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Abstract. We consider a quantum stochastic evolution in continuous time defined by the
quantum stochastic differential equation of Hudson and Parthasarathy. On one side, such an
evolution can also be defined by a standard Schrödinger equation with a singular and
unbounded Hamiltonian operator K. On the other side, such an evolution can also be
obtained as a limit from Hamiltonian repeated interactions in discrete time. We study how
the structure of the Hamiltonian K emerges in the limit from repeated to continuous
interactions. We present results in the case of 1-dimensional multiplicity and system spaces,
where calculations can be explicitly performed, and the proper formulation of the problem
can be discussed.

1. Introduction

Quantum Stochastic Calculus was founded in the ’80 by Hudson and Partha-
sarathy as a noncommutative generalization of Itō calculus [18, 24]. Stochas-
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tial space, and the symmetric Fock space Γ over L2(R; Z), Z being another
complex separable Hilbert space, the multiplicity space. One of the first
achievements of the new calculus was the introduction of Quantum Stochas-
tic Differential Equations (Hudson-Parthasarathy equation) defining Quan-
tum Stochastic Evolutions Vt, t ≥ 0, strongly continuous unitary adapted
processes allowing to represent a uniformly continuous Quantum Dynami-
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H ⊗
Semigroup by the conditional expectation of a Classical Markov Process.

Immediately Frigerio and Maassen realized [13, 14, 20, 21] that a Quantum
Stochastic Evolution Vt enjoys the cocycle property, previously introduced by 
Accardi [1, 2], and thus it is naturally associated to a strongly continuous uni-
tary group Ut, t ∈ R, providing Vt with a quantum mechanical interpretation:



it describes a Hamiltonian coupling between a quantum system H and a bo-
son field Γ in interaction picture with respect to the left shift Θt on Γ, which
models the field free evolution. In other words,

Ut =

{
Θt Vt if t ≥ 0,
V ∗
|t| Θt if t ≤ 0 ,

is a strongly continuous unitary group on H
iKt
⊗ Γ and so there exists a Hamil-

tonian K generating Ut, that is Ut = e− , the evolution in Schrödinger
picture. Roughly speaking, Ut describes a boson field Γ continuously flowing
on a system H and interacting in such a way that each boson of the field can
have a unique singular instantaneous interaction with H, exactly when the
free evolution Θt brings it to hit H, and then it will be brought away by Θt

never hitting H again. Thus the boson field Γ plays the role of a quantum
noise in the dynamics of H. Applications of Quantum Stochastic Evolutions
in Physics can be found in the theories of open quantum systems, continu-
ous measurements, quantum filtering, quantum optics, electronic transport
or thermalization.

The problem that a Quantum Stochastic Evolution satisfies two differ-
ential equations, an ordinary one for Ut coming from Stone’s theorem, and 
a quantum stochastic one for Vt, was raised by Accardi [5]. The character-
ization of the Hamiltonian K generating a Quantum Stochastic Evolution
started in [10 – 12] by Chebotarev and it was completed in [15 – 17] for the
general case of a Hudson-Parthasarathy equation with bounded coefficients
(the coefficients are operators on H) and arbitrary multiplicity. It is a singu-
lar perturbation of the unbounded Hamiltonian E0 generating Θt, with the
interaction partially encoded as boundary conditions defining the domain
D(K). The Hamiltonian K is important because it gives the total energy of
the coupled system H ⊗ Γ, it gives the solution of the Hudson-Parthasarathy
equation Vt = exp{iE0t} exp{−iKt}, and it summarizes all the model as-
sumptions leading to a Quantum Stochastic Evolution. Indeed, the singular
features of a Quantum Stochastic Evolution often represent some ideal sit-
uation which is reached by some suitable limit, such as flat-spectrum and
broad-band approximation, weak coupling limit, singular coupling limit, low
density limit, stochastic limit, or a continuous limit of repeated interactions.
Actually, all of these limits are not on the same ground, as some are heuristic,
while the stochastic limit and the continuous limit of repeated interactions
are mathematically rigorous and they are more powerful techniques.

