−
1 (Wk)

Wk(x)− βk(1 + bk · x)PMk,en = βkǫk(qxn +
1

2
xTNx+ ξ′ · x′ +A) + βkǫkO(δk).

Since wk converges uniformly to w, W ∗
k converges uniformly to φ and φ touches

w strictly by below at x0 we can conclude that there exist a sequence of constants
tk → 0 and of points xk → x0 such that the function

ψk(x) =Wk(x+ ǫktken)

touches uk by below at xk. We thus get a contradiction if we prove ψk is a strict
subsolution to the free boundary problem satisfied by the uk’s. This follows from
the fact that Wk is a strict subsolution and the translation in the endirection only
perturbs A into A+ tk.

Step 3. Since wk converges uniformly to w and w(0) = 0 we get that

|wk − ψ(x)| ≤
1

8
η̄2+γ , in Bη̄

with

ψ(x) = px+n − qx−n − ξ′ · x′ −
1

2
xTNx+ â · xx+n − b̂ · xx−n

and
α̃p− β̃G′

0(β̃)q = 0, trN = 2ân = 2b̂n, Nen = 0

α̃â′ · x′ = β̃G′
0(β̃)b̂

′ · x′.
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Thus,

|uk−αk(1+ak·x)PMk,en−αkǫkψ(x)| ≤
1

8
αkǫkη̄

2+γ , in Bη̄ ∩ (B+
1 (uk) ∪ F (uk)) := B+

F

and

|uk − βk(1 + bk · x)PMk ,en − βkǫkψ(x)| ≤
1

8
βkǫkη̄

2+γ , in B−
η̄ (uk).

Hence, since in the region B+
F we have xn ≥ −2ǫ, we conclude that

|uk−αk(1+ak·x)PMk,en−αkǫk(pxn−ξ
′·x′−

1

2
xTNx+â·xxn)| ≤

1

4
αkǫkη̄

2+γ , in B+
F

and similarly

|uk−βk(1+bk·x)PMk ,en−βkǫk(qxn−ξ
′·x′−

1

2
xTNx+b̂·xxn)| ≤

1

4
βkǫkη̄

2+γ , in B−
η̄ (uk).

Set
α∗
k = αk(1− ǫkp), β∗

k = βk(1− ǫkq),

N∗
k =Mk + ǫkN, ν∗k = en + ǫkξ, ξn = 0,

and
a∗k = ak + ǫkâ,

b∗k = bk + ǫkb̂.

Then,

|uk − α∗
k(1 + a∗k · x)PN∗

k
,ν∗

k
| ≤

1

2
α∗
kǫkη̄

2+γ , in B+
F

and

|uk − β∗
k(1 + b∗k · x)PN∗

k
,ν∗

k
| ≤

1

2
β∗
kǫkη̄

2+γ , in B−
η̄ (uk).

Now choose,

ν̄k =
ν∗k
|ν∗k |

= en + ǫkξ + ǫ2kτ, |τ | ≤ C.

For notational simplicity, we drop the dependence on k from ν∗k and ν̄k.
We write

N∗
k = N̄k + Lk, N̄k · ν̄ = 0.

Then, since Mken = Nen = 0, we get

‖Lk‖ = O(ǫ
3/2
k ).

Moreover set,
β̄k = β∗

k ᾱk = Gk(β̄k) = α∗
k +O(ǫ2k)

where we have used that α̃p− β̃G′
0(β̃)q = 0.

Thus,

|uk − ᾱk(1 + a∗k · x)PN̄k,ν̄ | ≤
2

3
ᾱkǫkη̄

2+γ , in B+
F

and

|uk − β̄k(1 + b∗k · x)PN̄k,ν̄ | ≤
2

3
β̄kǫkη̄

2+γ , in B−
η̄ (uk).

Let Sν̄ := {ν̄i}i=1,...n be an orthonormal system containing ν̄. Say, ν̄ = ν̄n. Recall
that

ν̄n = en + ǫω, |ω| ≤ C,

hence
ν̄i = ei + ǫv, |v| ≤ C, i 6= n
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Define,

āk = a∗k +

n
∑

i=1

ziν̄i

b̄k = b∗k + ζν̄n

where zi, ζ are chosen so that

2ᾱkāk · ν̄n − ᾱktrN̄k = f+k(0)

2β̄kb̄k · ν̄n − β̄ktrN̄k = f−k(0), if βk > 0

and

ᾱkāk · ν̄i = β̄kG
′
k(β̄k)b̄k · ν̄i, i 6= n.

Unravelling these identities using all of the definitions above and the compatibility
conditions for ψ we can estimate that

|zi|, |ζ| = O(ǫ
3/2
k ).

Therefore we conclude that

|uk − ᾱk(1 + āk · x)PN̄k,ν̄ | ≤
4

5
ᾱkǫkη̄

2+γ , in B+
F

and

|uk − β̄k(1 + b̄k · x)PN̄k,ν̄ | ≤
4

5
β̄kǫkη̄

2+γ , in B−
η̄ (uk).

Set, V̄k = V ᾱk,β̄k

N̄k,ν̄,āk,b̄k
we conclude that

V̄ (x− ǫkν̄) ≤ uk(x) ≤ V̄ (x+ ǫkν̄) in Bη̄

and we reach a contradiction as long as

η̄|āk|, η̄|b̄k · ν̄
⊥|, η̄‖M̄k‖ ≤ δk(ǫkη̄

1+γ)1/2

and

η̄|b̄k · ν̄| ≤ δ2k, η̄2|b̄k · ν̄|‖M̄k‖ ≤ δ2k(ǫkη̄
1+γ).

This follows (for η̄ possibly smaller) from the initial bounds on |ak|, |bk|, |Mk|
and the fact that

|ak − āk|, |bk − b̄k|, ‖Mk − M̄k‖, |en − ν̄| ≤ Cǫk.

