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Abstract. In this paper, we propose the mathematical and finite element analysis of a second
order Partial Differential Equation endowed with a generalized Robin boundary condition which
involves the Laplace–Beltrami operator, by introducing a function space H1(Ω; Γ) of H1(Ω)-functions
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1. Introduction. When modelling physical phenomena through Partial Differ-
ential Equations (PDEs), the introduction of non-standard boundary conditions may
be required. This is the case for example of the following Poisson equation, endowed
with a boundary condition involving the Laplace-Beltrami operator:{

−∆u = f in Ω,
∂u
∂n + αu− β∆Γu = h on Γ = ∂Ω,

(1.1)

where α, β are positive constants and f, h are given functions. We refer to problem
(1.1) as a generalized Poisson (GR-P) problem, which is the focus of the paper. We
remark that (1.1)2 is the usual Robin boundary condition augmented with an extra
boundary stiffness term of second order (higher-order versions could also be consid-
ered); we refer to such a boundary condition as a generalized Robin one.

The problem described by (1.1) has some backgrounds in physical modeling and
mathematical analysis. For example, in [26] it is proposed, among other possibilities,
an unsteady version problem of (1.1) to model a heat conduction process with a heat
source on the boundary. The resulting boundary condition is known as the Goldstein-
Wentzell condition, which is studied in [45, 47], in the simplified case f ≡ 0 (note that
this assumption also influences the boundary condition). When f is arbitrary, the
unsteady version of (1.1) is analyzed only in the framework of maximal regularity
for parabolic equations with dynamic boundary conditions (see [13, 40]). General-
ized Robin boundary conditions are also used in [24] in the context of Schröedinger
operators. A mathematical analysis of (1.1) is proposed by J. L. Lions in [34] for
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a computational domain representing the half space RN ∩ {xN > 0} (see Example
III.2.6 of [38]), featuring a flat boundary. However, to the best of our knowledge, a
full theoretical analysis of the finite element approximation of problem (1.1) has never
been considered in literature.

Another motivation for the study of the (GR-P) (1.1) consists in the fact that it
represents a simplified version of reduced fluid-structure interaction problems arising
for example in hemodynamics applications. When modeling the blood flow in arteries
the structure is represented by the vessel wall which delimitates the computational
domain of the fluid. In this framework, under the assumptions of a thin wall struc-
ture, small displacements and linear stress-strain constitutive relation, reduced FSI
models, e.g. the so-called coupled momentum method (see [19]), have been developed
by using membrane models for the structure defined on the boundary of the compu-
tational domain of the fluid. More specifically, by the coupling conditions between
fluid velocity and structural displacement it is possible to write the structural stress
tensor in terms of fluid dynamics quantities. The resulting reduced model is a set of
fluid dynamics equations for which the structural membrane model is incorporated
by means of high-order generalized Laplace-Beltrami boundary conditions, defined by
the constitutive stress-strain relation. The reduced model involves therefore general-
ized Robin boundary conditions of which (1.1)2 represents a simplified version. So
far, both full and reduced FSI models have been successfully used to solve problems
in hemodynamics (see [2, 9, 11, 14, 18, 33, 37, 46, 41]). The theoretical analysis of
FSI models with a membrane structure has been addressed in [7, 16, 17, 28, 29] where
the equations of the fluid and structural models are treated in two separate partial
differential equations. At the best of our knowledge, the theoretical analysis of the
fluid dynamics equations with the embedding of the structural model as a generalized
Robin boundary conditions have not been carried out yet. Thus, in this framework,
we believe that the theoretical and numerical study of (GR-P) provides an insight
into the properties of such reduced FSI problems.

Generalized Robin boundary conditions have a relevance also in the context of
domain decomposition methods (see [23, 36, 44]) and, in particular, in the so-called
Schwarz waveform relaxation algorithm (see [21, 30]). Different types of transmission
conditions between subdomains have been studied in order to speed up the conver-
gence of the subdomain iterative algorithm (see e.g. [22]). As a matter of fact, one of
the most effective transmission conditions involve Robin-type boundary terms includ-
ing tangential gradient and Laplace-Beltrami operators evaluated at the interfaces
between subdomains. The mathematical analysis of the subproblem arising from the
Schwartz waveform relaxation algorithm has been proposed in [4] but only for the half
space domain with flat boundary. Moreover, in [4] the convergence of the subdomain
iterative algorithm is studied, however no analysis of the finite element discretization
on the subdomains was carried out.

In this paper, we propose a theoretical analysis of the (GR-P) (1.1) with gener-
alized Robin boundary conditions in terms of existence, uniqueness and regularity of
a weak solution, and convergence of the finite element approximation. The theoret-
ical results are verified by means of numerical tests. In this analysis, we are facing
the difficulty of dealing with the generalized Robin condition which involves higher-
order derivatives on Γ resulting from the Laplace-Beltrami operator. Consequently,
the H1/2(Γ)-regularity assured by the standard trace theorem for the Sobolev space
H1(Ω) is insufficient to define a suitable weak formulation associated with (1.1). For
this reason, we introduce non-standard Sobolev spaces where functions admit equal-
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order regularity both in Ω and on Γ, that is

Hm(Ω; Γ) = {v ∈ Hm(Ω) : v|Γ ∈ Hm(Γ)}, m = 1, 2, . . . . (1.2)

We show that this class of function spaces is well-suited to prove the well-posedness
and regularity of problem (1.1). Moreover, our choice of the regularity allows us
to properly define a finite element approximation of problem (1.1), for which the
convergence result follows by a standard argument. The function spaces of type (1.2)
are already used in [34] when Ω is the half space RN ∩ {xN > 0}, such that, the
boundary Γ is the hyperplane {xN = 0}. In this work, we generalize the results of
[34] by taking into account domains with a curved boundary Γ. In [45, 47] these spaces
are also considered, but there the assumption f ≡ 0 is essential to prove the results.
For the treatment of the general case we need to introduce results for tangential
derivatives on the boundary together with the function spaces Hm(Ω; Γ).

Our analysis could extend to the case where the Laplacian in (1.1) is replaced
with a more general second-order elliptic operator, that is,{

Lu := −
∑N

i,j=1
∂

∂xj
(aij

∂u
∂xi

) +
∑N

i=1 bi
∂u
∂xi

+ cu = f in Ω,
∂u
∂nL

+ αu− β∆Γu = h on Γ,

( ∂u
∂nL

means
∑N

i,j=1 njaij
∂u
∂xi

) provided that the associated bilinear form satisfies suit-
able coercivity conditions. In this paper, however, we restrict ourselves to problem
(1.1) in order to simplify notation, statement of results, and proofs of theorems.

The paper is organized as follows. In Sect. 2 we introduce basic notation and
auxiliary lemmas, especially explaining tangential derivatives. Sect. 3 and Sect. 4 are
devoted to the theoretical analysis of problem (1.1) in terms of existence, uniqueness
and regularity of weak solutions, as well as a-priori error estimates for the finite
element approximation. Finally, in Sect. 5 we verify the validity of the theoretical
results by means of numerical examples. Conclusions follow.

2. Preliminaries.

2.1. Basic notation. We use the notational convention for which lightface ital-
ics indicates scalar quantities and boldface italics vectors or second-order tensors.
Let us present a detailed setting to study problem (1.1). We let Ω be a bounded
domain in RN with boundary Γ, whose smoothness properties will be specified later.
The outer unit normal on Γ is denoted by n; ∆Γ indicates the Laplace-Beltrami oper-
ator, defined in terms of tangential derivatives (see Sect. 2.2). The parameters α > 0
and β ≥ 0 are given real constants. We refer to problem (1.1) with β > 0 and β = 0
as the generalized Robin boundary value problem (GR-P) and the standard Robin
boundary value problem (SR-P), respectively. We also use the notation GRBC and
SRBC, respectively, in order to indicate only the boundary conditions.