In this paper we are interested in the last limit. The idea of approximating
Quantum Stochastic Evolutions in continuous time with quantum evolutions
in discrete time goes back, with different approaches, to Meyer [22], Accardi
and Bach [3, 4], Parthasarathy and Lindsay [23, 19], and it has been used in a
number of variants by other authors. In particular, Attal and Pautrat [6, 25]
showed how to obtain Quantum Noises and Quantum Stochastic Evolutions



in continuous time from Quantum Stochastic Calculus in discrete time and
evolutions defined by repeated interactions: they showed how to embed the
discrete time model in the continuous time model and how to perform the
limit in the strong operator topology.

This approach has recently gained the attention of other theoretical physi-
cists and mathematicians [7 – 9, 26], who studied how to get, in the limit, also
continuous measurements of the system H.

Our interest, instead, is to get, in the limit, the Hamiltonian K. Of
course, once the temporal step ∆t of the discrete time model has gone to
0 and the cocycle Vt has been obtained, one implicitly also has the group 
Ut and, by differentiation, also the Hamiltonian K. Anyway, following a 
suggestion by Attal, our aim is to show that K can be obtained directly
by a suitable unique limit when ∆t → 0. This is interesting in order to
understand how the structure of the singular and unbounded Hamiltonian
K emerges in the limit ∆t → 0. Moreover, it could even be an alternative
tool to characterize the Hamiltonian K, maybe working also in the case of
unbounded coefficients.

We consider the case of 1-dimensional multiplicity space Z = C and of
1-dimensional system space H = C. This last assumption is very strong.
From a physical point of view, it reduces the role of the system H to that of a
singular potential acting on the boson field Γ producing scattering, absorption
and emission phenomena (e.g. a beam splitter acting on the electromagnetic
field). From a mathematical point of view, it implies several simplifications:
operators on H = C are just commuting numbers, the Hudson-Parthasarathy
equation admits an explicit solution, the exponential domain is invariant for
the quantum stochastic evolution and its intersection with D(K) is not only
dense but even a domain of essential self-adjointness for K. Thus we can
study the right formulation of the problem and we can find the right limit
giving K as ∆t→ 0.

The paper is organized as follows. Section 2 summarizes notations and
results for Quantum Stochastic Evolutions in continuous time, Sect. 3 sum-
marizes notations and results for Quantum Stochastic Evolutions in discrete
time, Sect. 4 deals with the limit from discrete to continuous time, first sum-
marizing the results by Attal and Pautrat, then stating and proving our new
results.

2. Continuous Quantum Stochastic Evolutions

Given a measurable set I ⊆ R, let us consider the symmetric Fock space over
L2(I)

Γ[I] =
∞⊕

n=0

L2
symm(In) ,



nthe complex separable Hilbert space of sequences ξ = (ξn)∞=0 with totally

symmetric components ξn ∈ Ls
2
ymm(In), with

‖ξ‖2 =

∞∑

n=0

1

n!
‖ξn‖2L2(Rn) .

As usual L2
symm(R0) = C. If L2(I) is the Hilbert space associated to some

bosonic particle, then Γ[I] is the Hilbert space associated to a field of such
bosons.

For every f in L2(I), let ψ(f) be the corresponding exponential vector in
Γ[I],

ψ(f) = (1, f, f⊗2, . . . , f⊗n, . . .) , ‖ψ(f)‖2 = exp ‖f‖2.

Exponential vectors are linearly independent and their linear span is dense
in Γ[I]. Even better: for every subspace s of L2(I), the corresponding expo-
nential domain E(s) of Γ[I],

E(s) = span
{
ψ(f) : f ∈ s

}
,

is dense in Γ[I] if s dense in L2(I). Thanks to the properties of the exponential
vectors, we have the factorization property of the symmetric Fock space

Γ[I] = Γ[B]⊗ Γ[Bc] , ∀ B ⊆ I , Bc = I \B

based on the identification ψ(f) = ψ(f |B)⊗ψ(f |Bc), and we have the natural
immersion

Γ[B] = Γ[B]⊗ ψ(0|Bc) ⊆ Γ[I] , ∀ B ⊆ I ,

based on the identification ψ(f |B) = ψ(fIB), where IB denotes the indicator
function of a (measurable) set B.