�

Remark 4.2. We observe that it is enough for the free boundary condition to be
satisfied in the following viscosity sense. At all points where u is touched globally
by the positive side in B2/3 by a test function with free boundary Γ := {xn = P}
with P a quadratic polynomial with coefficients of size 1, then

u+ν ≤ G(u−ν ) if β > 0, u+ν − α ≤ δ̄1/2ǫ if β = 0

and similarly the lower bound is satisfied at all points where u is touched by above
on the free boundary by a surface Γ as before.

This can be easily seen from the proof (see the conclusion of Step 2 in the proof
above.)

As a consequence we obtain the following two propositions. Let u be as at the
beginning of this section and 0 ≤ β ≤ β1, 1 ≤ α ≤ α1.
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Proposition 4.3 (One-phase C2,γ improvement of flatness). There exist η̄, δ̄, λ̄
such that if for β = 0

(4.13) u+ is (V, λ2+γ , δ̄) flat in Bλ, λ ≤ λ̄

with V = V α
M,en,an

∈ Vf+ ,

(4.14) |f+(x)− f+(0)| ≤ δ̄|x|γ

and

(4.15) |u+ν − α| ≤ δ̄1/2λ1+γ on F (u) ∩B2/3λ,

in the viscosity sense, then

(4.16) u+ is (V̄ , (η̄λ)2+γ , δ̄) in Bη̄λ

with V̄ = V α
M̄,ν̄,āν̄

∈ Vf+ .

Proposition 4.4 (Two-phase C2,γ improvement of flatness). There exist η̄, δ̄, λ̄
universal, such that if for β > 0

(4.17) u is (V, λ2+γ , δ̄) flat in Bλ, λ ≤ λ̄

with V = V α,β
M,en,a,b

∈ Vf±,G,

(4.18) |f+(x) − f+(0)| ≤ δ̄|x|γ , |f−(x) − f−(0)| ≤ βδ̄|x|γ

and

u+ν = G(u−ν ) on F (u) ∩B2/3λ

then

(4.19) u is (V̄ , (η̄λ)2+γ , δ̄) in Bη̄λ

with V̄ = V ᾱ,β̄

M̄,ν̄,ā,b̄
∈ Vf±,G and |β − β̄| ≤ Cλ1+γ for C universal.

5. Harnack inequality

In this section we prove a Harnack type inequality which is the key ingredient in
the compactness argument used to prove our improvement of flatness proposition.

Let V = V α,β
M,en,a,b

∈ Vf±,G with 0 ≤ β ≤ β1, 1 ≤ α ≤ α1. Let u solve

∆u+ = f+ in B+
1 (u), ∆u− = f− in B−

1 (u), if β > 0

or

∆u+ = f+ in B+
1 (u), if β = 0

with 0 ∈ F (u) ∈ C1,γ .
We need the following key lemma. The free boundary condition in the lemma is

assumed to hold in the viscosity sense of Remark 4.2.

Lemma 5.1. There exist ǭ, δ̄ universal such that

(i) Two-phase case: β > 0, if

(5.1) u is (V, ǫ, δ̄) flat in B1, 0 < ǫ ≤ ǭ,

(5.2) |f+(x) − f+(0)| ≤ δ̄ǫ, |f−(x)− f−(0)| ≤ βδ̄ǫ,

and

(5.3) u+ν = G(u−ν ) on F (u) ∩B2/3
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then either
u(x) ≤ V (x+ (1 − η)ǫen) in Bη

or
u(x) ≥ V (x− (1 − η)ǫen) in Bη

for a small universal η ∈ (0, 1).

(ii) One-phase case: β = 0, if

(5.4) u+ is (V, ǫ, δ̄) flat in B1, 0 < ǫ ≤ ǭ,

(5.5) |f+(x) − f+(0)| ≤ δ̄ǫ,

and

(5.6) |u+ν − α| ≤ δ̄1/2ǫ on F (u) ∩B2/3

then either
u+(x) ≤ V (x+ (1− η)ǫen) in Bη

or
u+(x) ≥ V (x− (1− η)ǫen) in Bη

for a small universal η ∈ (0, 1).

Proof. To fix ideas let β > 0. The case β = 0 follows in the same way.
Let x̄ = 1

5en and assume that

(5.7) u(x̄) ≥ V (x̄) > 0.

We prove that the second statement holds.
Define:

(5.8) φt(x) := t+ px+n − 2nx−n +
1

2
xTNx

where N ∈ Sn×n

Nii = −2, if i, j = 1, . . . n− 1

N1,j = 0 if j = 1, . . . n− 1

Nnn = 4n.

and

(5.9) αp = 1 + 2nβG′(β).

We show that there is a constant r0 ≤ 1/16 (r0 universal) such that
(5.10)

φ1/8 < −1/16 on −1/2 ≤ xn ≤ r0, |x
′| = 1/2 and on xn = −1/2, |x′| ≤ 1/2.

Indeed, on the first region above, when xn > 0 we have:

φ1/8(x) = 1/8 + 2nx2n − 1/4 + pxn ≤ −1/8 + (2n+ p)r0 < −1/16

as long as
(2n+ p)r0 ≤ 1/16.

When −1/2 ≤ xn ≤ 0 and |x′| = 1/2

φ1/8(x) = 1/8 + 2nxn(xn + 1)− 1/4 < −1/16.

Finally, on xn = −1/2 and |x′| ≤ 1/2 we have

φ1/8(x) = 1/8− |x′|2 − n/2 < −1/16.
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Finally notice that (η universal ),

(5.11) φ1/8 ≥
1

16
in Bη.

Call
D′′ := {|x′| ≤ 2/3, r0/2 ≤ xn ≤ 2/5}

and
D′ := {|x′| ≤ 1/2, r0/3 ≤ xn ≤ 1/5}.

Finally,
D := {|x′| ≤ 1/2,−1/2 ≤ xn ≤ r0}.

Notice that (for ǫ small)

(5.12) D′′ ⊂ B+
1 (V ǫ) ⊂ B+

1 (u).