Let C > 0 denote a generic constant depending only on Ω, Γ and the dimension
N of the space RN , unless otherwise stated. If other dependecies quantities need to
be specified, we will indicate them case by case, e.g. we will write C(f, h), C(α, β)
etc. The i-th component of a vector u, with respect to the standard basis in RN , is
written as ui = (u)i. We assume the boundary is at least Lipschitz continuous, i.e.,
Γ ∈ C0,1. The additional hypotheses on Γ will be specified later depending on our
statements.

We employ the standard Lebesgue and Sobolev spaces: L2(Ω) = {v : Ω →
R : ∥v∥L2(Ω) = (

∫
Ω
|v|2 dx)1/2 < ∞} and Hm(Ω) = {v ∈ L2(Ω) : ∥v∥Hm(Ω) =
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(
∑

|α|≤m ∥∂αv∥2L2(Ω))
1/2 < ∞} for m = 0, 1, . . . . We also use L∞(Ω) and Wm,∞(Ω)

with their norms. Those spaces are defined on Γ as well, and moreover we need frac-
tional Sobolev spaces Hs(Γ) for s > 0. It is well known that the trace operator is
surjective from Hm(Ω) onto Hm−1/2(Γ) if Γ ∈ Cm−1,1 (m ≥ 1), admitting its right
continuous inverse (see [38, Theorems 2.5.5 and 2.5.8]). The trace of u is denoted by
u|Γ or simply by u. H1

0 (Ω) denotes the closure of C∞
0 (Ω) in H1(Ω), which is known

to coincide with the set of the H1(Ω)-functions with zero-traces. The dual space of
a Banach space X is denoted by X ′, and the duality pairing between X ′ and X is
indicated by ⟨·, ·⟩X .

A localization argument using a partition of unity will be important in the study
of regularity. Let K be a cylinder:

K = {ξ = (ξ′, ξN ) = (ξ1, ..., ξN ) ∈ RN : |ξ′| ≤ 1, |ξN | ≤ 1},

and let K+ = K ∩ {ξN > 0}, K0 = K ∩ {ξN = 0}. If Ω is a Cm (resp. Cm,1) domain
(m ≥ 1), then at each x ∈ Γ there exist a neighborhood U and a map ϕ : U → K such
that ϕ is a Cm (resp. Cm,1)-diffeomorphism and ϕ(Ω ∩ U) = K+, ϕ(Γ ∩ U) = K0.
The inverse of ϕ is denoted by ψ. We refer to ξ = ϕ(x) and x = ψ(ξ) as a local
coordinate and a parametrization respectively.

Because Ω is bounded, Γ can be covered by finite number of such neighborhoods
Ur (r = 1, . . . , r0), with ϕr,ψr being the local coordinate and parametrization asso-
ciated with Ur. They, supplemented by some open set U0 such that U0 ⊂ Ω, form a
covering of Ω. By standard arguments on partition of unity (see [6, Lemma 9.3]), we
see that there exist functions θr ∈ C∞(Rx) (r = 0, . . . , r0) such that supp θr ⊂ Ur is
compact and

∑r0
r=0 θr ≡ 1.

Let u : Ω → R be a (reasonably smooth) function. Its local representation on
each Ur is defined by ũ(ξ) = u(ψr(ξ)). The Jacobi matrix of ϕr is denoted by Φr,
that is, (Φr)ij = ∂(ϕr)i/∂xj , and we put Jr = |det(Φ−1

r )| > 0. Then we see that

∂u

∂xi
=

N∑
j=1

(Φr)ji
∂ũ

∂ξj
(i = 1, . . . , N),

∫
Ω∩Ur

u dx =

∫
K+

ũ |Jr| dξ. (2.1)

2.2. Tangential derivatives. In this subsection, assuming Γ ∈ C1, we fix one
local coordinate ϕr : Ur → K and omit the subscript r. We let Greek (α, β, . . . ) and
Latin (i, j, . . . ) indices take their values in {1, . . . , N−1} and {1, . . . , N} respectively.1

We employ the summation convention.
Let us define the bases of the tangent space TxΓ by (cf. [20, p. 109]) gα =

∂ψ
∂ξα

∣∣
ξN=0

. If Γ is regarded as an N − 1 dimensional manifold embedded in RN , then

gα can be identified with the abstract tangent vector ∂
∂ξα .

Covariant and contravariant components of a metric tensor gαβ , g
αβ , and con-

travariant vectors gα are obtained through the following relationships:

gαβ = gα · gβ , (gαβ) = (gαβ)
−1, gα = gαβgβ ,

where the dot means the inner product in RN . Then it follows that gα · gβ = gαβ ,
gα · gβ = δβα (the Kronecker delta), and gαβg

β = gα.
Next we introduce a projection matrix P = I −n⊗n = (δij − ninj)

N
i,j=1, where

a ⊗ b = (aibj)ij is the dyadic product. For a scalar function u : Ω → R, we define

1 Note that the greek letters α and β represent here indices and not the coefficients defining the
generalized Robin boundary condition (1.1)2.
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its tangential gradient by the matrix-vector product ∇Γu = P ∇u =: (∂i,Γu)
N
i=1. In

particular, one has ∂i,Γ = (δij − ninj)∂j . Notice that ∂i,Γ∂j,Γ ̸= ∂j,Γ∂i,Γ in general.
The tangential gradient of a vector-valued function u : Ω → RN is defined by the
matrix-matrix product ∇Γu = ∇uP = (∂j,Γui)i,j=1,...,N .

The above representations of ∇Γ are expressed in the x-coordinate and hence
they are global. The way they can be represented terms of the local coordinate ξ is
addressed in the next lemma. The result itself is not new (e.g. page 55 of [12]); nev-
ertheless it is of critical importance in our theory, especially when proving regularity,
so that we give a complete proof.

Lemma 2.1. The following local representations of P and ∇Γu hold:

(i) P = gα ⊗ gα,
(ii) ∇Γu = gα ∂ũ

∂ξα .

Proof. (i) It suffices to prove I = gα ⊗ gα +n⊗n. In fact, an application of the
right-hand side matrix to the vectors gβ and n, which form a basis of RN , produces
the same vectors, and thus the desired equality follows.

(ii) By virtue of (i) and a chain rule, we have

∇Γu = (gα ⊗ gα)∇u = gα(gα · ∇u) = gα
(

∂(ψ)i
∂ξα

∂u
∂xi

)
= gα ∂ũ

∂ξα .

Remark 2.2. (i) It also follows that P = gα ⊗ gα,hence P is symmetric.

(ii) One can write ∂i,Γ = (gα)i
∂

∂ξα . This shows that the tangential derivatives
are determined only by the information on Γ. In fact, to apply ∂i,Γ to u : Γ → R one
has to, at first, extend u in a smooth way to a neighbourhood of Γ, but the result is
independent of such extensions.

For a vector-valued function A : Γ → RN , the tangential divergence operator is
defined as divΓA := Tr(∇ΓA) = ∂i,ΓAi, where Ai = (A)i. The Laplace-Beltrami
operator is then defined by ∆Γu = divΓ(∇Γu).

By a direct computation, we can verify the following formulas concerning tangen-
tial derivatives for product:

Lemma 2.3. For smooth functions θ, u,u defined on Γ, we have

(i) ∇Γ(θu) = (∇Γθ)u+ θ∇Γu.

(ii) ∇Γ(θu) = ∇Γθ ⊗ u+ θ∇Γu.

(iii) divΓ(θu) = ∇Γθ · u+ θ divΓu.