For every vector g ∈ L2(I) and every unitary operator U on L2(I), let
W (g, U) be the corresponding Weyl operator, the unitary operator on Γ[I]
defined by

W (g, U)ψ(f) = e−
1
2
‖g‖2−〈g|Uf〉 ψ(Uf + g) , ∀ f ∈ L2(I) .

Then
W (g, U)W (f, V) = e−iIm〈g|Uf〉W (g + Uf, UV) .

The second quantization of a strongly continuous unitary group Ut on L2(I) 
is W (0, Ut), which is a strongly continuous unitary group on Γ[I]. It describes 
the evolution of a field of non-interacting bosons, each one with Hilbert space

L2(I) and evolution Ut.



For every vector g ∈ L2(I), let A(g) and A†(g) be the corresponding
annihilation and creation operators defined by

A(g)ψ(f) = 〈g|f〉ψ(f) , A†(g)ψ(f) =
d

dε
ψ(f + εg)

∣∣∣
ε=0

, ∀ f ∈ L2(I)

and, for every bounded operator N on L2(I), let Λ(N) be the corresponding
conservation operator defined by

Λ(N)ψ(f) =
d

dε
ψ(eεNf)

∣∣∣
ε=0

, ∀ f ∈ L2(I) .

The operators A(g), A†(g) and Λ(N) are unbounded closed operators, respec-
tively antilinear, linear and linear in the arguments g, g and N. The operators
A(g) and A†(g) are mutually adjoint, as are Λ(N) and Λ(N∗).

The differential second quantization of a bounded Hamiltonian H = H∗ on
L2(I) is Λ(H), which is the unbounded Hamiltonian on Γ[I] generating the
second quantization of e−iHt, that is

e−iΛ(H)t = W (0, e−iHt) .

The differential second quantization of an unbounded Hamiltonian H = H∗

on L2(I) is just the Hamiltonian on Γ[I] generating W (0, e−iHt), it is always
denoted by Λ(H), and we have

1. D(Λ(H)) ⊇ E(D(H)) ,

2. Λ(H)ψ(f) = A†(Hf)ψ(f) , ∀ f ∈ D(H),

3. Λ(H)|E(D(H)) is essentially self-adjoint.

In order to introduce Quantum Stochastic Evolutions, now we consider the
symmetric Fock space Γ[R], the Hilbert space associated to a field of bosonic
particles of Hilbert space L2(R). The bosonic degree of freedom is understood
to be the conjugate momentum of the free field energy, so that the free
evolution of the bosons will be modelled by a left shift.

The canonical quantum noises on Γ[R] are the adapted processes of op-
erators

A(t) = A(I(0,t)) , t ≥ 0 ,

A†(t) = A†(I(0,t)) , t ≥ 0 ,

Λ(t) = Λ(π(0,t)) , t ≥ 0 ,

which act non-trivially only on the corresponding factor of the field space
Γ = Γ[(−∞, 0)] ⊗ Γ[(0, t)] ⊗ Γ[(t, +∞)]. For every measurable B ⊆ R, the
operator πB is the multiplication operator by IB .



We are interested in Quantum Stochastic Evolutions Vt defined by the 
Hudson-Parthasarathy equation, that is in the adapted processes of opera-
tors Vt on Γ[R] which are solutions of the Quantum Stochastic Differential 
Equation

dVt =
[
(σ − 1) dΛt − ρ̄σ dAt + ρdA†

t −
(
iη +

1

2
|ρ|2
)

dt
]
Vt , V0 = 1 , (1)

where
σ = e−iα, α ∈ R , ρ ∈ C , η ∈ R .

The properties of the coefficients guarantee that (1) admits a unique adapted
solution Vt, which is a strongly continuous unitary cocycle. As we are consid-
ering the case of a 1-dimensional initial space, the solution admits an explicit
representation by Weyl operators:

Vt = e−iηtW (ρI(0,t), Qt) , Qt = e−iα π(0,t) = 1 + (σ − 1)π(0,t) , t ≥ 0 ,
(2)

where Qt, t ≥ 0, is a strongly continuous family of unitary operators on L2(R).
In order to introduce the group Ut on the field space Γ[R] associated to

Vt, it is convenient to introduce first a group Pt on the one-boson space L2(R)
associated to Qt.