We have that v(x) := u(x)− V (x − ǫen) ≥ 0 and because of (5.2) and the sizes
of the coefficients of V , we have ∆v ≥ −δ̄ǫ − c̄αδ̄2ǫ in D′′. Thus we can apply
Harnack inequality to obtain

v ≥ cv(x̄)− C(δ̄ǫ+ c̄αδ̄2ǫ) in D′.

From (5.7) we conclude that (for δ̄ small enough)

(5.13) u(x)− V (x− ǫen) ≥ cαǫ − Cδ̄ǫ− c̄αδ̄2ǫ ≥ αc0ǫ in D′.

Now set,

α̃ = α(1 + ǫc0p), β̃ = β(1 + ǫ2nc0), M̃ =M − ǫc0N, c̃ = a+ ǫc, d̃ = b+ ǫd

with
ci = di = 0 ∀i = 1, . . . n− 1, cn = dn = O(δ̄),

and call

Wt := α̃(1+c̃·(x−ǫen+tǫen))(PM̃,en
−ǫ+tǫ)+−β̃(1+d̃·(x−ǫen+tǫen))(PM̃ ,en

−ǫ+tǫ)−.

Now, the same computation as in Step 2 of Proposition 4.1 guarantees that W̃ ǫ
t

(defined as in (4.1)) converges uniformly to −1 + c0φt as ǫ → 0. Clearly, Ṽ ǫ(x −
ǫen) = −1 +O(δ̄1/2ǫ). Since for t̄ << 0 we have c0φt̄ ≤ −2 in D, we conclude that

Wt̄ ≤ V (x− ǫen) ≤ u on D.

Let s̄ be the largest t such that

Wt ≤ u on D.

We want to show that s̄ ≥ 1/8. Then, in view of the uniform convergence of W̃ ǫ
s̄ to

c0φs̄ and the bound (5.11) we get

u(x) ≥Ws̄ ≥ V (x − (1− c̄)ǫen) in Bη.

Assume that s̄ < 1/8. Then the first touching point x̃ of u and Ws̄ in D, occurs
on xn = r0. Indeed, as shown in Step 2 of Proposition 4.1, Ws̄ is a strict subsolution
to (1.1) which lies below u in D. Thus the touching point can only occur on ∂D.

By (5.10) and the uniform convergence of the W̃ ǫ
s̄ we have Ws̄ < V ǫ ≤ u on

∂D \ {xn = r0.} Thus, again by the uniform convergence of the W̃ ǫ
s̄ and the fact

that φ1/8 ≤ 1/2 on xn = r0, we get

u(x̃) =W ǫ
s̄ (x̃) < V ǫ(x̃) + αc0ǫ

which contradicts (5.13).
�
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Corollary 5.2. Let u be as in Lemma 5.1. Then the modulus of continuity of ũǫ

is Hölder outside [0, σ(ǫ)] with σ(ǫ) → 0 as ǫ→ 0.

6. The dichotomy

Throughout this section, u is a (Lipschitz) solution to (1.1).
We introduce the class of functions Qf− defined as

Qp,q,ω,M = (x · ω −
1

2
xTMx)(p+ q · x)−

1

2
(f−(0) + ptrM)(x · ω)2,

with p ∈ R, q ∈ R
n,M ∈ Sn×n, such that

q · ω = 0, Mω = 0, ‖M‖ ≤ 1.

In the degenerate case, we use these functions to approximate u− in a C2,γ

fashion at a smaller and smaller scale. The goal is to reach a scale ρ where u− is
trapped between two translations of Q of size ρ2+γ∗

. This would guarantee that the
full u is (V, ρ2+γ∗

, δ̄) flat at that scale, which allows us to apply the improvement
of flatness result of the non-degenerate case.

Initially u+ is (V, λ̄2+γ , δ̄) flat while u− is C2,γ close to the configurationQ0,0,en,0.
This closeness improves at a C2,γ rate until (possibly) the slope p of the approx-
imating polynomial Q = Qp,q,ω,M is no longer zero, say at scale λ. However, to

obtain the desired flatness of u, we need to reach a scale ρ = λr for r << λ1/γ .
It is necessary to exploit also the information that the flatness of u+ is in fact
improving at a C2 rate for a little while, hence allowing us to continue the iteration
on the negative side and obtain that u− is C2,γ close to a configuration Q at an
even smaller scale. As already pointed out, in the case of the C1,γ estimates of
[DFS] this issue was not present, as in the degenerate case it was sufficient to reach
a scale ρ = λr with r = λγ/2. This makes the C2,γ proof much more sophisticated
and technically involved.

We are ready to start developing the tools to apply the strategy described above.
The next lemma relates the closeness of u− to a function in the class Qf− with

a one-phase free boundary condition for u+ν of the type in Proposition 4.1-(ii) (one-
phase improvement of flatness). The condition is satisfied in the viscosity sense of
Remark 4.2. The proof relies on a variant of the pointwise C1,γ estimate, which we
describe in Appendix A. We also, need the following easy remark.

Remark 6.1. We remark that

|Qp,q,ω,M −Qp,q,ω,0| ≤ C|p|r2 + |q|r3 in Br;

|Qp,q,en,0 −Qp,q̃,ω,0| ≤ (|p|r + (2|q|+ |f−(0)|)r
2)|en − ω| in Br;

where q̃ is a rotation of q by the angle between en and ω.

Let V = V α
M,en,an

and Q = Qp,q,en,M with α = G(|p|).

Lemma 6.2. Let u+ be (V, r2λ2+γ , δ̄) flat in Brλ,

|f−(x) − f−(0)| ≤ δ̄|x|γ , ‖f−‖∞ ≤ δ̄

and
|u− −Q| ≤ δ̄1/2(rλ)2+γ , in B−

rλ(u),

for r ≤ 1, with p ≤ 0, |p| ∼ (δ̄1/2λ1+γ), |q| = O(δ̄1/2λγ), and

(6.1) δ̄1/2rγ ≥ 2λ1+γ .
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Then,

(6.2) |u+ν − α| ≤ C̄δ̄1/2rλ1+γ on F (u) ∩Brλ

in the viscosity sense, with C̄ universal.

