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1. INTRODUCTION

Transmission technologies based on differential signaling (e.g., Low-Voltage Differential Signaling [1]) are 
key-ingredients of high-speed data links assuring satisfactory performance in terms of electromagnetic 
compatibility (EMC) and signal integrity (SI). However, in order for differential signaling to achieve 
effectiveness, the physical layer, including wiring harnesses and terminal networks, should meet 
stringent requirements in terms of balancing. Indeed, undesired asymmetries affecting the wiring 
structure or the terminal networks may give rise to unexpected conversion of differential mode (DM) into 
common mode (CM), and vice versa [2–4], with detrimental effects in terms of: (a) near- and far-field 
radiated emissions (ideally null) [5–7]; (b) degradation of CM-rejection properties and consequent 
susceptibility to the electromagnetic fields generated by nearby devices (radiated susceptibility, RS), [6], 
and to ground-bounce noise (conducted susceptibility, CS), [8, 9]. Additionally, balancing plays a crucial 
role in crosstalk mitigation [10]. Hence the interest, also from the prescriptive viewpoint [11], in 
characterizing, both theoretically and experimentally [12, 13], the degree of imbalance of cables and 
interconnections for high-speed communications, so to trouble-shoot and possibly fix the ensuing EMC 
and SI problems.

In line with this need, the present work is aimed at theoretically investigating the mechanism of mode 
conversion occurring in differential lines affected by asymmetries both in the line cross-section (line 
imbalance [14, 15]) and in the terminal networks (termination imbalance, [6]), with the objective to 
provide worst-case prediction of the overall disturbance induced at the terminal networks. Unlike in 
previous works, where the above-mentioned contributions to differential line (DL) imbalance were 
separately treated, suitable assumptions (usually satisfied in practical cases) are here introduced to allow 
for both phenomena at the same time. Target of the analysis is the development of a circuit model easy to 
be implemented and simulated in SPICE. Indeed, the development of prediction tools aimed at EMC-
oriented simulation of wiring harnesses [16–18] and digital interconnects [19, 20] in this specific simulation 
environment has recently gained increasing attention from the EMC and SI communities.

The proposed study, involving Multi-conductor Transmission Line (MTL) theory and modal 
analysis, is based on the assumption that the DL circuit is weakly unbalanced (assumption made
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practically sound by the fact that imbalance is usually to be ascribed to tolerances and non-ideal
behavior of components) [6]. By virtue of such an assumption: (a) the contributions due to line and
termination imbalance (separately predicted) can be superimposed yielding the overall modal quantities
at line terminals; and (b) conversion of the dominant mode (DM/CM) excited by the signal (or noise)
source into CM/DM (secondary mode) is treated as a one-way effect, so that re-conversion (back-
interaction [10]) of the secondary mode onto primary quantities may be ignored [6]. The resulting SPICE
model enables direct prediction of modal quantities at line terminals by recourse to the use of standard
two-conductor transmission line parts and controlled sources (possibly with frequency dependent gain)
only. Additionally, since the unbalanced DL is essentially treated as a perturbation of the corresponding
balanced structure (reference), the proposed model allows sensitivity analyses and worst-case prediction
of modal voltages/currents at the cost of time efficient simulations.

The model is initially developed for a DL composed of two bare wires running above a metallic
ground (homogeneous medium), since this choice allows outlining the strict correlation of undesired
voltages and currents at the DL terminations with geometrical and electrical asymmetries affecting the
DL and its terminal networks. However, the proposed modeling approach is general, and can be easily
extended (as it will be shown in Section 7) to the practically relevant case of DLs involving coated
wire-pairs above ground (inhomogeneous medium).

The paper is organized as follows. In Section 2, the DL under analysis is introduced and transformed
in the modal domain. Modeling strategies and assumptions are detailed in Section 3. In Sections 4
and 5, equivalent circuits representative for mode conversion are derived and validated versus exact
solution of MTL equations. SPICE modeling is addressed in Section 6, while Section 7 deals with
model extension to the practically relevant case of coated wire-pairs. Conclusions are then drawn in
Section 8.