Let θt be the left shift on L2(R),

θt : L2(R)→ L2(R) , f(r) 7→ (θt f)(r) = f(r + t) , t ∈ R ,

which is a strongly continuous unitary group describing a quantum parti-
cle whose degree of freedom r is the conjugate momentum of the energy,
travelling from right to left. This evolution is generated by the unbounded
Hamiltonian ǫ0,

θt = e−itǫ0 , D(ǫ0) = H1(R) =
{
f ∈ L2(R) : f ′ ∈ L2(R)

}
, ǫ0f = if ′ ,

where f ′ is the derivative of f in the sense of distributions on R.
For every α ∈ R, let Pt be the strongly continuous unitary group on L2(R)

defined by

Pt = θtQt = θt e
−iαπ(0,t) = e−iαπ(−t,0)θt , t ≥ 0 , (3)

and by complex conjugation for t ≤ 0. This is the same evolution given by θt,
perturbed by a phase change when the quantum particle’s degree of freedom
hits r = 0. Its Hamiltonian H is a singular perturbation of ǫ0. If we set
R∗ = R \ {0}, we have

Pt = e−iHt, D(H) =
{
f ∈ H1(R∗) : f(0−) = e−iαf(0+)

}
, Hf = if ′ ,

(4)



where f ′ is the derivative of f in the sense of distributions on R∗.
Note that H is the limit in the strong resolvent sense, as β ↓ 0, of the

Hamiltonian ǫ0−αVβ, where Vβ is the (bounded) multiplication operator by

vβ(r) =
1√
2πβ

exp
{
− r2

2β

}
, which describes a potential acting on the par-

ticle. Since vβ(r)→ δ(r) in the sense of distributions, heuristically we could
write Hv(r) = iv′(r)− αδ(r)v(r), where αδ would be a “function” describing
a singular potential located at r = 0. Actually, the Hamiltonian H does not
comprehend a multiplication operator term, but the whole perturbation is
encoded in the boundary condition defining the domain of the Hamiltonian.

Going back to the Fock space, let Θt be the left shift on Γ[R], that is the
second quantization of θt,

Θt : Γ[R]→ Γ[R] , Θt ψ(f) = ψ(θtf) ,

which is the strongly continuous unitary group generated by the unbounded
Hamiltonian Λ(ǫ0),

Θt = e−itE0 , E0 = Λ(ǫ0) .

Finally, let Ut be the strongly continuous unitary group on Γ[R] associated
to the Hudson-Parthasarathy equation, defined by

Ut = Θt Vt = e−iηtW (ρI(−t,0), Pt) , t ≥ 0 ,

and by complex conjugation for t ≤ 0. The group Ut models an evolution, in
Schrödinger picture, where the field continuously flows from right to left on
some singular potential localized at r = 0, so that each boson of the field can
have a unique singular instantaneous interaction with the potential, exactly
when the free evolution Θt brings it in r = 0. Thus, the cocycle Vt models
the same evolution as Ut, but in interaction picture with respect to Θt, and
each factor Γ[(s, t)] of Γ[R] is associated to those bosons of the field which
interact with the singular potential in the time interval (s, t).

The Hamiltonian K generating such an evolution Ut,

Ut = e−iKt,

is a singular perturbation of E0. As we are considering the case of a 1-
dimensional initial space, it is completely characterized by its behaviour on
the exponential domain [15 – 17]:

1. D(K) ∩ E(L2(R)) = E(C),

where C =
{
f ∈ H1(R∗) : f(0−) = σf(0+) + ρ

}
,

2. Ut E(C) = E(C), ∀ t ∈ R,



3. K|E(C) is essentially self-adjoint,

4. For every f ∈ C,

Kψ(f) =
[
η +A†(if ′)− iρ̄σ f(0+)− i

2
|ρ|2
]
ψ(f) ,

where f ′ is the derivative of f in the sense of distributions on R∗.