We conclude this subsection with change of variables formulas for calculus on Γ
(cf. (2.1)). In view of Lemma 2.1(ii) and the surface element given by ds =

√
|g|dξ′

where |g| = det(gαβ) > 0, it follows that

∂i,Γu = gαi
∂ũ

∂ξα
(i = 1, . . . , N),

∫
Γ∩Ur

u ds =

∫
K0

ũ
√
|g| dξ′. (2.2)

2.3. Space Hm(Ω; Γ). First we introduce another expression for the norm of
Hm(Γ) under Γ ∈ Cm−1,1 if m ≥ 2 or Γ ∈ C1 if m = 1. In the existing literature, as
in [35, 38], it is usually defined in the local coordinates after truncation by a partition
of unity, that is,

∥u∥Hm(Γ) =

( r0∑
r=1

∥θ̃ru∥2Hm(K0)

)1/2

.
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This is well-defined as far as mathematics is concerned. However, from a numerical
point of view, it is not suitable for real computation. Instead, we consider

∥u∥Hm(Γ) =

(
∥u∥2Hm−1(Γ) + ∥∇Γu∥2Hm−1(Γ)

)1/2

,

which can be defined inductively in m. The global representation of ∇Γ then enables
us to compute it as easily as we calculate the Hm(Ω)-norm. The two norms are
equivalent as shown in the next lemma.

Lemma 2.4. The above two norms are equivalent for u ∈ Hm(Γ).
Proof. Consider any piece θru truncated by the partition of unity θr (r =

1, . . . , r0), and write u instead of θru for simplicity. By induction with respect to
m, it suffices to prove that

1

C

N−1∑
α=1

∥∥∥∥ ∂ũ

∂ξα

2∥∥∥∥
L2(K0)

≤
N∑
i=1

∥∂i,Γu∥2L2(Γ) ≤ C
N−1∑
α=1

∥∥∥∥ ∂ũ

∂ξα

∥∥∥∥2
L2(K0)

. (2.3)

For that purpose, we note that (recall the first relation of (2.2))

∂i,Γu(x) = gαi (ϕ(x))
∂ũ

∂ξα
(ϕ(x)), x ∈ Γ ∩ U,

∂ũ

∂ξα
(ξ′, 0) = gαi(ξ)∂i,Γu(ψ(ξ

′, 0)), (ξ′, 0) ∈ K0.

Then, because
√

|g| is bounded from above and below by some C > 0, we obtain (2.3)
using the second relation of (2.2).

We are ready to define our fundamental space Hm(Ω; Γ) = {v ∈ Hm(Ω) ; v ∈
Hm(Γ)} (the same as in (1.2)), endowed with the norm

∥u∥Hm(Ω;Γ) =

(
∥u∥2Hm(Ω) + ∥u|Γ∥2Hm(Γ).

)1/2

(2.4)

Lemma 2.5. Hm(Ω; Γ) is a Hilbert space.
Proof. Obviously Hm(Ω; Γ) admits an inner product which induces (2.4). It

remains to show the completeness. Let {vn} be a Cauchy sequence in Hm(Ω; Γ).
Since Hm(Ω; Γ) ⊂ Hm(Ω), there exists some v ∈ Hm(Ω) such that vn → v in Hm(Ω).
Similarly, there exists some w ∈ Hm(Γ) such that vn|Γ → w in Hm(Γ). However, by
the standard trace theorem one knows vn|Γ → v|Γ in Hm−1/2(Γ), so that v|Γ = w.
Hence v ∈ Hm(Ω; Γ) and vn → v in Hm(Ω; Γ).

Remark 2.6. (i) As is pointed out in [34], Hm(Ω; Γ) is not closed in Hm(Ω),
its closure being identical to Hm(Ω). As a result, it is not trivial whether C∞(Ω) is
dense in Hm(Ω; Γ) with respect to the norm (2.4).

(ii) Hm(Ω)∩H1
0 (Ω) is a closed subspace of Hm(Ω; Γ). In particular, when m = 1

the closure of C∞
0 (Ω) in H1(Ω; Γ) coincides with H1

0 (Ω).
We will also need the spaces Hm(ω; γ) = {v ∈ Hm(ω) : v|γ ∈ Hm(γ)}, where

ω ⊂ RN is a domain with only piecewise smooth boundary ∂ω and γ ⊂ ∂ω is a smooth
portion of ∂ω. They will be used in the proof of Theorems 3.3–3.4.
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3. Analysis of (GR-P).

3.1. Weak solution. We derive a suitable weak formulation and establish its
well-posedness for (1.1). First recall the following integration by parts formula on Γ:

−
∫
Γ

divΓA v ds =

∫
Γ

A · ∇Γv ds−
∫
Γ

κ(A · n) v ds, (3.1)

where A is a vector-valued function and κ = divΓn (see Lemma 16.1 of [25]).
Remark 3.1. For (3.1) to be valid, we need at least the regularity Γ ∈ C1,1,

because otherwise (3.1) does not hold globally. For instance, let Ω be a plane polygon.
Then on each side Γj we have (note that κ = 0 on Γj)

−
∫
Γj

divΓA v ds =

∫
Γj

A · ∇Γv ds+
[
(A · ν∂Γj ) v

]
∂Γj

,

where ν∂Γj denotes the outer unit normal to ∂Γj. Because ν∂Γj ’s for adjacent two
sides are not equal at the corner point shared by them, the extra “boundary of bound-
ary” terms do not cancel out even if we add up the equalities above.

Let u be a sufficiently smooth solution of (1.1). Multiplying the first equation of
(1.1) by a test function v and integrating in Ω, one finds that∫

Ω

∇u · ∇v dx−
∫
Γ

∂u

∂n
v ds =

∫
Ω

fv dx.

Substituting the GRBC of (1.1) into the above equation and applying (3.1) with
A = ∇Γu (note that ∇Γu · n = 0), we arrive at∫

Ω

∇u · ∇v dx+ α

∫
Γ

uv ds+ β

∫
Γ

∇Γu · ∇Γv ds =

∫
Ω

fv dx+

∫
Γ

hv ds.

The above equation motivates us to propose the following variational problem:
given f ∈ H1(Ω)′ and h ∈ H1(Γ)′, find u ∈ H1(Ω; Γ) such that

a(u, v) := aΩ(u, v) + aΓ(u, v) = ⟨F, v⟩H1(Ω;Γ) , ∀v ∈ H1(Ω; Γ). (3.2)

Here, we have defined bilinear forms aΩ and aΓ by

aΩ(u, v) =

∫
Ω

∇u · ∇v dx, u, v ∈ H1(Ω),

aΓ(u, v) = α

∫
Γ

uv ds+ β

∫
Γ

∇Γu · ∇Γv ds, u, v ∈ H1(Γ),

and a linear form F by

⟨F, v⟩H1(Ω;Γ) = ⟨f, v⟩H1(Ω) + ⟨h, v⟩H1(Γ) , v ∈ H1(Γ).

Theorem 3.2. Let α, β > 0, then there exists a unique solution u of (3.2) which
fulfills

∥u∥H1(Ω;Γ) ≤ C(α, β)(∥f∥H1(Ω)′ + ∥h∥H1(Γ)′). (3.3)

We call this u a weak solution of (1.1).
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Proof. By the Schwartz inequality a is bounded (and symmetric) on H1(Ω; Γ).
Combining the two coercivities∫

Ω

|∇v|2 dx+

∫
Γ

|v|2 ds ≥ C∥v∥2H1(Ω), ∀v ∈ H1(Ω), (3.4)∫
Γ

|∇Γv|2 dx+

∫
Γ

|v|2 ds = ∥v∥2H1(Γ), ∀v ∈ H1(Γ), (3.5)

one also finds that a is coercive on H1(Ω; Γ), i.e.,

a(v, v) ≥ C(α, β)∥v∥2H1(Ω;Γ), ∀v ∈ H1(Ω; Γ).

Finally, F is bounded on H1(Ω; Γ). In fact, it is immediate to see

| ⟨F, v⟩H1(Ω;Γ) | ≤ (∥f∥(H1(Ω))′ + ∥h∥(H1(Γ))′)∥v∥H1(Ω;Γ), ∀v ∈ H1(Ω; Γ).