2. STRUCTURE UNDER ANALYSIS

2.1. Description of the Differential Line

In order to investigate the mechanisms of mode conversion due to imbalance, the DL circuit in Figure 1
is considered. In this circuit, the line is driven from the left termination by a pair of voltage sources
VS1, VS2, whose values can be conveniently selected in order to emulate DM or CM line excitation. The
networks at the left (X = L) and right (X = R) terminations are modeled by T-lumped parameter
circuits with series impedances Z1X , Z2X differing each other by ΔZX ∈ [0, ZD/2], i.e.,

Z1X,2X = ZD/2 ± ΔZX , X = L,R, (1)

so to account for possible imbalance affecting line terminal networks. Additionally, the wiring structure
(see Figure 2) is composed of two bare wires with equal radii r, separated by a distance d, and ideally
running at the same height h above ground as in Figure 2(a). Possible imbalance affecting the line
cross-section is accounted for by assuming that wire positioning may slightly differ from the reference
cross-section [Figure 2(b)]. Hence, according to Figure 2(b) and in analogy to (1), the wire heights are
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Figure 1. Principle drawing of the differential-line (DL) circuit under analysis.
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Figure 2. Line cross-section: (a) perfectly balanced (reference structure); (b) slightly unbalanced.

assumed to differ from the height of the cable axis by Δh ∈ [0, d], i.e.,

h1,2 = h ± Δh/2, (2)

while wire separation, d, is kept constant.

2.2. MTL Modeling and Modal Analysis

Propagation and conversion of modal quantities in the above-described DL circuit are studied by
combining multi-conductor transmission line (MTL) theory and modal analysis. Accordingly, the wiring
structure is modeled as a uniform and lossless three-conductor MTL in free-space, with per unit length
(p.u.l.) inductance and capacitance matrices

L =
[

�1 �m

�m �2

]
, C =

[
c1 cm

cm c2

]
=

1
v2
0

L−1, (3)

where v0 denotes the light velocity in free space. Additionally, CM and DM quantities are introduced
starting from physical voltages and currents in Figure 1 by recourse to the transformation matrices
in [15] as

Vm =
(

Vcm

Vdm

)
= T−1

V ·
(

V1

V2

)
, Im =

(
Icm

Idm

)
= T−1

I ·
(

I1

I2

)
. (4)

TV =
[
1 0.5
1 −0.5

]
, TI =

[
0.5 1
0.5 −1

]
. (5)

Introduction of (4)–(5) allows rephrasing in the modal domain the MTL equations describing the
wiring structure and its terminal sections. Hence, resorting to the chain-parameter representation, the
relationships between modal voltages and currents at line terminals can be cast as:(

Vm(�)
Im(�)

)
=

[
cos(β�)12 −j sin(β�)ZC,m

−j sin(β�)Z−1
C,m cos(β�)12

]
·
(
Vm(0)
Im(0)

)
, (6)

where � is the line length, β = 2πf /v0 the CM and DM propagation constant (i.e., βcm = βdm = β,
degenerate mode), 12 the 2 × 2 identity matrix, and ZC,m the (2 × 2) characteristic impedance matrix
in the modal domain. In particular, since in free-space the characteristic impedance matrix ZC is
proportional to the p.u.l. length inductance matrix in (3) as ZC = v0L, matrix ZC,m in (6) takes the
expression:

ZC,m = T−1
V ZCT=

I

[
Zcm ΔZ�

ΔZ� Zdm

]
=

v0

2

⎡
⎣�1 + �2

2
+ �m �1 − �2

�1 − �2 2(�1 + �2 − 2�m)

⎤
⎦ . (7)

In a similar fashion, if the impedance matrices associated with the passive part of the terminal
networks in Figure 1 are converted in the modal domain, the following general expression (X = L, R)
is obtained

ZX,m =
[
ZGX + ZD/4 ΔZX

ΔZX ZD

]
=

[
ZCM ΔZX

ΔZX ZDM

]
. (8)



From the above matrices, the occurrence of mode conversion can be readily ascribed to the presence
of the non-null out-diagonal entries ΔZ�, ΔZX . These parameters represent a measure of the different
impedance seen by each of the two wires with respect to ground at the terminal sections (ΔZX) or
at each position along the DL (ΔZ�). Accordingly, the former contribution (i.e., imbalance due to
line terminations) is responsible for lumped mode conversion at the DL ends, whereas the latter (i.e.,
imbalance due to asymmetries in the line cross-section) gives rise to distributed mode conversion along
the DL. Conversely, if the interconnection and its terminal networks were perfectly balanced, out-
diagonal entries in (7)–(8) would be null, i.e., ΔZ� = ΔZ = 0, and CM and DM quantities would
propagate separately.