Note that, when ρ = 0, we have Ut = e−iηtW (0, Pt) and so we simply have
K = η+Λ(H) for every α ∈ R. Thus, up to the irrelevant constant η, the evo-
lution Ut is just a second quantization, that is an evolution of non-interacting
bosons, where each boson singularly interacts with the same potential which
can change its phase. When ρ 6= 0, the evolution Ut is no longer a second
quantization of a single boson evolution: the interaction with the potential
includes emission and absorption phenomena which cannot be described in
the one boson space L2(R), but only in the Fock space Γ[R].

3. Discrete Quantum Stochastic Evolutions

For every n ∈ Z let us consider a 2-dimensional complex Hilbert space Ẑn
with basis {ωn, zn},

Ẑn = span{ωn, zn} .
Then we introduce the Toy Fock space

TΓ =
⊗

n∈Z
Ẑn w.r.t. the stabilizing sequence ωn,

which is a complex separable Hilbert space with basis {ZA}A∈P0(Z), where
P0(Z) is the collection of the finite subsets A = {n1 < n2 < . . . < nk} of Z,
and where

ZA =
(⊗

n∈A
zn

)
⊗
(⊗

n/∈A
ωn

)
,

so that

Φ ∈ TΓ =⇒ Φ =
∑

A

ΦA ZA , ‖Φ‖2 =
∑

A

|ΦA|2.

For every f in ℓ2(Z), let φ(f) be the corresponding discrete exponential vector
in TΓ,

φ(f) =
⊗

n∈Z
(ωn + fn zn) , (φ(f))A =

∏

n∈A
fn ,

‖φ(f)‖2 =
∏

n∈Z
(1 + |fn|2) = exp

{∑

n∈Z
log (1 + |fn|2)

}
.



The linear span of discrete exponential vectors is dense in T Γ, but exponen-
tials of distinct functions f are not necessarily linearly independent.

As usual, any operator acting on some factor Ẑn of T Γ will be extended 
to the whole Toy Fock space by tensorizing with the identity.

The canonical quantum noises on T Γ are the processes of bounded oper-
ators

b(n) = |ωn〉〈zn| , b†(n) = |zn〉〈ωn| , b†(n) b(n) = |zn〉〈zn| ,

which, actually, will correspond to the increments of the noises introduced in
continuous time.

We are interested in Quantum Stochastic Evolutions in discrete time v(n)
defined by repeated interactions, that is in adapted unitary cocycles

v(n) = e−i∆t h(n) · · · e−i∆t h(1),

defined by the Hamiltonians

h(n) = η0 +
1√
∆t

(λ b†(n) + λ̄ b(n)) +
α

∆t
b†(n) b(n) , n ∈ N ,

where η0, α ∈ R, λ ∈ C. The parameter ∆t is the temporal step of the discrete
evolution and it will play a role only in the limit from discrete to continuous

time. If ωn =

[
1
0

]
and zn =

[
0
1

]
, we have the matrix representation

e−i∆t h(n) = e−i∆t η0−iα
2

×




cos
√

α2

4
+ |λ|2∆t+ iα

2

sin

√

α2

4
+|λ|2∆t

√

α2

4
+|λ|2∆t

−i
√
∆t

sin

√

α2

4
+|λ|2∆t

√

α2

4
+|λ|2∆t

λ̄

−i
√
∆t

sin

√

α2

4
+|λ|2∆t

√

α2

4
+|λ|2∆t

λ cos
√

α2

4
+ |λ|2∆t− iα

2

sin

√

α2

4
+|λ|2∆t

√

α2

4
+|λ|2∆t


 .

Let θ̂ be the left shift on TΓ,

θ̂ : TΓ→ TΓ , θ̂ φ(f) =
⊗

n∈Z
(ωn + fn+1 zn) , θ̂ ZA = ZA−1 ,

where A − 1 = {n1 − 1 < n2 − 1 < . . . < nk − 1}. Of course, θ̂ is a unitary
operator.

Finally, let u be the unitary operator

u = θ̂ v(1)

and let us consider the evolution given by un, n ∈ Z, the corresponding
unitary group on T Γ. Note that

un = θ̂nv(n) ∀ n ∈ N .