The theorem is now only a consequence of the celebrated Lax-Milgram theorem.
Let us see the way u recovers (1.1) in a weak sense. Restricting test functions to

H1
0 (Ω) in (3.2), we obtain −∆u = f in H1

0 (Ω)
′. Then ∂u

∂n ∈ H1/2(Γ)′ is characterized
by ⟨

∂u

∂n
, v

⟩
H1/2(Γ)

= aΩ(u, v)− ⟨f, v⟩H1(Ω) , ∀v ∈ H1(Ω).

Combining this with (3.2) we have⟨
∂u

∂n
, v

⟩
H1/2(Γ)

+ aΓ(u, v) = ⟨h, v⟩H1(Γ) , (3.6)

at least for all v ∈ C∞(Γ). Since C∞(Γ) is dense in H1(Γ), (3.6) is valid for all
v ∈ H1(Γ), so that ∂u

∂n + αu− β∆Γu = h in H1(Γ)′.

3.2. Regularity. Let us prove that the weak solution in Theorem 3.2 can in fact
be more regular, depending on the smoothness of the data. The main ingredient is the
method of difference quotient combined with truncation and localization arguments.
In doing so, for α = 1, ..., N − 1 and δ ∈ R \ {0}, we introduce a shift operator sαδ and
a tangential difference quotient operator Dα

δ by

sαδ ṽ(ξ) = ṽ(ξ1, ..., ξα + δ, ..., ξN ), Dα
δ ṽ =

sαδ ṽ − ṽ

δ
.

It is easy to see that

Dα
δ (ũṽ) = (Dα

δ ũ)ṽ + (sαδ ũ)ṽ, (3.7)

and that (if supp ũ ⊂ K, supp ṽ ⊂ K and |δ| is sufficiently small)∫
K+

ũ(Dα
−δ ṽ) dξ =

∫
K+

(Dα
δ ũ)ṽ dξ,

∫
K0

ũ(Dα
−δ ṽ) dξ

′ =

∫
K0

(Dα
δ ũ)ṽ dξ

′. (3.8)

We also have (see [6, Proposition 9.3])

∥Dα
δ ṽ∥L2(K+) ≤

∥∥∥∥ ∂ṽ

∂ξα

∥∥∥∥
L2(K+)

, ∥Dα
δ ṽ∥L2(K0) ≤

∥∥∥∥ ∂ṽ

∂ξα

∥∥∥∥
L2(K0)

, (3.9)
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together with their analogies in L∞-spaces.
Now we begin with the case m = 2.
Theorem 3.3. Let α, β > 0. Assume Γ ∈ C1,1, f ∈ L2(Ω), h ∈ L2(Γ), and let

u ∈ H1(Ω; Γ) be a weak solution of (1.1). Then we have u ∈ H2(Ω; Γ) and

∥u∥H2(Ω;Γ) ≤ C(∥f∥L2(Ω) + ∥h∥L2(Γ)),

where C = C(α, β).
Proof. We divide the proof into five steps.
Step 1: Take any piece θru supported in Ur, which is obtained from the partition

of unity. We concentrate on the so-called “estimates near the boundary”, that is,
1 ≤ r ≤ r0, since the interior case r = 0 is easier to study (extend θ0u to the whole
space and discuss by the method of difference quotient). In the sense of a weak
solution, we obtain (recall Lemma 2.3)

−∆(θru) = θrf − 2∇θr · ∇u−∆θru =: Fr ∈ L2(Ω),

∂(θru)

∂n
+ αθru− β∆Γ(θru) = θrh+

∂θr
∂n

− 2β∇Γθr · ∇Γu−∆Γθru =: Hr ∈ L2(Γ).

For notational simplicity, we will omit the the subscript r and write u instead of θru
until Step 5.

It follows that u ∈ H1(Ω ∩ U ; Γ ∩ U), with suppu ⊂ U , and that∫
Ω∩U

∂u

∂xi

∂v

∂xi
dx+ α

∫
Γ∩U

uv ds+ β

∫
Γ∩U

∂i,Γu ∂i,Γv ds

=

∫
Ω∩U

Fv dx+

∫
Γ∩U

Hv ds, ∀v ∈ H1(Ω ∩ U ; Γ ∩ U), supp v ⊂ U,

where the summation convention is employed.
Step 2: Moving to the local coordinate, we see that ũ ∈ H1(K+;K0), with

supp ũ ⊂ K, and that (recall (2.1) and (2.2))∫
K+

Φji
∂ũ

∂ξj
Φki

∂ṽ

∂ξk
|J | dξ + α

∫
K0

ũṽ
√
|g|dξ′ + β

∫
K0

gαi
∂ũ

∂ξα
gβi

∂ṽ

∂ξβ

√
|g|dξ′

=

∫
K+

F̃ ṽ|J | dξ +
∫
K0

H̃ṽ
√
|g|dξ′, ∀ṽ ∈ H1(K+;K0), supp ṽ ⊂ K.

Here, let us redefine the quantities multiplied by Φji, g
α
i , |J |,

√
|g|, α, β, which appear

above, as single symbols A,A′, L, F̂ , Ĥ. Then, the above equation can be rewritten
as ∫

K+

Ajk
∂ũ

∂ξj
∂ṽ

∂ξk
dξ +

∫
K0

Lũṽ dξ′ +

∫
K0

A′
αβ

∂ũ

∂ξα
∂ṽ

∂ξβ
dξ′

=

∫
K+

F̂ ṽ dξ +

∫
K0

Ĥṽ dξ′, ∀ṽ ∈ H1(K+;K0), supp ṽ ⊂ K. (3.10)

Here note that A ∈W 1,∞(K+),A
′ ∈W 1,∞(K0), L ∈ W 1,∞(K0) and that

C∥ṽ∥2H1(K+;K0)
≤

∫
K+

Ajk
∂ṽ

∂ξj
∂ṽ

∂ξk
dξ +

∫
K0

L|ṽ|2 dξ′ +
∫
K0

A′
αβ

∂ṽ

∂ξα
∂ṽ

∂ξβ
dξ′ (3.11)

for all ṽ ∈ H1(K+;K0) such that supp ṽ ⊂ K, as a result of (3.4)–(3.5).
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Step 3: Fix 1 ≤ γ ≤ N − 1 and take ṽ = Dγ
−δD

γ
δ ũ in (3.10), with |δ| small

enough. We omit the superscript γ. Then it follows from (3.7)–(3.8) that∫
K+

Ajk
∂Dδũ

∂ξj
∂Dδũ

∂ξk
dξ +

∫
K0

L|Dδũ|2 dξ′ +
∫
K0

A′
αβ

∂Dδũ

∂ξα
∂Dδũ

∂ξβ
dξ′

=

∫
K+

F̂D−δDδũ dξ +

∫
K0

ĤD−δDδũ dξ
′ −

∫
K+

DδAjk
∂sδũ

∂ξj
∂Dδũ

∂ξk
dξ

−
∫
K0

DδLsδũDδũ dξ
′ −

∫
K0

DδA
′
αβ

∂sδũ

∂ξj
∂Dδũ

∂ξk
dξ′.

This combined with (3.11) and (3.9) leads to

C(∥Dδũ∥2H1(K+) + ∥Dδũ∥2H1(K0)
)

≤ ∥F̂∥L2(K+)∥Dδũ∥H1(K+) + ∥Ĥ∥L2(K0)∥Dδũ∥H1(K0)

+ ∥A∥W 1,∞(K+)∥ũ∥H1(K+)∥Dδũ∥H1(K+) + ∥L∥W 1,∞(K0)∥ũ∥L2(K0)∥ũ∥H1(K0)

+ ∥A′∥W 1,∞(K0)∥ũ∥H1(K0)∥Dδũ∥H1(K0).

Since we already know (3.3), the above estimate implies

∥Dδũ∥2H1(K+) + ∥Dδũ∥2H1(K0)
≤ C(∥f∥2L2(Ω) + ∥h∥2L2(Γ)).