Proof. Let P(x) be a quadratic polynomial and let xn = P(x) touch F (u) by the
negative side at x0 ∈ F (u) ∩ Brλ/2, with the coefficients of P of size 1. Let ν be
the normal to F (u) at x0 (pointing toward the positive phase). Then, we want to
show that

(6.3) u+ν (x0) ≥ α− δ̄1/2rλ1+γ

Denote ν− = −ν. Since (for some t),

u+ν (x0) = G(u−ν (x0)) = G(|p|) +G′(t)(∇u−(x0) · ν
− − |p|),

it suffices to show that

(6.4) ∇u−(x0) · ν ≤ p+ Cδ̄1/2rλ1+γ .

Let

urλ(x) := u(rλx), Qrλ(x) := Q(rλx), Prλ(x) := P(rλx),

and set

(6.5) v(x) := δ̄−1/2(rλ)−(2+γ)(u−rλ −Qrλ)(x), x ∈ B1,

Then,

(6.6) |v| ≤ 1, |∆v| ≤ 2δ̄1/2 in B−
1 (urλ).

Moreover, since r satisfies (6.1), using the estimates for |p|, |q| and the flatness of
the free boundary, we obtain that

|v| ≤ δ̄1/2 on F (urλ).

We claim that

vν(y0) ≤ Cr−γ , y0 =
x0
rλ
.

To prove the claim, we wish to apply Theorem 8.3 in the Appendix to −v.
Indeed, assume F (urλ) is the graph of a function g in the ν− direction. Then, since
xn = 1

rλPrλ touches F (urλ) at y0 by the negative side we conclude that

g ≤ C(rλ)|x − y0|
2.

Thus, it suffices to prove that at the point y0, for any ν
⊥ perpendicular to ν− we

have

|∇Q̄rλ · ν⊥| = O(r−γ), −O(r−γ) ≤ ∇Q̄rλ · ν− ≤ O( r
−γ

rλ )(6.7)

|D2Q̄rλ(ν, ν
⊥)| = O(r−γ), |D2Q̄rλ(ν

−, ν−)| = O( r
−γ

rλ ),(6.8)

where we denoted

Q̄rλ = δ̄−1/2(rλ)−(2+γ)Qrλ.

Indeed, it is easy to check that in Bρ ∩ {|xn| < ρ2} we have:

∇Q = pen +O(|q|ρ + |p|‖M‖ρ+ |f−(0)|ρ
2 + |p||trM |ρ2 + |q|‖M‖ρ2)

and

D2Q = −pM − 2(
1

2
f−(0) + ptrM)en ⊗ en +O(|q| + ‖M‖|q|ρ).
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In particular, for ρ = rλ, using the bounds for |p|, |q|, |f−(0)| we conclude that

∇Q = pen +O(δ̄1/2rλ1+γ)

and

D2Q = −(f−(0) + 2ptrM)en ⊗ en +O(δ̄1/2λγ).

Thus, we easily obtain the second estimate in (6.7)-(6.8) (recall that p ≤ 0 and
en · ν− ≤ 0). The first one follows by using that at y0 we have |ν − en| ≤ λr.

Hence the claim holds and rescaling back we get

(6.9) (∇u−(x0)−∇Q(x0)) · ν ≤ Cδ̄1/2rλ1+γ .

Moreover, at such point |ν − en| ≤ λr hence we have

|∇Q(x0) · ν − p| ≤ |∇Q(x0) · ν −∇Q(x0) · en|+ |Qn(x0)− p|

≤ ‖∇Q‖∞|ν − en|+O(δ̄1/2rλ1+γ) ≤ Crδ̄1/2λ1+γ

and we reach the desired conclusion. �

In the next proposition we show that if we are in a degenerate setting, that is
u− is very close to the configuration Q0,0,en,0, then either this is preserved at a
smaller (universal) scale or u− becomes close to a configuration Qp,q,e,M with a
non-zero slope p. In either case the positive part u+ also improves. Without loss of
generality, we still denote the universal constants below as in previous propositions.

Proposition 6.3. There exist universal constants λ̄, δ̄, η̄ such that if

(6.10) u+ is (V, λ2+γ , δ̄) flat in Bλ, λ ≤ λ̄

with V = V 1
M,en,an

∈ Vf+ ,

(6.11) |f±(x) − f±(0)| ≤ δ̄|x|γ , ‖f−‖∞ ≤ δ̄

and

(6.12) |u− −Q0,0,en,0| ≤ δ̄1/2λ2+γ , in B−
λ (u)

then either one of the following holds:

(i) there exists V̄ = V 1
M̄,ē,āē

∈ Vf+ , such that

(6.13) u+ is (V̄ , (η̄λ)2+γ , δ̄) flat in Bη̄λ,

and

(6.14) |u− −Q0,0,ē,0| ≤ δ̄1/2(η̄λ)2+γ , in B−
η̄λ(u);

(ii) there exists V ∗ = V α∗

M∗,e∗,a∗
e
∗
∈ Vf+ , such that

u+ is (V ∗, η̄2λ2+γ , δ̄) flat in Bη̄λ,

and

|u− −Qp∗,q∗,e∗,M∗ | ≤ δ̄1/2(η̄λ)2+γ , in B−
η̄λ(u),

for α∗ = G(|p∗|) and p∗ < 0, |p∗| ∼ (δ̄1/2λ1+γ), |q∗| = O(δ̄1/2λγ).
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Proof. All the universal constants will be specified throughout the proof. In par-
ticular, for η̄ fixed, λ̄ << δ̄ << η̄ and they are small enough so that Proposition
4.3 can be applied.

In view of Lemma 6.2 and Proposition 4.3 (see also Remark 6.9), then (6.13)
holds.