3. MODELING STRATEGY

Starting from the DL circuit in Figure 1, DM to CM and, vice versa, CM to DM conversions are
separately analyzed by setting VS1, VS2 to the values: (a) VS1 = −VS2 = 1/2VS , and (b) VS1 = VS2 = VS ,
respectively. Namely, according to (4), the former set leads to pure DM excitation (i.e., Vdm = VS ,
Vcm = 0) and it is suitable to analyze DM-to-CM conversion. Conversely, the latter set leads to pure
CM excitation (i.e., Vcm = VS , Vdm = 0) and will be used to study the opposite conversion mechanism.
Although this choice is here aimed at studying the two mechanisms separately, however this is in line
with typical EMC troubleshooting strategies, which are based on the fact that in EMC problems is
often possible to identify a dominant mode [6]. Additionally, the modeling approach here adopted is
based on the observation that imbalance either due to terminal networks and due to asymmetries in
the line cross-section arise from imperfection or tolerance in the manufacture process. Therefore, in
practical cases, the overall imbalance is weak, with the consequences in terms of modeling that will be
made clear in the following sub-sections.

3.1. Superposition Principle

As the first consequence of weak imbalance, the unbalanced DL can be interpreted as a perturbation of
the corresponding balanced structure. This means that modal matrices in (7)–(8) can be re-written as:

ZC,m = Zbal
C,m +

[
0 ΔZ�

ΔZ� 0

]
, (9)

ZX,m = Zbal
X,m +

[
0 ΔZX

ΔZX 0

]
, (10)

where Zbal
C,m, Zbal

X,m denote the characteristic impedance and termination impedance matrices,
respectively, of the balanced structure. The equality in (10) can be readily proved by setting ΔZX = 0
in (1). Conversely, a proof for (9) can be provided by exploiting the approximate analytical expressions
for the p.u.l. parameters of a pair of bare wires running above ground in [10], and by comparing the
results obtained for the balanced (a) and unbalanced (b) cross-sections in Figure 2. After some algebra
(here omitted for brevity) and as long as (2h)2 � Δh2, d2, it is proved that the diagonal entries of ZC,m

are equal to the modal characteristic impedances of the balanced line in Figure 2(a), i.e.,

Zcm = Zbal
cm

∼= 60 ln
(
2h/

√
r d

)
(11)

Zdm = Zbal
dm

∼= 120 ln(d/r), (12)
and the imbalanced coefficient ΔZ� can be expressed as function of geometrical parameters as

ΔZ� = v0
�1 − �2

2
∼= 30 ln

(
1 +

Δh

h

)
∼= 30

Δh

h
. (13)

In a similar way, also Z−1
C,m in (6) can be written as:

Z−1
C,m = T−1

I (v0C)TV =

⎡
⎢⎣ Z−1

cm v0
c1 − c2

2

v0
c1 − c2

2
Z−1

dm

⎤
⎥⎦ =

(
Zbal

C,m

)−1
+

1
ZcmZdm

[
0 −ΔZ�

−ΔZ� 0

]
(14)



on condition that ΔZ2
� /(ZcmZdm) � 1.

Writing modal matrices ZC,m, Z−1
C,m and ZX,m as in (9)–(10), (14) enables to study the effects due

to line and termination imbalance separately, and to subsequently superimpose the two effects (by the
superposition principle) to predict the overall modal voltages and currents at line terminals.

3.2. Negligible Back-Interaction on the Dominant Mode

The second consequence of weak imbalance is that the back-interaction on the dominant mode of currents
and voltages excited by mode conversion in the secondary mode is negligible. For instance, if the DL
is driven by a DM source (i.e., if VS1 = −VS2 = 1/2VS), the modal matrices in (9)–(10), (14) can be
further approximated as:

ZC,m
∼= Zbal

C,m +
[
0 ΔZ�

0 0

]
, Z−1

C,m
∼=

(
Zbal

C,m

)−1
+

⎡
⎣0 − ΔZ�

ZcmZdm

0 0

⎤
⎦ , (15)

ZX,m
∼= Zbal

X,m +
[
0 ΔZX

0 0

]
, (16)

and the system of equations for the DM (dominant mode) can be cast and solved as the first step as(
Vdm(�)
Idm(�)