Letting δ → 0, we deduce ∂ũ/∂ξγ ∈ H1(K+) and ∂ũ/∂ξγ ∈ H1(K0) for γ ̸= N ;
especially we have shown ũ|K0 ∈ H2(K0).

Step 4: Restricting test functions to H1
0 (K+) in (3.6) (and thus neglecting the

integrals on K0), we get − ∂
∂ξk

(Ajk
∂ũ
∂ξj ) = F̂ in H1

0 (K+)
′. Therefore,

−ANN
∂2ũ

∂(ξN )2
= F̂ +

∑
(j,k)̸=(N,N)

∂

∂ξk

(
Ajk

∂ũ

∂ξj

)
+

∂ANN

∂ξN
∂ũ

∂ξN
∈ L2(K+).

Since ANN =
∑N

i=1 |ΦNi|2 > 0, this implies that ∂ũ/∂ξN is also in H1(K+), so that
ũ ∈ H2(K+). Moreover, we obtain the estimate

∥ũ∥H2(K+) + ∥ũ∥H2(K0) ≤ C(∥f∥L2(Ω) + ∥h∥L2(Γ)).

Step 5: We return to the global coordinate and retrieve the notation θru which
was denoted by u up to here. From the conclusions of Steps 3–4 it follows that
θru ∈ H2(Ω; Γ). We conclude that u =

∑r0
r=0 θru ∈ H2(Ω; Γ) and that ∥u∥H2(Ω;Γ) ≤

C(∥f∥L2(Ω) + ∥h∥L2(Γ)).
Theorem 3.3 does not follow from a classical theory for general elliptic boundary

value problems. For example, in [35, 38] it is assumed that the differential order
of a boundary operator must be strictly less than that of the interior one, which is
not the case in (GR-P); the a priori estimate of Agmon-Douglis-Nirenberg (see [1])
only applies to u ∈ H3(Ω) or higher-order spaces. Neither Theorem 3.3 is covered
by the preceding results in [40, 45, 47] for parabolic problems. In fact, the author
of [40] works with the setting such that h ∈ H1/2(Γ) and u|Γ ∈ H5/2(Γ), and thus
the maximal regularity space in [40], for the steady case, is different from the one
in Theorem 3.3. Our choice of regularity, where only integer orders appear, is more
preferable from numerical point of view. The analysis in [45, 47] essentially relies on
the assumption f ≡ 0, which is not available in our setting.
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Next let us establish the general case including m ≥ 3.
Theorem 3.4. Let α, β > 0 and m ≥ 2. Assume Γ ∈ Cm−1,1, f ∈ Hm−2(Ω), h ∈

Hm−2(Γ), and let u be a weak solution of (1.1). Then, u ∈ Hm(Ω; Γ) and

∥u∥Hm(Ω;Γ) ≤ C(∥f∥Hm−2(Ω) + ∥h∥Hm−2(Γ)), (3.12)

where C = C(α, β,m).
Proof. As in the proof of Theorem 3.3, we discuss only the estimates near the

boundary. Suppose we have localized our analysis as before and arrived at (3.10). We
observe that ũ is a weak solution of the following boundary value problem:

− ∂

∂ξk

(
Ajk

∂ũ

∂ξj

)
= F̂ in K+, supp ũ ⊂ K,

−AjN
∂ũ

∂ξj
+ Lũ− ∂

∂ξβ

(
A′

αβ

∂ũ

∂ξα

)
= Ĥ on K0.

To prove the theorem, it suffices to show, by the induction inm, that ũ ∈ Hm(K+;K0)
under the conditions Γ ∈ Cm−1,1, F̂ ∈ Hm−2(K+), Ĥ ∈ Hm−2(K0). Because the
statement for m = 2 is already proved in Theorem 3.3, we only need to establish the
case for m ≥ 3, assuming the one for m− 1.

For 1 ≤ γ ≤ N − 1, by differentiating the above equations with respect to ξγ , one
finds that ∂ũ/∂ξγ satisfies the same equations, the right-hand sides being replaced by
some F ∗ ∈ Hm−3(Ω) and H∗ ∈ Hm−3(Γ). For a rigorous justification of this point, it
suffices to take ∂ṽ/∂ξγ as a test function in (3.10) with smooth ṽ, perform integration
by parts, and discuss in a similar way as we did after Theorem 3.2.

According to the inductive assumption, we deduce ∂ũ/∂ξγ ∈ Hm−1(K+;K0)
together with the estimate∥∥∥∥ ∂ũ

∂ξγ

∥∥∥∥
Hm−1(K+;K0)

≤ C(∥F ∗∥Hm−3(K+) + ∥H∗∥Hm−3(K0))

≤ C(∥f∥Hm−2(Ω) + ∥h∥Hm−2(Γ)).

As a consequence, we have ∂ũ/∂ξγ ∈ Hm−1(K+) for γ ̸= N and ũ ∈ Hm(K0).
In a manner similar to Step 4 of the proof of Theorem 3.3, we obtain ∂ũ/∂ξN ∈
Hm−1(K+). Therefore, ũ ∈ Hm(K+;K0) and it also follows that ∥ũ∥Hm(K+;K0) ≤
C(∥f∥Hm−2(Ω) + ∥h∥Hm−2(Γ)). This proves the induction statement for m, and thus
completes the proof.

Remark 3.5. In (SR-P), that is, β = 0, a well known regularity result (see e.g.
Sect. 6.3 in [15]) combined with a trace theorem yields

∥u∥Hm(Ω) + ∥u∥Hm−1/2(Γ) ≤ C(α)(∥f∥Hm−2(Ω) + ∥h∥Hm−3/2(Γ)). (3.13)

Comparing (3.12) and (3.13), we find that GRBC possesses a better smoothing effect
on the boundary than SRBC. In fact, we have proved that the solution u for (GR-P)
is in Hm(Γ) if h ∈ Hm−2(Γ), whereas the one for (SR-P) is expected to be at best in
Hm−1/2(Γ) even if h ∈ Hm−3/2(Γ) (see e.g. Sect. 6.1.3 in [43]).

4. Finite element approximation.

4.1. Hypotheses. Whenever we consider the finite element method (FEM), we
assume N = 2, 3 and that Γ is either class of C1,1 or a polyhedral domain. Further-
more, Γ is assumed to consist of two open subsets Γ0 and Γ1 ̸= ∅, which are mutually



12 T. Kashiwabara, C. M. Colciago, L. Dedè, and A. Quarteroni

disjoint. We designate the N − 2 dimensional portion ∂Γ1 = ∂Γ0 = Γ0 ∩ Γ1 as the
“boundary of boundary”. Then, we consider the following Dirichlet-generalized Robin
mixed boundary value problem:

−∆u = f in Ω,

u = 0 on Γ0,
∂u
∂n + αu− β∆Γu = h on Γ1.

(4.1)

Because the H1 space will be employed not only in Ω but also on Γ, it is natural to
supplement (4.1) with the compatibility condition

u = 0 on ∂Γ1, (4.2)

which we call the “boundary of boundary” condition.
On the one hand, if Γ ∈ C1,1, then Γ0 = ∅ is allowed and one can impose the

GRBC on the whole Γ. On the other hand, if Γ is a polygon or polyhedron, then it is
not appropriate to impose it entirely on Γ at least in a naive way. This is because the
integration-by-parts formula (3.1) fails to hold (see Remark 3.1), leaving non-trivial
Neumann conditions at corners or edges. Therefore, in this case, we assume that Γ1

is only one side (N = 2) or face (N = 3) of Ω and that the remaining part Γ0 is
subjected to the homogeneous Dirichlet condition.

Remark 4.1. Our analysis easily extends to the case when Ω is polyhedral and
Γ1 consists of a finite number of sides or faces, as far as we impose suitable Dirichlet
“boundary of boundary” conditions at corners or on edges contained in Γ1.