Now, for x ∈ B1, set

ũ(x) =
1

λ
u(λx), f̃−(x) = λf−(λx)

v(x) = δ̄−1/2λ−(1+γ)(ũ−(x) +
1

2
f̃−(0)x

2
n).

Since ũ− ≥ 0 and |f̃−(0)| ≤ λδ̄

(6.15) v ≥ −λ−γ δ̄
1/2

2
x2n.

If we prove that

(6.16) |v| ≤
1

2
η̄2+γ , in B−

η̄ (ũ),

then in view of Remark 6.1, we can conclude that (6.14) holds as well, by choosing
δ̄ small enough (depending on η̄.)

From assumptions (6.10)-(6.11)-(6.12) we get (λ small)

F (ũ) ⊂ {−λ ≤ xn ≤ λ} = Sλ,

|v| ≤ 1 in B−
1 (ũ), |∆v| ≤ δ̄1/2 in B−

1 (ũ), |v| ≤ δ1/2λ on F (ũ).

Using a barrier, we can prove that

(6.17) |v| ≤ Cλ in Sλ ∩B−
2/3(ũ).

Indeed, let ξ satisfy

∆ξ = −δ1/2 in B1 ∩ {xn < λ}

with
ξ = 0 on xn = λ, ξ = 1 on ∂B1 ∩ {xn < λ}.

Then, by the maximum principle,

(6.18) ξ + δ1/2λ ≥ v in B−
1 (ũ)

and
ξ ≤ C|xn − λ| in B2/3 ∩ {xn < λ},

from which the desired upper bound follows. The lower bound is proved similarly.
Thus, for λ small (depending on η̄), (6.16) holds in Sλ.
We now analyze what happens in Bη̄ ∩ {xn < −λ}. Denote by w the solution to

∆w = 0 in B− := B2/3 ∩ {xn < 0}

with boundary data

w = v on ∂B− ∩ {xn < 0}, w = 0 on {xn = 0}.

Notice that,
|w| ≤ Cλ on xn = −λ.

This can be obtained using the barrier ξ above and (6.18) (and the corresponding
upper bound for v). Thus, by the maximum principle

|w − v| ≤ C(λ + δ̄1/2) in B1/2 ∩ {xn ≤ −λ}
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In particular, if

(6.19) |w| ≤
1

4
η̄2+γ , in Bη̄ ∩ {xn ≤ −λ},

then (6.16) holds as long as λ and δ̄ are small enough (depending on η̄.)
We now determine under which conditions (6.19) is valid. First, expanding w

near 0, we have

(6.20) w(x) = xn(p+ q · x+O(|x|2)), q · en = 0, |p|, |q| ≤ C.

Thus, there exists η̄ universal, such that if

(6.21) |p| ≤ η̄2, |q| ≤ η̄

then (6.19) holds.
We now prove that:

p ≥ −η̄4 ⇒ (6.19) holds ⇒ (i)

p < −η̄4 ⇒ (ii).

First, we observe that

(6.22) |v − w| ≤ C(λ+ δ1/2|xn|), in B1/2 ∩ {xn ≤ −λ}.

Indeed, let ψ, φ solve

∆ψ = 0,∆φ = −1 in B2/3 ∩ {xn < −λ}

with

ψ = φ = 0 on ∂B2/3 ∩ {xn < −λ}

ψ = Cλ, φ = 0 on B2/3 ∩ {xn = −λ}.

Then,

v − w ≤ ψ + δ1/2φ in B2/3 ∩ {xn ≤ −λ}

and the desired upper bound follows. The lower bounds is obtained similarly.

We now distinguish three cases.

Case 1. |p| ≤ η̄4.
In this case we show that |q| ≤ η̄ hence (6.21) is satisfied.
Indeed, assume |q| > η̄, say to fix ideas |q1| >

1√
n
η̄. Let x̄ = ((signq1)η̄

2, 0, . . . ,−λβ)

with β = (1 + γ)/2. Then, using (6.15)-(6.22) we get

−
1

2
λδ̄1/2 ≤ v(x̄) ≤ w(x̄) + Cλ+ Cδ̄1/2λβ

from which, using (6.20), we deduce that (for λ̄, δ̄ << η̄)

Cλ ≥ λβ(p+ |q1|η̄
2 − C̄η̄4 − Cδ̄1/2) ≥ Cδ̄1/2λβ

and we reach a contradiction if λ̄1−γ << δ̄.

Case 2. p > η̄4.
In this case we can argue similarly as in Case 1, by choosing x̄ = (0,−λβ).

Case 3. p < −η̄4.
In this case, we first notice that in view of (6.17)-(6.22) and the linear growth

of w (extended to zero in xn > 0), we have

|v − w| ≤ C(λ + δ̄1/2) in B−
η̄ (ũ).
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Moreover, in view of (6.20) we also have that (B−
η̄ (ũ) ⊂ {xn < λ})

|w − xn(p+ q · x)| ≤ Cη̄3 in B−
η̄ (ũ).

(for λ small.)
Combining these two inequalities and using the formula for v and rescaling back,

we obtain

|u− −Qp̄,q̄,en,0| ≤
1

2
δ̄1/2(η̄λ)2+γ in B−

η̄λ(u)

with

p̄ = δ̄1/2λ1+γp, q̄ = δ̄1/2λγq.

Thus, in view of Remark 6.1, if ē, M̄ are given by (6.13) (which we have already
observed to hold), then

|u− −Qp̄,q∗,ē,M̄ | ≤ δ̄1/2(η̄λ)2+γ in B−
η̄λ(u), |q̄ − q∗| ≤ Cλ1+γ .

Finally, setting α∗ = G(|p̄|), and letting V ∗ = V α∗

M̄,ē,a∗
ē

we obtain the desired con-

clusion in (ii) (again for δ̄ << η̄). Here a∗ is chosen so that V ∗ ∈ Vf+ , i.e.

2α∗a∗ · ē− α∗trM̄ = f+(0).