)
∼=

[
cos(β�) −j sin(β�)Zdm

−j sin(β�)Z−1
dm cos(β�)

]
·
(

Vdm(0)
Idm(0)

)
, (17)

Vdm(0) ∼= VS − ZDIdm(0), Vdm(�) ∼= ZDIdm(�), (18)
where all contributions due to the CM (secondary mode) are disregarded. Similar results, omitted for
brevity, are obtained for CM quantities when the DL is driven by the CM source VS1 = VS2 = VS .
Therefore, under the assumption of weak imbalance, voltages and currents of the dominant mode can
be computed as the wiring structure and its terminal networks were perfectly balanced, by solution of
the equivalent modal circuits in Figure 3.

Accuracy of the prediction obtained by the approximate modal circuits in Figure 3 can be proven
by comparison versus exact solution of MTL equations. As a specific example, a 1m-long wiring
structure composed of two bare wires with radius r = 0.5 mm, wire distance d = 2.5 mm, nominal height
h = 50 mm, and fed by a pure DM source VS1 = −VS2 = 0.5 V is considered. The plots in Figure 4
represent DM voltages at the right DL-end for different degrees of line and termination imbalance and
for ground impedances ZGL = ZGR = 0Ω (worst-case condition for termination imbalance [6]). The
comparison clearly shows that DM voltages are not influenced by possible imbalance affecting either the
line cross-section or the terminal networks even for uncertainties on the values of the series impedances
in (1) on the order of 40% (in this case, the maximum differences observed in Figure 4 are on the order
of 0.3 dB).

4. DM-TO-CM CONVERSION

Under the assumption of weak unbalance, DM-to-CM conversion is investigated in this Section by
preliminary solving the DM circuit in Figure 3(a), and by applying the superposition principle to
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Figure 3. Approximate (a) DM and (b) CM circuits obtained under the assumption of weak unbalance
for (a) DM and (b) CM excitation of the DL circuit in Figure 1.



combine the contributions due to the imbalance affecting the line cross-section and the terminal
networks.

4.1. Contribution Due to Termination Imbalance

To evidence imbalance due to line terminations, the line cross-section is assumed to be perfectly balanced
and the corresponding unbalance coefficient ΔZ� in (15) is set equal to zero. Accordingly, (6) and (15)–
(16) lead to the following system of equations for the prediction of CM voltages and currents at line
terminals: (

Vcm(�)
Icm(�)

)
∼=

[
cos(β�) −j sin(β�)Zcm

−j sin(β�)Z−1
cm cos(β�)

]
·
(

Vcm(0)
Icm(0)

)
, (19)

Vcm(0) + ZCMIcm(0) = −ΔZLIdm(0) = VTL (20)
Vcm(�) − ZCMIcm(�) = ΔZRIdm(�) = VTR. (21)

This system of equations allows the circuit interpretation in Figure 5(a), which shows that the effect
due to termination imbalance can be modelled into the CM circuit by two voltage sources connected
at line terminals and proportional to the DM currents and to the degree of imbalance of each terminal
networks [6].

4.2. Contribution Due to Line Imbalance

In a similar fashion, the contribution due to line imbalance can be analyzed starting from the equations
in (6), (15)–(16) by assuming the terminal networks perfectly balanced (i.e., ΔZL = ΔZR = 0). Hence,
CM voltages and currents at line ends can be predicted by the following system of equations:(

Vcm(�)
Icm(�)

)
∼=

[
cos(β�) −j sin(β�)Zcm

−j sin(β�)Z−1
cm cos(β�)

]
·
(

Vcm(0)
Icm(0)

)
+

(
VΔ

IΔ

)
(22)

Vcm(0) = −ZCMIcm(0), Vcm(�) = ZCMIcm(�), (23)
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where:

VΔ = −j sin(β�)ΔZ�Idm(0), (24)
IΔ = j sin(β�)ΔZ�(ZcmZdm)−1Vdm(0). (25)

A circuit interpretation of (22)–(25) is shown in Figure 5(b), where effects due to imbalance of
the line cross-section are included into the CM circuit by the voltage and current sources VΔ, IΔ.
Likewise those in (20)–(21), these sources are proportional to the imbalance coefficient ΔZ� and to
DM currents and voltages at the terminations of the DM circuit in Figure 3(a). However, they are
actually representative of a distributed instead of a lumped mechanism of mode conversion, and can be
lumped at one termination (here the right one) only as long as prediction of voltages and currents at
line terminals is the target.