Remark 4.2. If Γ0 ̸= ∅, the mixed-boundary condition would cause regularity loss
(see [27]), which will not be covered by our regularity theorem. Therefore, we cannot
avoid assuming some regularity of an exact solution in deriving error estimates.

Under these settings, we introduce a Hilbert space:

Hm
Γ0
(Ω; Γ1) = {v ∈ Hm(Ω) : v|Γ0 = 0, v|Γ1 ∈ Hm(Γ1) ∩H1

0 (Γ1)},

where m ≥ 1 and H1
0 (Γ1) denotes the closure of C∞

0 (Γ1) in H1(Γ1). We equip
Hm

Γ0
(Ω; Γ1) with the norm

∥u∥Hm
Γ0

(Ω;Γ1) =

(
∥u∥2Hm(Ω) + ∥u|Γ1∥2Hm(Γ1)

)1/2

,

and set V := H1
Γ0
(Ω; Γ1).

Let Th be a mesh of Ω into element domains. Namely, 1) Ω =
∪

T∈Th
T ; 2)

each T ∈ Th is a closed subset with non-empty interior; 3) if T, T ′ ∈ Th are distinct,
intT ∩ intT ′ = ∅; 4) each T ∈ Th has a piecewise smooth boundary. Here, the family
index h represents the mesh size defined by2

h = hΩ := max{hT ; T ∈ Th}, hT = diamT = {|x− y| ; x,y ∈ T}.

In addition, we set

Sh = {S ⊂ Γ ; there exists some T ∈ Th such that S = T ∩ Γ},

2 Note that the symbol h represents here the mesh size and not the right-hand side function of
the generalized Robin boundary condition (4.1)3.
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and assume that Sh also satisfies the requirements to be a mesh on Γ. We call Sh the
boundary mesh inherited from Th. The boundary mesh size hΓ is defined in a manner
similar to hΩ; we see that hΓ ≤ hΩ.

Let us introduce an abstract finite element space equipped with an ability to
approximate V .

Definition 4.3. Let Vh ⊂ V be a finite dimensional subspace. We say that Vh

approximates V with degree k (k = 1, 2, . . . ) if for all m = 2, 3, . . . and v ∈ Hm
Γ0
(Ω; Γ1)

there exists some vh ∈ Vh such that

∥v − vh∥V ≤ C(k)hmin{m−1,k}∥v∥Hm
Γ0

(Ω;Γ1). (4.3)

Examples of Vh approximating V with degree k are given in the next subsection.

4.2. Examples of a finite element space. In the first example, we consider
the case when Ω is polyhedral. Let Th be a triangulation of Ω by flat triangles or
tetrahedra. We assume {Th}h↓0 is regular, i.e., hT ≤ CρT for all T ∈ Th, where ρT
denotes the diameter of the inscribed ball of T . The boundary meshes {Sh}h↓0 are
also assumed to be regular (its definition is similar as above).

For k = 1, 2, . . . , we define the standard Pk finite element space by

Xk
h = {vh ∈ C0(Ω) : vh|T ∈ Pk(T ) (∀T ∈ Th)} ⊂ H1(Ω),

where Pk(T ) denotes the space of the polynomials of degree ≤ k on T . We notice
that {vh|Γ1

; vh ∈ Xk
h} ⊂ H1(Γ1) is identical to the standard Pk finite element space

given on Γ1. Furthermore, we let V k
h = Xk

h ∩ V be a conforming approximation to
V , which is well-defined because any vh ∈ Xk

h such that vh = 0 at the nodes in Γ1

exactly satisfies the Dirichlet conditions incorporated in V .
If we denote by Ik

h : C0(Ω) → Xk
h the standard Pk Lagrange interpolation oper-

ator, we see that Ik
h(V ∩ C0(Ω)) = V k

h . By the Sobolev embedding H2(Ω) ↪→ C0(Ω)
(recall N = 2, 3), Ih is well-defined on Hm

Γ0
(Ω; Γ1) if m ≥ 2. Then, well-known in-

terpolation error estimates (see e.g.[5, 43, 42]), applied to either Ω or Γ1, give ∥u −
Ik
hu∥H1(Ω) ≤ Ch

min{m−1,k}
Ω ∥u∥Hm(Ω) and ∥u−Ik

hu∥H1(Γ1) ≤ Ch
min{m−1,k}
Γ ∥u∥Hm(Γ1),

where C = C(m, k). Since hΓ ≤ hΩ = h, this implies that

∥u− Ik
hu∥V ≤ C(m, k)hmin{m−1,k}∥u∥Hm

Γ0
(Ω;Γ1). (4.4)

Consequently, V k
h approximates V with degree k.

In the second example, we let Γ ∈ C1,1. In this case we should ideally use compu-
tational meshes capable of exactly representing the boundary Γ. This can be achieved
by using isoparametric finite elements (see e.g. [8]) in the case of polynomial bound-
aries Γ; alternatively, if Γ corresponds to a conics section represented by NURBS, as
typical in several applications, Isogeometric Analysis (see e.g. [3, 10, 32]) can be used
with this aim.

In the latter case, we assume that Ω admits a NURBS parametrization F :
(0, 1)N → Ω such that F is invertible, with smooth inverse on each element Q ∈ Qh,
being Qh the mesh associated with (0, 1)N . Here, we suppose that F is obtained
from NURBS basis functions built from piecewise polynomials of degree k (globally
C1,1), and that {Qh}h↓0 is a shape-regular family of a rectangle mesh of (0, 1)N . The
mesh in the physical space is T = {F (Q) : Q ∈ Qh} and the NURBS function space
defined in Ω is denoted by Vh. Then, by Theorem 3.2 of [3], for all v ∈ Hm(Ω) there
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exists some NURBS interpolant Ihv ∈ Vh such that∑
T∈Th

∥v − Ihv∥2H1(T ) ≤ C(F )
∑
T∈Th

h
2(l−1)
T ∥v∥2Hl(T ),

where l = min{m, k+1}. Since F depends only on the shape of Ω and not its size, we
have ∥v − Ihv∥H1(Ω) ≤ Chl−1∥v∥Hl(Ω). The analysis of [3] can be possibly extended
to boundary norms, leading to a similar estimate on Γ. As a conclusion, we remark
that Vh approximates V with degree k if Γ0 = ∅; the same result is obtained when
Γ0 ̸= ∅, assuming that Γ0 is the union of element edges or faces on ∂Ω in virtue of
Theorem 3.3 of [3].

4.3. Convergence of FEM for (GR-P). Recall that we are going to solve the
problem (4.1)–(4.2). Using the formula

−
∫
Γ1

∆Γu v ds =

∫
Γ1

∇Γu · ∇Γv ds+

∫
∂Γ1

(∇Γu · ν∂Γ1) v dℓ, (4.5)

(ν∂Γ1 is the outer unit normal of ∂Γ1) we see that a smooth solution of (4.1) fulfills∫
Ω

∇u · ∇v dx+ α

∫
Γ1

uv ds+ β

∫
Γ1

∇Γu · ∇Γv ds =

∫
Ω

fv dx+

∫
Γ1

hv ds,

for all v ∈ V = H1
Γ0
(Ω; Γ1). Note that, when Γ0 ̸= ∅, the condition v = 0 on ∂Γ1

circumvents the extra term on ∂Γ1 in (4.5).
We omit the proof of the next result since it follows immediately from the Lax-

Milgram theorem as in Theorem 3.2.
Proposition 4.4. Given f ∈ L2(Ω) and h ∈ L2(Γ1), there exists a unique u ∈ V

such that

a(u, v) := aΩ(u, v) + aΓ1(u, v) = (f, v)L2(Ω) + (h, v)L2(Γ1), ∀v ∈ V, (4.6)

where

aΩ(u, v) =

∫
Ω

∇u · ∇v dx, aΓ1
(u, v) = α

∫
Γ1

uv ds+ β

∫
Γ1

∇Γu · ∇Γv ds.