Similarly to the continuous time case, the group un models an evolution, in 
Schrödinger picture, where the quantum system T Γ flows from right to left
on some localized potential, and each factor Ẑn describes the fraction of the 
system which interacts with the potential (only) during the n-th temporal

step. The cocycle v(n) models the same evolution as un, but in interaction 
picture with respect to the free evolution θ̂n.

4. From Discrete to Continuous Quantum Stochastic Evolutions

In order to recover the continuous time evolution from the repeated interac-
tions model, we embed the Toy Fock space T Γ in the symmetric Fock space
Γ[R] and then we take the limit ∆t ↓ 0. For every given ∆t > 0, we set
tn = n∆t, n ∈ Z, and we get

Γ[R] =
⊗

n∈Z
Γ[(tn−1, tn)] w.r.t. the stabilizing sequence Ωn = ψ(0|(tn−1 ,tn)).

The Toy Fock space is embedded in the symmetric Fock space by the isome-
tries

Jn : Ẑn → Γ[(tn−1, tn)] , ωn 7→ Ωn = ψ(0|(tn−1 ,tn)) ,

zn 7→ Xn =
1|(tn−1,tn)√

∆t
, J∆t =

⊗

n∈Z
Jn : TΓ→ Γ[R]

with ranges

γn = Jn(Ẑn) = span
{

Ωn,Xn

}

γ∆t = J∆t(TΓ) =
⊗

n∈Z
γn w.r.t. the stabilizing sequence Ωn

and projections

Pn : Γ[(tn−1, tn)]→ γn , P∆t =
⊗

n∈Z
Pn : Γ[R]→ γ∆t .

Then J∗
∆t = J−1

∆t P∆t : Γ[R]→ TΓ. Let us note that J∗
Deltat maps exponential

vectors to discrete exponential vectors:

J∗
∆tψ(f) = φ(f̂∆t) =

⊗

n∈Z
(ωn + f̂∆t(n) zn) , (5)

f̂∆t(n) = 〈Xn|f |(tn−1,tn)〉 =
1√
∆t

tn∫

tn−1

f(r) dr .



In order to embed the noises, for every n ∈ Z let us introduce E1(n), the pro-
jection from Γ[(tn−1, tn)] to its one-boson subspace L2((tn−1, tn)), tensorized
with the identity on the other factors of Γ[R], and then the operators

a(n) = A
(I(tn−1,tn)√

∆t

)
E1(n) : Γ[R]→ Γ[R] .

Then J∆tb(n)J∗
∆t : Γ[R] → Γ[R], J∆tb(n)J∗

∆t = a(n). The evolutions in
discrete time embedded in the symmetric Fock space are

J∆tv(n)J−1
∆t : γ∆t → γ∆t , J∆tθ̂

nJ−1
∆t =

(
J∆tθ̂J

−1
∆t

)n
: γ∆t → γ∆t ,

J∆tu
nJ−1

∆t =
(
J∆tuJ

−1
∆t

)n
: γ∆t → γ∆t .

Then, taking the limit ∆t ↓ 0, we have [6]:

1. P∆t → 1Γ[R] strongly,

2.

[ t
∆t ]∑

n=1

a†(n) a(n)→ Λt strongly on
{
ξ ∈ Γ[R] :

∞∑

n=0

n‖ξn‖2L2(Pn)
<∞

}
,

3.
√

∆t

[ t
∆t ]∑

n=1

a(n)→ At strongly on
{
ξ ∈ Γ[R] :

∞∑

n=0

n‖ξn‖2L2(Pn)
<∞

}
,

4.
√

∆t

[ t
∆t ]∑

n=1

a†(n)→ A†
t strongly on

{
ξ ∈ Γ[R] :

∞∑

n=0

n‖ξn‖2L2(Pn)
<∞

}
,

5. ∆t

[ t
∆t ]∑

n=1

|Ωn〉〈Ωn| → t strongly on
{
ξ ∈ Γ[R] :

∞∑

n=0

n‖ξn‖2L2(Pn)
<∞

}
,

6. J∆t v([ t
∆t ])J

∗
∆t = J∆t v([ t

∆t ])J
−1
∆t P∆t → Vt strongly if

η = η0 + |λ|2 sinα− α
α2

, σ = e−iα, ρ =
σ − 1

α
λ .