As a matter of fact, their amplitudes depend on the line length and operating frequency through
the sinus term. More precisely, as long as the line length is sufficiently smaller than the wavelength
λ = v0/f, it can be shown that VΔ, IΔ are proportional to the ratio �/λ, and become null for frequency
approaching zero. Conversely, the sources in (20)–(21) are independent of frequency apart from the
frequency dependence of the involved DM currents. Nevertheless, in this respect it’s worth noting
that in practical cases ΔZL, ΔZR are inherently frequency dependent, since balance performance of
terminal networks generally degrade at increasing frequency. For instance, frequency performance of
typical center-tap RF transformers (baluns) can be considered [8].

4.3. Validation and Comparative Analysis

In this subsection, model accuracy is preliminary validated versus exact solution of MTL equations.
Specific examples are shown in Figure 6 and Figure 7.

Regarding termination imbalance, the plots in Figure 6 show that minimum values of the ground
impedances (for simulation: ZGL = ZGR = ZG = 0, 1 kΩ) lead to worst-case conditions both in terms
of (a) accuracy of the prediction model, and (b) maximum CM voltages induced at line terminals.
However, even in this condition a remarkable accuracy is achieved (discrepancies on the order of few dBs
are observed at low frequency only) even for relatively large imbalance coefficients (on the order of 40%
of the nominal value, i.e., ZD/2). Additionally, comparison of the plots in Figure 6(a) and Figure 6(b)
shows that, assigned a specific value to the coefficients |ΔZL| = ΔZR|, the frequency response of
the involved CM voltages may deeply differ at low frequency depending on the specific combination
of the two voltage sources in Figure 5(a). In the specific test case ΔZL = ΔZR, [Figure 6(a)] the
two contributions perfectly balance each other at low frequency, so that CM voltages increase by a
+20 dB/dec frequency slope. Conversely, if the two coefficients are equal but opposite in sign (i.e.,
ΔZL = −ΔZR) as in Figure 6(b), the transfer function between the DM source VS and the CM voltages
at line terminals is constant at low frequency with amplitude |ΔZL|/ZD.
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Concerning line imbalance, the plots in Figure 7 investigate the influence on CM voltages of
the ground impedances [Figure 7(a)] and of possible mismatching at the terminations of the DM
circuit [Figure 7(b)]. By the light of these results, the following differences with respect to termination
imbalance can be stated. First, at low frequency CM voltages due to line imbalance always increase with
+20 dB/dec frequency slope, due to the distributed nature of mode conversion. Second, maximum CM
voltages are induced at line terminals for large (instead of minimum) values of the ground impedances
ZG [in Figure 7(a) for ZG = ZGL = ZGR = 1 kΩ]. Third, since amplitudes and relative signs of the
current and voltage sources VΔ, IΔ descend from geometrical properties of the line cross-section, it can
be easily proven that contributions due to these sources always sum at the left termination (i.e., close
to the signal source), and subtract at the right-end. Therefore, CM voltages at the left termination are
larger or, at worst, equal to those at the right termination. As far as model accuracy is concerned, since
Δh is very small with respect to h (i.e., h � d), the weak imbalance assumption is always satisfied for
Δh ∈ [0, d]. Namely, the plots in Figure 7 show that even for large degrees of imbalance [upper curves
in Figure 7(a)] and strong mismatching of the DM circuit [Figure 7(b)] the differences between exact
(grey-solid curves) and approximate (black-dotted curves) predictions is negligible for whatever values
of ZGL, ZGR.

4.4. Superposition of the Two Contributions

As long as the weak-imbalance assumption is satisfied, effects due to termination and line imbalance
can be simultaneously accounted for by superimposing the proposed approximate models. This leads
to the equivalent CM circuit in Figure 8, whose sources still involve the DM currents and voltages in
Figure 3(a) through (20)–(21) and (24)–(25).

Specific examples of results are shown in Figure 9, where the overall CM voltage at the left
termination is compared with the contributions due to line and termination imbalance. These plots were
obtained for ground impedances equal to ZGL(R) = 1kΩ (condition leading to maximum contribution
due to line imbalance and minimum contribution due to termination imbalance), and by assuming:
Δh = 0.4d, ΔZL = ΔZR = 0.05ZD/2. More precisely, the plots in Figure 9(a) were evaluated for
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ΔZL = ΔZR, those in Figure 9(b) for ΔZL = −ΔZR. Solid-grey curves were obtained by exact solution
of MTL equations, whereas dotted-black curves were predicted by the approximate model in Figure 8.