Thus, the claim follows from the fact that

|α∗ − 1| = O(δ1/2λ1+γ), |a∗ − ā| = O(|α∗ − 1||2āē − trM̄ |),

with

r|ā|, r‖M‖ ≤ δ̄r
1+γ
2 , r = η̄λ,

and one can easily check that

|V 1
M̄,ē,āē

− V α∗

M̄,ē,a∗
ē

| ≤ C(|α∗ − 1|r + |a∗ − ā|r2) ≤
1

2
η̄2λ2+γ in Br.

�

7. The iteration.

In the next proposition we show that if we are in an “intermediate degenerate
setting”, that is if at a small enough scale u+is flat and u− is close to a configuration
Q with a small non-zero slope, then the flatness of u+ improves for a little while at
a C2 rate while the estimate on u− improves at a C2,γ rate.

Let V = V α
M,en,an

∈ Vf+ and Q = Qp,q,en,M with α = G(|p|).

Proposition 7.1. There exist universal constants λ̄, δ̄, η̄, such that if

(7.1) u+ is (V, r2λ2+γ , δ̄) flat in Brλ, λ ≤ λ̄

for some r ≤ η̄ with δ̄1/2rγ ≥ 2λ1+γ , and

(7.2) |f±(x) − f±(0)| ≤ δ̄|x|γ , ‖f−‖∞ ≤ δ̄

(7.3) |u− −Q| ≤ δ̄1/2(rλ)2+γ , in B−
rλ(u),

with p < 0, |p| ∼ δ̄1/2λ1+γ , |q| = O(δ̄1/2λγ), then

(7.4) u+ is (V̄ , (η̄r)2λ2+γ , δ̄) flat in Brη̄λ,

and

(7.5) |u− − Q̄| ≤ δ̄1/2(rη̄λ)2+γ , in B−
λrη̄(u)
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with V̄ = V ᾱ
M̄,ē,āē

∈ Vf+ , Q̄ = Qp̄,q̄,ē,M̄ , ᾱ = G(|p̄|), p̄ < 0, |p̄| ∼ δ̄1/2λ1+γ , |q̄| =

O(δ̄1/2λγ).

Proof. Call,

ũ(x) =
1

rλ
u(rλx), Ṽ (x) =

1

rλ
V (rλx), Q̃(x) =

1

rλ
Q(rλx) x ∈ B1.

Step 1. As usual, universal constants are small enough so that previous results
can be applied. They will be made smaller in the proof, with λ̄ << δ̄ << η̄. Let,

ǫ = rλ1+γ .

In view of Lemma 6.2, ũ/α satisfies the assumptions of Proposition 4.1 (see also
Remark 4.2) hence

(7.6) ũ+ is (Ṽ ∗, η̄2+γǫ, δ̄) flat in Bη̄

with Ṽ ∗ = V α
M∗,ē,a∗

n
. Let M̄ =M∗/(rλ), ā = a∗/(rλ).

Step 2. Let

v(x) = δ̄−1/2(rλ)−(1+γ)(ũ−(x) − Q̃(x)).

We argue similarly as in Proposition 6.3.
From assumptions (7.1)-(7.2)-(7.3) and the estimates for the sizes of p, q, r we

get
F (ũ) ⊂ {−rλ ≤ xn ≤ rλ} = Srλ,

|v| ≤ 1 in B−
1 (ũ), |∆v| ≤ 2̄δ1/2 in B−

1 (ũ), |v| ≤ δ̄1/2 on F (ũ).

Using a barrier, we can prove that

(7.7) |v| ≤ Cλ + δ̄1/2 in Srλ ∩B−
2/3(ũ).

Indeed, let ξ satisfy

∆ξ = −δ1/2 in B1 ∩ {xn < rλ}

with
ξ = 0 on xn = rλ, ξ = 1 on ∂B1 ∩ {xn < rλ}.

Then, by the maximum principle,

(7.8) ξ + δ̄1/2 ≥ v in B−
1 (ũ)

and
ξ ≤ C|xn − rλ| in B2/3 ∩ {xn < rλ},

from which the desired upper bound follows. The lower bound is proved similarly.
We now analyze the region where xn ≤ −rλ.
Denote by w the solution to

∆w = 0 in B+ := B2/3 ∩ {xn < 0}

with boundary data

w = v on ∂B+ ∩ {xn < 0}, w = 0 on {xn = 0}.

Using the barrier ξ above and (7.8) we get that

|w| ≤ Cλ + δ̄1/2 on B2/3 ∩ {xn = −rλ}.

Hence by the maximum principle, (λ << δ̄)

(7.9) |v − w| ≤ Cδ̄1/2 on B2/3 ∩ {xn < −rλ}.
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In fact, in view of (7.7) and the linear growth of w we get (say w = 0 on xn > 0)

(7.10) |v − w| ≤ Cδ̄1/2 on B−
1/2(ũ).

We now expand w near 0, i.e.

(7.11) w(x) = xn(p
∗ + q∗ · x+O(|x|2)), q∗ · en = 0, |p∗|, |q∗| ≤ C.

Hence, for η̄ small universal, and λ << η̄, ( B−
η̄ (ũ) ⊂ {xn < rλ})

(7.12) |w − xn(p
∗ + q∗ · x)| ≤

1

2
η̄2+γ in B−

η̄ (ũ).

In this case, using the formula for v and rescaling back, we obtain from (7.10)-
(7.12) that

|u− −Qp̄,q̄,en,M | ≤
4

5
δ̄1/2(η̄rλ)2+γ in B−

η̄rλ(u),

with

p̄ = δ̄1/2(rλ)1+γp∗ + p, q̄ = δ̄1/2(rλ)γq∗ + q.

Using that r ≤ η̄, it easily follow that for η̄ small universal,

p̄ < 0, |p̄| ∼ δ̄1/2λ1+γ

and clearly

|q̄| = O(δ̄1/2λγ).