To these limits we can add the following ones, regarding the evolutions in
Schrödinger picture and their Hamiltonians.

THEOREM 1 As ∆t ↓ 0, we have

7. J∆t θ̂
[ t
∆t ] J∗

∆t =
(
J∆t θ̂ J

−1
∆t

)[ t
∆t ]

P∆t → Θt strongly,



8. J∆t u
[ t
∆t ] J∗

∆t =
(
J∆t uJ

−1
∆t

)[ t
∆t ] P∆t → Ut strongly,

9. i
J∆t θ̂ J

−1
∆t − 1

∆t
P∆t → E0 strongly on D(E0),

10. i
J∆t uJ

−1
∆t − 1

∆t
P∆t → K strongly on E(C).

Let us remark that we recover the Hamiltonians E0 and K by taking a unique
limit which combine the limit from repeated to continuous interactions with
the limit of the difference quotient of the evolution. This limit gives E0 on its
full domain and K at least on E(C), which is anyway a domain of essential
self-adjointness. It is not obvious that it should work, even if P∆t → 1
strongly, as P∆t projects outside the domains D(E0) and D(K) for every
∆t > 0. Indeed, if we consider the Hilbert space L2(R), the evolution Pt

(3) with Hamiltonian H (4), the projections π(−∆t,∆t)c , and we take the limit
∆t ↓ 0, then π(−∆t,∆t)c → 1 strongly, but

Pt − 1

∆t
π(−∆t,∆t)c f

has divergent norm for every f ∈ D(H) with f(0+) 6= 0.
Proof.
7. Since

J∆t θ̂ J
∗
∆t = P∆t Θ∆t (6)

we have

J∆t θ̂
[ t
∆t ] J∗

∆t = P∆t Θ∆t[ t
∆t ]
−→ Θt strongly,

as P∆t → 1 and Θ∆t[ t
∆t ]
→ Θt strongly and they all have norms bounded by

1: taken ξ ∈ Γ[R],
∥∥∥
(
J∆t θ̂

[ t
∆t ]J∗

∆t −Θt

)
ξ
∥∥∥ ≤

∥∥∥P∆t

(
Θ∆t[ t

∆t ]
−Θt

)
ξ
∥∥∥+

∥∥∥
(
P∆t Θt −Θt

)
ξ
∥∥∥

≤
∥∥∥
(

Θ∆t[ t
∆t ]
−Θt

)
ξ
∥∥∥+

∥∥∥
(
P∆t − 1

)
Θt ξ

∥∥∥ −→ 0 .

8. Similarly to the previous point,

J∆t u
[ t
∆t ] J∗

∆t =
(
J∆t θ̂

[ t
∆t ] J∗

∆t

)(
J∆t v([ t

∆t ])J
∗
∆t

)
−→ Ut strongly.

9. Taken ξ ∈ D(E0), thanks to (6), we have

i
J∆t θ̂ J

−1
∆t − 1

∆t
P∆t ξ − E0 ξ = i P∆t

Θ∆t − 1

∆t
ξ − E0 ξ

= iP∆t

(Θ∆t − 1

∆t
+ iE0

)
ξ +

(
P∆t − 1

)
E0ξ −→ 0 .



∆10. For this limit we cannot repeat the argument used for E0, as J∆tuJ∗ 
t 6=

P∆t U∆t. Taken a vector ξ ∈ D(K), we have

i
J∆tuJ

−1
∆t − 1

∆t
P∆t ξ −K ξ

=
(
i P∆t

U∆t − 1

∆t
ξ −K ξ

)
+ i

J∆tuJ
−1
∆t P∆t − P∆tU∆t

∆t
ξ ,

where the first term goes to 0 as before. Let us show also that the second
term goes to 0 when ξ belongs to E(C) ⊆ D(K), that is if ξ = ψ(f) with

f ∈ C. First of all, let us note that J∗
∆t ψ(f) = φ(f̂∆t) by (5) where, as

C ⊆ H1(R∗), we have

f̂∆t(1) =
1√
∆t

∆t∫

0

f(r)dr = f(0+)
√

∆t+ o(
√

∆t) , as ∆t→ 0.