Letting Vh ⊂ V be a finite dimensional subspace, we propose an approximate
problem for (4.6) as follows: find uh ∈ Vh such that

a(uh, vh) = (f, vh)L2(Ω) + (h, vh)L2(Γ1), ∀v ∈ Vh (4.7)

(The reader will pardon the use of h with two different meanings: the subindex refers
to the finite element gridsize, whereas h on the last inner product on the right hand
side denotes the given Robin data in equation (1.1)). The existence of a unique uh is
again an immediate consequence of the Lax-Milgram theorem. We are ready to give
a convergence result for the finite element approximation of (4.1).

Theorem 4.5. Let u and uh be solutions of (4.6) and (4.7) respectively. If Vh

approximates V with degree k, and u ∈ Hm
Γ0
(Ω; Γ1) (m ≥ 2), then we have

∥u− uh∥V ≤ Chmin{k,m−1}∥u∥Hm
Γ0

(Ω;Γ1), (4.8)

where C = C(α, β,m, k).
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Proof. According to the coercivity and boundedness of a and to the confor-
mity Vh ⊂ V , we see from Céa’s lemma (see Sect. 4.2 in [42]) that ∥u − uh∥V ≤
C infvh∈V k

h
∥u− vh∥V . Then (4.3) concludes the desired result.

Remark 4.6. If an auxiliary adjoint problem admits a suitable H2
Γ0
(Ω; Γ1)-

regularity result, then the Aubin-Nitsche trick can be applied to derive the L2-estimate,
which tells us that

∥u− uh∥L2(Ω) + ∥u− uh∥L2(Γ1) ≤ O(hmin{k+1,m}).

Let us compare the rate of convergence, especially on the boundary, for (GR-P)
(β > 0) with that for (SR-P) (β = 0). Suppose C = C(α, β,m, k) below. In the
former case, as shown above, we get

∥u− uh∥H1(Γ1) ≤ Chmin{k,m−1}(∥u∥Hm(Ω) + ∥u∥Hm(Γ1)). (4.9)

In the latter case, as far as we work with L2-based Sobolev spaces, we expect to have
only

∥u− uh∥H1(Γ1) ≤ Chmin{k,m−1}−1/2∥u∥Hm(Ω), (4.10)

in view of the trace theorem combined with an inverse inequality between H1(Γ1)
and H1/2(Γ1) and accordingly to the interpolation error estimates in [48, 49]. On the
other hand, if an L∞(Ω)-error estimate as in the Dirichlet problem (see Ch. 8 of [5])
is available, then we have

∥u− uh∥H1(Γ1) ≤ C∥u− uh∥W 1,∞(Γ1) ≤ C∥u− uh∥W 1,∞(Ω)

≤ Chmin{k,m−1}∥u∥Wm,∞(Ω).

Remark 4.7. If an exact solution u is smooth enough to admit Wm,∞(Ω)-
regularity, both the cases (GR-P) and (SR-P) would give an optimal rate of con-
vergence. However, when u ∈ Hm(Ω; Γ1) but u /∈ Wm,∞(Ω), we still have an optimal
convergence rate in (GR-P), whereas we expect only sub-optimal one in (SR-P). Such
behavior is indeed observed in our numerical experiment shown in Sect. 5.1.

5. Numerical examples. Let us define the notation that we are going to use in
this section. In our numerical tests, we build a sequence of NT meshes {T i

h}
NT
i=0, each

one characterised with a mesh step hi. The index i represents indeed the refinement
step of the sequence of meshes. The numerical error with respect to the exact solution
is addressed with the notation eih. For each triangulation T i

h , we compute the following
error norms: ∥eih∥L2(Ω), ∥eih∥L2(Γ), ∥eih∥H1(Ω), and ∥eih∥H1(Γ). We also define the order
of convergence of a generic norm ∥ · ∥∗ as follows:

ρi∗ = log

(
∥eih∥∗
∥ei−1

h ∥∗

)/
log

(
hi

hi−1

)
∀i = 1, .., NT . (5.1)

To indicate exact or numerical solutions of (GR-P) and (SR-P), we add the super-
scripts GR and SR, respectively.

5.1. Regularity. In Remark 4.7, we have highlighted the difference between the
convergence rate for ∥uGR − uGR

h ∥H1(Γ1) and that for ∥uSR − uSR
h ∥H1(Γ1). In this

subsection we give a numerical example where such a difference is actually attained.
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With this aim, we perform a two-dimensional test using the software Freefem++
(see [31]). We choose as domain Ω the square (0, 1)2 and, as boundary Γ1, the upper
side of Ω (see Figure 5.2(a)). We set the data of the problem as follows:

h(x, y) =

{
20 if x > 1/2
0 if x ≤ 1/2

and f(x, y) = 1,

α is set to 1, and, in the case of generalized Robin conditions, β is set equal to 10. As
exact solutions, we use the numerical solutions computed with P2 finite element on
a fine mesh with the mesh step 1/300. In the following, we suppose that the mixed
boundary conditions do not cause a singularity.

The regularity of h defined above is h ∈ W s,p(Γ1) such that sp < 1, s > 0, p > 1;
especially, if p = 2, then h ∈ H1/2−ϵ(Γ1) for arbitrary small ϵ > 0. In view of the
regularity theorem for (GR-P) and (SR-P) (see (3.12) and (3.13)), we expect to have
uGR ∈ H2(Ω; Γ1) and uSR ∈ H2−ϵ(Ω). Note that uSR can never be in W 2,∞(Ω). As
a result, (4.8)–(4.10) tell us that

∥uGR − uGR
h ∥Hs(Ω) = O(h2−s),

∥uSR − uSR
h ∥Hs(Ω) = O(h2−s−ϵ),

∥uGR − uGR
h ∥Hs(Γ1) = O(h2−s),

∥uSR − uSR
h ∥Hs(Γ1) = O(h3/2−s−ϵ).

with s = 0, 1. When s = 0, we assume that the regularity results for the Aubin-Nitsche
technique in L2-norms in Ω and on Γ1 is applicable and we have used ∥v∥L2(Γ1) ≤
C∥v∥1/2L2(Ω)∥v∥

1/2
H1(Ω) to estimate ∥uSR − uSR

h ∥L2(Γ1).

The predictions made above are consistent with the numerical results reported
in Figure 5.1. In fact, Figure 5.1 shows that the expected orders of convergence are
attained, which confirms uGR ∈ H2(Ω; Γ1) and uSR ∈ H2−ϵ(Ω). In other words, our
theoretical result that the GRBC provides more regularity on the boundary than the
SRBC does, if given data are the same, is numerically confirmed.
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, P1 basis functions.
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Figure 5.1. Rate of convergence on the refinement step.

5.2. Convergence. In this section we aim at providing numerical evidence for
the rates of convergence of the errors associated to the finite element approximation
of the (GR-P) (4.1), as reported in Theorem 4.5. Firstly, we consider a problem
for which the computational domain and its boundary are exactly represented by the
computational mesh of the finite element (the mesh). Then, we repeat our analysis for
a curved domain (a conic section) for which the triangulation introduces a geometrical



FEM analysis of a generalized Robin problem 17

error associated to the polygonal representation of the domain and the boundary; we
remark that this situation often occurs in fluid-structure-interaction problems of prac-
tical interest, as in hemodynamics. Specifically, we aim at highlighting the influence
of the geometrical approximation on the rates of convergence of the errors for for the
finite element approximation of (GR-P).

We also compare the rates of convergence of the errors predicted by Theorem
4.5 for the finite element method with those obtained when considering Isogeometric
Analysis (see [10, 32]), a numerical approximation method for PDEs which preserves
the exactness of the geometrical representation of a computational domain through
the whole h-refinement procedure when the latter is described by B-splines or NURBS
(see [39]), as it is the case for conic shapes. We observe that in such cases Isogeometric
Analysis also allows the exact evaluation of the Laplace-Beltrami term appearing in
the GRBC. Finally, we remark that the interpolation error estimates for functions in
a NURBS space possess the same convergence orders of their polynomial counterpart
of degree k (see [3]); therefore, the result of Theorem 4.5 holds also when NURBS-
based Isogeometric Analysis is considered as approximation method for the PDEs.
We observe that the rates of convergence of the errors predicted by Theorem 4.5
eventually hold also when considering an isoparametric finite element method (see
[8]), being the error associated to the geometrical approximation convergent at least
at the same order of the interpolation error.