If we replace M with M̄ , then for δ̄ << η̄, the error E has size

E = O(‖M − M̄‖|x|2(|p̄|+ |q̄||x|)) ≤
1

10
δ̄1/2(η̄rλ)2+γ

where in the last inequality we used that λ1+γ ≤ 1
2 δ̄

1/2rγ . Similarly, if we now
replace en with ē and q̄ with the corresponding q̃ such that q̃ · ē = 0 we get an error
E of size

E = O(|x||en−ē|(|p̄|+|q̄||x|)+(|f−(0)|+|p̄|‖M̄‖)|x|2|en−ē|2+|q̄−q̃|(|x|+‖M‖|x2|))

and again

E ≤
1

10
δ̄1/2(η̄rλ)2+γ

using that λ1+γ ≤ 1
2 δ̄

1/2rγ . Thus,

|u− −Qp̄,q̃,ē,M̄ | ≤ δ̄1/2(η̄rλ)2+γ

and |q̃| = O(δ̄1/2λγ). Finally, let ᾱ = G(|p̄|). Then,

|α− ᾱ| = O(|p− p̄|) = O(δ̄1/2(rλ)1+γ ).

Thus, dropping the dependence on the subscripts ā, ē, M̄

|V α − V ᾱ| ≤ C|α− ᾱ|η̄rλ ≤ Cδ̄1/2(rλ)2+γ η̄

and for η̄ small universal and δ̄ << η̄

V ᾱ(x+ η̄2+γr2λ2+γ ē) + Cδ̄1/2(rλ)2+γ η̄ ≤ V ᾱ(x +
1

2
η̄2r2λ2+γ ē).

Hence, scaling back, we conclude from (7.6) that (7.4) holds for V̄ = V ᾱ
M̄,ē,āē

(ar-

guing similarly for the lower bound.) As at the end of the proof of Proposition 6.3
we can now modify ā slightly to guarantee that V̄ ∈ Vf+ . �
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Finally, in the proposition below, we show that after reaching a small enough
scale, the approximation of u− with a configuration Q is good enough to recover
the full C2,γ∗

flatness of u (in a non-degenerate setting.)

Proposition 7.2. There exist λ̄, δ̄, γ∗ universal such that if

(7.13) u+ is (V, r2λ2+γ , δ̄) flat in Brλ, λ ≤ λ̄

with V = V α
M,en,an

, for r with δ̄1/2rγ ∈ [2η̄γλ1+γ , 2λ1+γ) and

(7.14) |u− −Qp,q,en,M | ≤ δ̄1/2(rλ)2+γ , in B−
rλ(u),

for α = G(|p|) and p < 0, |p| ∼ δ̄1/2λ1+γ , |q| = O(δ̄1/2λγ), then

(7.15) u is (V̄ , (rλ)2+γ∗

, δ̄) flat in Brλ

with V̄ = V α,β
M,en,a,b

∈ Vf±,G, β = |p|.

Proof. Let λ̄, δ̄ be the constants in Proposition 7.1 , with λ̄ << δ̄ to be made
possibly smaller. Let γ∗ be given, to be specified later.

Call

Wβ := β(1 + b · x)(xn −
1

2
xTMx)

with

β = |p|, b′ =
1

|p|
q′, 2βbn = βtrM + f−(0).

Then it follows from (7.14) that

(7.16) |u−Wβ | ≤ Cδ̄1/2(rλ)2+γ , in B−
rλ(u).

Hence,

(7.17) Wβ(x− (rλ)2+γ∗

en) ≤ u ≤Wβ(x+ (rλ)2+γ∗

en) in B−
rλ(u),

as long as

(7.18) r ≤ Cλ
1+γ∗

γ−γ∗ .

Moreover, call

ǫ := (rλ)1+γ∗

,

then

(7.19) (rλ)|b′| ≤ δ̄2 (rλ)2|bn|‖M‖ ≤ δ̄2ǫ

as long as

(7.20) r ≤ Cλ
γ+γ∗

1−γ∗ .

Now, let

Wα := α(1 + a · x)(xn −
1

2
xTMx)+

with

αa′ := βG′(β)b′.

Then, αa′ = O(|q′|) and in view of (7.13) we get

(7.21) Wα(x− Cr2λ2+γen) ≤ u+(x) ≤Wα(x + Cr2λ2+γen) in Brλ

and conclude that

(7.22) Wα(x− (rλ)2+γ∗

en) ≤ u+(x) ≤Wα(x + (rλ)2+γ∗

en) in Brλ
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as long as

(7.23) r ≥ Cλ
γ

γ∗ −1.

Notice that all bounds on r are satisfied as long as

(7.24) γ∗ <
γ2

1 + 2γ

and λ̄ is small enough. Now the conclusion follows combining (7.17) and (7.22). �

We conclude this section by exhibiting the proof of our main Theorem 1.1.

Proof of Theorem 1.1. According to Lemma 3.2, after rescaling, we can assume
that u satisfies either the assumptions of Proposition 6.3 or Proposition 4.4 with
λ = λ̄ (say 0 ∈ F (u)). In the latter case, we can apply Proposition 4.4 indefinitely.
If u falls in the degenerate case of Proposition 6.3, then either we can iterate the
conclusion (i) indefinitely or we denote by λ∗ = η̄kλ̄ the first value for which (ii)
holds i.e, without loss of generality,

u+ is (V, η̄2λ∗2+γ , δ̄) flat in Bη̄λ∗ ,

for some V = V α,β
M,en,a,b ∈ Vf±,G

|u− −Qp,q,en,M | ≤ δ̄1/2(η̄λ∗)2+γ , in B−
η̄λ∗(u),

for α = G(|p|) and p < 0, |p| ∼ (δ̄1/2λ∗1+γ), |q| = O(δ̄1/2λ∗γ).
We now follow under the assumptions of Proposition 7.1 or possibly Proposition

7.2, with r = η̄, λ = λ∗. We apply the conclusion of Proposition 7.1 till the
first r̄ = η̄m0 (possibly m0 = 1) for which δ̄1/2r̄γ ∈ [2η̄γλ∗1+γ , 2λ∗1+γ). Then we
conclude by Proposition 7.2 that

(7.25) u is (V̄ , (r̄λ)2+γ∗

, δ̄) flat in Br̄λ

with V̄ = V α,β
M,en,a,b

∈ Vf±,G, β = |p| and we can apply indefinitely Proposition 4.4.