Moreover, we can compute both

J∆tuJ
−1
∆t P∆tψ(f) = J∆tθ̂v(1)φ(f̂∆t) = J∆t θ̂v(1)

⊗

n∈Z

(
ωn + f̂∆t(n) zn

)

= exp
{
− iη0∆t− iα

2

}(⊗

n 6=0

(
Ωn + f̂∆t(n+ 1)Xn

))

⊗
[(

cos

√
α2

4
+ |λ|2∆t+ i

α

2

sin
√

α2

4 + |λ|2∆t
√

α2

4 + |λ|2∆t

− i
√

∆t
sin
√

α2

4 + |λ|2∆t
√

α2

4 + |λ|2∆t
λ̄ f̂∆t(1)

)
Ω0

+

(
− i
√

∆t
sin
√

α2

4 + |λ|2∆t
√

α2

4 + |λ|2∆t
λ+ cos

√
α2

4
+ |λ|2∆t f̂∆t(1)

− iα
2

sin
√

α2

4 + |λ|2∆t
√

α2

4 + |λ|2∆t
f̂∆t(1)

)
X0

]

and

P∆tU∆tψ(f) = P∆t exp
{
− iη0∆t−

1

2
|ρ|2∆t− ρ̄σ

∆t∫

0

f(r)dr
}



× ψ
(
θ∆te

−iαπ(0,∆t)f + ρ I(−∆t,0)

)

= exp
{
− iη0∆t− 1

2
|ρ|2∆t− ρ̄σ

∆t∫

0

f(r) dr
}

(⊗

n 6=0

(
Ωn + f̂∆t(n+ 1)Xn

))
⊗
(

Ω0 + (σf̂∆t(1) + ρ
√

∆t)X0

)
.

Therefore

J∆t uJ
−1
∆t P∆t − P∆t U∆t

∆t
ψ(f) =

1

∆t


⊗

n 6=0

(
Ωn + f̂∆t(n + 1)Xn

)



⊗
{[

e−iη0∆t−i
α
2

(
cos

√
α2

4
+ |λ|2∆t+ i

α

2

sin
√

α2

4 + |λ|2∆t
√

α2

4 + |λ|2∆t

− i
√

∆t
sin
√

α2

4 + |λ|2∆t
√

α2

4 + |λ|2∆t
λ̄ f̂∆t(1)

)
− e−iη0∆t− 1

2
|ρ|2∆t−ρ̄σ

∫ ∆t
0 f(r) dr

]
Ω0

+

[
e−iη0∆t−i

α
2

(
− i
√

∆t
sin
√

α2

4 + |λ|2∆t
√

α2

4 + |λ|2∆t
λ+ cos

√
α2

4
+ |λ|2∆t f̂∆t(1)

− iα
2

sin
√

α2

4 + |λ|2∆t
√

α2

4 + |λ|2∆t
f̂∆t(1)

)

− e−iη0∆t− 1
2
|ρ|2∆t−ρ̄σ

∫∆t
0

f(r) dr
(
σ f̂∆t(1) + ρ

√
∆t
)]
X0

}

=
(⊗

n 6=0

(
ωn + f̂∆t(n+ 1) zn

))
⊗

(
o(∆t)ω0 + o(∆t) z0

)

∆t
−→ 0 .

Thus

lim
∆t↓0

i
J∆tuJ

−1
∆t − 1

∆t
P∆t

is the right limit to find directly the Hamiltonian K in the limit from repeated
to continuous interactions. Anyhow, the generalization of this result to the
case of an arbitrary initial space H is not trivial, as one would lose the explicit
solution (2) of the Hudson-Parthasarathy equation and the straightforward
computation of the limit.



Then one could study under which conditions the existence of such a limit
is an alternative characterization of K, giving its full domain or some domain
of essential self-adjointness.
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