The expected rates of convergence of the errors for the finite element method and
Isogeometric Analysis are summarized in Table 5.1.

Meth. Degree Γ1 ρHs(Ω;Γ1) Meth. Degree Γ1 ρHs(Ω;Γ1)

FE k Flat k+1-s IGA k Flat k+1-s
FE k Curved 2-s IGA k Curved k+1-s

Table 5.1
Expected rates of convergence of the errors in norm L2(Ω; Γ) (s = 0) and H1(Ω; Γ) (s = 1) for

problem (4.1) for the finite element method (FE) and NURBS-based Isogeometric Analysis (IGA)
of polynomial degree k; comparison for domains with boundary Γ1 “flat” or “curved”.

We solve problem (4.1) and we set the data so that the exact solution is uex =
y cos(πy) sin(πx) and we set the data f(x, y) and h(x, y) so that uex is the exact
solution of problem (4.1). In (GR-P) we use β = 1. We perform two tests: for the
first case, a domain with a flat boundary Γ1 is selected and, in particular, Ω and Γ1

are the same as in Figure 5.2(a); for the second case, we perform the test, with the
same exact solution, using a geometry with a curved boundary and we select Γ1 as it
is shown is Figure 5.2(b).

(a) Square domain. (b) Disk domain.

Figure 5.2. Computational domains Ω. The subset Γ1 ⊂ Γ is indicated in red.
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The results obtained with the finite element method are reported in Figures 5.3
and 5.4, while those obtained with Isogeometric Analysis are reported in Figures 5.5
and 5.6. We use the notation -F and -C to address the Flat boundary case (square)
and, respectively, the Curved one (disk). The results obtained with a SRBC are
addressed with the notation (SR), otherwise, when it is not specified, a GRBC is
involved.

(a) ∥eh∥∗, P1 basis functions. (b) ∥eh∥∗, P2 basis functions.

Figure 5.3. Error norms vs the mesh size, computed for the 2D test cases with the finite
element method. The notations −F and −C stand for, respectively, Flat and Curved Γ1.
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Figure 5.4. Rate of convergence vs the refinement step, computed for the 2D test cases with the
finite element method. The notations −F and −C stand for Flat and Curved surface Γ1, respectively.

Regarding the finite element approximation, in Figure 5.3 we display the com-
puted errors for the linear case (Fig. 5.3(a)) and for the quadratic one (Fig. 5.3(b)).
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Figure 5.5. Error norms vs the mesh step computed for the 2D test cases with the Isogemetric
Analysis discretization. The notations −F and −C stand for Flat and Curved Γ1, respectively.

1 2 3 4 5 6
1.5

2

2.5

3

3.5

4
L
2
(Ω)−F

L
2
(Γ)−F

L
2
(Ω)−C

L
2
(Γ)−C

(a) ρL2(Ω) and ρL2(Γ1)
, P2 basis functions.

1 2 3 4 5 6
0.5

1

1.5

2

2.5
H
1
(Ω)−F

H
1
(Γ)−F

H
1
(Ω)−C

H
1
(Γ)−C

(b) ρH1(Ω) and ρH1(Γ!)
, P2 basis functions.

1 2 3 4 5 6
2

2.5

3

3.5

4

4.5

5
L
2
(Ω)−F

L
2
(Γ)−F

L
2
(Ω)−C

L
2
(Γ)−C

(c) ρL2(Ω) and ρL2(Γ1)
, P3 basis functions.

1 2 3 4 5 6
1.5

2

2.5

3

3.5

4
H
1
(Ω)−F

H
1
(Γ)−F

H
1
(Ω)−C

H
1
(Γ)−C

(d) ρH1(Ω) and ρH1(Γ1)
, P3 basis functions.

Figure 5.6. Rate of convergence on the refinement step computed for the 2D test cases with the
Isogemetric Analysis discretization. The notations −F and −C stand for Flat and Curved surface
Γ1, respectively.

In Figure 5.4 the rate of convergence ρ∗ are shown for the norms of L2(Ω), L2(Γ1),
H1(Ω) and H1(Γ1). From Figures 5.4(a) and 5.4(b) we observe that the rate of con-
vergence is always optimal when using P1 basis functions, no matter if the boundary
Γ1 is flat or curved. On the contrary, when we use P2-FE basis functions the order
of convergence are optimal only in the flat case as it is clear in Figures 5.4(c) and
5.4(d). In the curved boundary case, the polygonal approximation of Γ1 affects the
convergence rate for both the errors inside the domain and on the surface. Moreover,
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we observe that when using a SRBC, instead of a GRBC, the order of convergence is
faster. In our opinion, this is due to the fact that, in the case of SRBC, the approxi-
mation of the boundary and, thus, of its normal, affects only the part of the domain
and surface where the integrals are computed. On the other hand, in (GR-P), the
approximation of the normal affects directly the projection operator and thus the left
hand side term of the finite element problem. When Ω is a polygonal (or polyhedral)
domain, the sequence {T i

h}
NT
i=0 is composed of nested meshes. On the contrary, in the

case where a part of ∂Ω is curved and a polygonal approximation of the geometry is
used, the computational domain changes at each refinement step and the triangula-
tion are not nested. In our opinion, the fact that the mesh are not nested can explain
the oscillating behaviour of the rate of convergence in case of a curved boundary (see
Figs. 5.4(a) and 5.4(b)).

The results obtained by considering NURBS-based Isogeometric Analysis are re-
ported in Figures 5.5 and 5.6. In Figure 5.5(a) and 5.5(b) we display the behavior
of the errors vs. the mesh size h obtained with NURBS bases of quadratic (k = 2)
and cubic (k = 3) polynomial degrees, respectively; in Figure 5.6 we report the con-
vergence rates of the errors in L2(Ω), L2(Γ1), H

1(Ω) and H1(Γ1) norms. We observe
that the rates of convergence always coincide with the polynomial degree k in the
cases of H1 norms, while with k + 1 in the cases of L2 norms.

We conclude that if we are interested in a high order finite element approximation
of the exact solution of (4.1), it is preferable to use a consistent approximation of the
geometrical domain that yields a convergence rate of the geometrical error at least
equivalent to the one expected by the choice of the finite dimensional function space.

6. Conclusions. In this work we considered the analysis of a steady Pois-
son problem endowed with a generalized Robin boundary condition that involves a
Laplace-Beltrami operator on the boundary. We proposed a mathematical analysis of
the problem and, in particular, we proved the well-posedness of the weak formulation,
regularity of the solution and convergence of the finite element error. In particular,
we proved that, in case of generalized Robin conditions, the regularity of the solu-
tion on the boundary is higher with respect to the standard Robin case. We showed
that the convergence analysis of the finite element discretization hold for domain with
both planar and curved boundaries, under the condition that the numerical domain
coincides with the exact one.

We provided numerical evidence to the proposed theoretical results through two-
dimensional finite element simulations. In particular, we compared numerical results
obtained for discretizations with and without the introduction of geometrical approx-
imation errors. In the case of domain with curved boundaries we used Isogeometric
Analysis, a generalization of the finite element method, in order to exactly represent
the domain. We noticed that, when a geometrical error is introduced, the rates of
convergence are sub-optimal, on the contrary, when the domain geometry is exactly
reproduced, the observed numerical rates coincide with those predicted by the theory.

Possible extensions of the current work include the analysis of vectorial unsteady
and saddle-point problems endowed with generalized Robin boundary conditions.
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