To guarantee the C2,γ∗

improvement, we have to check that as r decreases from η̄
to r̄ we have

λ∗2+γr2 ≤ (λ∗r)2+γ∗

.

Thus we need,

r̄ ≥ (λ∗)
γ−γ∗

γ∗ ,

which follows from the fact that (see (7.24)),

γ∗ <
γ2

1 + 2γ
.

8. Appendix A

In this short section we recall standard pointwise C1,α estimates for solutions to
elliptic equations in C1,α domains (see for example [MW] for further details.). We
also presents a few variants which are needed in the previous section.

Let

Ω := {xn > g(x′)} ∩B1 Γ := {xn = g(x′)} ∩B1, g(0) = 0, ∇x′g(0) = 0

with g ∈ C1,α and say

(8.1) |g| ≤ |x|1+α.
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Let u be a bounded solution to

(8.2)

{

∆u = f in Ω,

u = ϕ on Γ,

for f ∈ L∞(Ω), ϕ ∈ C1,α(Γ).

Theorem 8.1. Assume that

(8.3) |ϕ(x) − l(x′)| ≤ |x|1+α

with l a linear function. If

(8.4) ‖l‖∞, ‖u‖∞, ‖f‖∞ ≤ 1 in Ω,

then u is C1,α at 0 and

(8.5) |∇u(0)| ≤ C

with C = C(n, α).

It follows also that

∂iu(0) = ∂il i 6= n.

Remark 8.2. It easy to see that if (8.3) is replaced by

(8.6) ϕ(x)− l(x′) ≤ |x|1+α (rsp. ≥ |x|1+α)

then the following conclusion holds: ∂nu(0) exists and

∂nu(0) ≤ C.

Indeed we can apply Theorem 8.1 to the function v which solves problem (8.2) with
ϕ replaced by l(x′) + |x|1+α. By the maximum principle u ≤ v, and the conclusion
follows.

We need the following refinement of this remark. Let ϕ be defined in B1.

Theorem 8.3. Assume that

(8.7) − |x|1+α ≤ g ≤ σ|x|1+α

for some small σ > 0. If ‖u‖∞, ‖f‖∞ ≤ 1, and ϕ ∈ C2 satisfies

(8.8) |ϕ(0)|, |∂iϕ(0)| ≤ 1 i 6= n

(8.9) − 1 ≤ ∂nϕ(0) ≤
1

σ

(8.10) |∂ijϕ| ≤ 1 in B1, (i, j) 6= (n, n)

and

(8.11) |∂nnϕ| ≤
1

‖g‖∞

then ∂nu(0) exists and

∂nu(0) ≤ C.
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To obtain this estimate it suffices to apply the Remark 8.2 with

l(x′) = ϕ(0) +
∑

i6=n

∂iϕ(0)xi.

Indeed

ϕ(x) − l(x′) ≤ ∂nϕ(0)xn + C|x|2 +
1

‖g‖∞
x2n ≤ C|x|1+α.

A similar statement holds when g satisfies the inequality

(8.12) g ≥ −σ|x|1+α.

9. Appendix B

For the reader convenience we recall the technique of [KNS] to transform a gen-
eral (possibly nonlinear) two-phase free boundary problem into an elliptic system
with coercive boundary conditions.

Let u be a classical solution to a two-phase free boundary problem governed by
a second order elliptic equation, say in B1 with 0 ∈ F (u). For σ small, the partial
hodograph map

y′ = x′, yn = u+(x)

is 1− 1 from B+
1 (u) ∩Bσ (0) onto a neighborhood of the origin U ⊂ {yn ≥ 0}, and

flattens F (u) into a set Σ ⊂ {yn = 0}. The inverse mapping is the partial Legendre
transformation

x′ = y′, xn = ψ(y),

where ψ satisfies yn = u+ (y′, ψ (y)) , y ∈ U . The free boundary is now the graph
of xn = ψ (y′, 0).

Concerning the negative part, let C be a constant larger than ∂yn
ψ in U. Intro-

duce the reflection map

x′ = y′, xn = ψ(y)− Cyn,

which is 1 − 1 from a neighborhood of the origin U1 ⊆ U onto B−
1 (u) ∩ Bσ (0)

(choosing σ smaller, if necessary). Define in U1

φ(y) = u−(y′, ψ(y)− Cyn).

It is easily seen that the x derivatives of u± are expressed in terms of the y
derivatives of ψ and φ. Since u is a solution to a two-phase problem, it follows that
ψ and φ solve in U1 a nonlinear system of the type

(9.1)

{

F1(D
2ψ,∇ψ, ψ, y) = 0

F2(D
2φ,D2ψ,∇φ,∇ψ, ψ, y) = 0

Moreover the free boundary conditions

u+ = u− and |∇u+| = G(|∇u−|), on F (u)

become (for an appropriate G̃)

(9.2)







φ(y′) = 0 on yn = 0,

∂yn
ψ = G̃ (∂yn

φ,∇y′ψ) on yn = 0.
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Since |∇u+| > 0 on F (u) and G is strictly increasing, the system (9.1) is elliptic
with coercive boundary conditions (9.2), under the natural choice of weights (see
[KNS], p. 94, 95).

In the particular case when the equation governing the problem is in divergence
form, then (9.1) will also be in divergence form. On the other hand, if the system
(9.1)-(9.2) has no special structure, then higher regularity follows by classical re-

sults on elliptic-coercive systems in [ADN, M], as long as u is in C2,α(B+
1 (u)) ∩

C2,α(B−
1 (u)).
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