Besides proving model accuracy, these results show that — given specific degrees of imbalance —
the two contributions may add or subtract each other, depending on the combination of signs of the
involved imbalance coefficients. As a rule of thumb, for positive values of ΔZ�, the two contributions
subtract each other if ΔZL, ΔZR have the same sign [Figure 9(a)]. Conversely, if ΔZL, ΔZR are
opposite in sign (and ΔZ� > 0), the two contributions add each other and lead to the largest CM
voltages.

5. CM-TO-DM CONVERSION

The proposed model can be successfully extended to analyze the opposite mechanism of conversion
from CM (excited by the CM source VS1 = VS2 = VS) to DM. Indeed, as long as the weak imbalance
assumption is satisfied, CM voltages and currents at line terminals can be predicted as the first step by
the CM equivalent circuit in Figure 3(b), and subsequently exploited as source terms, i.e.,

V ′
Δ = −j sin(β�)ΔZ�Icm(0) , (26)

I ′Δ = j sin(β�)ΔZ�(ZcmZdm)−1Vcm(0) , (27)
V ′

TL = −ΔZLIcm(0), V ′
TR = −ΔZRIcm(�) (28)

in the equivalent DM circuit in Figure 10.
Simulation results, here omitted for the sake of brevity, proved the accuracy of such an approximate

model even for relatively large degrees of imbalance affecting the wiring structure and its terminal loads.
The most significant difference with respect to DM-to-CM conversion is concerned with the role played
by the ground impedances ZGL, ZGR. Namely, for CM-to-DM conversion small values of ZGL, ZGR lead
to maximum DM voltages due to line imbalance, while in the same condition, minimum CM voltages
were obtained for DM-to-CM conversion. In particular, in the specific test case ZGL = ZGR = 0, DM
voltages due to CM-to-DM conversion are four times larger (12 dB shift) than the corresponding CM
voltages due to DM-to-CM conversion, due to the fact that the terminal impedances of the DM circuit
in Figure 10 are four times larger than those of the equivalent CM circuit in Figure 8. Conversely, no
significant differences with respect to DM-to-CM conversion are worth noting as far as (a) imbalance
due to terminal loads, and (b) superposition of the two contributions are concerned.

6. SPICE MODELING

For SPICE implementation, a 1 m long DL characterized by the geometrical parameters in Subsection 3.2
and imbalance coefficients Δh = d/2, ΔZL = ΔZR = 0.05ZD/2 is considered. For such a DL, the SPICE
schematic representative for DM into CM conversion is shown in Figure 11(a). In this model, three
(instead of two) two-conductor TLs have been implemented (either by T or TLOSSY parts [21]), in
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Figure 10. DM circuit accounting for CM-to-DM conversion due to line and termination imbalance.
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Figure 11. Implementation in SPICE: (a) schematic of the unbalanced DL excited by a DM source.
(b) SPICE predictions (black curves) vs 1000 repeated simulations obtained by exact solution of MTL
equations (left TL end).

order to allow separate evaluation of the two contributions to the overall CM voltages. Indeed, the TL
in the middle represents the DM circuit (dominant mode), with characteristic impedance Zdm = 193Ω,
and, without loss of generality, matched terminations ZD = Zdm. The upper and lowest TLs are CM
circuits, with characteristic impedance Zcm = 269Ω and terminal impedances ZGL(R) + ZD/4 ≈ 1 kΩ.
Particularly, the lowest CM circuit is used to predict the contribution due to termination imbalance.
Accordingly, this circuit is fed at both terminations by current-controlled voltage sources with constant
gain, i.e., ΔZL| = ΔZR| = 4.8 Ω. Note that the additional voltage-controlled voltage sources (with
unitary gains) are included to avoid crossed connections.

Conversely, implementation of the frequency-dependent sources accounting for line imbalance
involves the ABM (Analog Behavioral Model) parts ELAPLACE and GLAPLACE [21]. These parts are
voltage-controlled voltage (ELAPLACE) and current (GLAPLACE) sources, whose frequency-dependent gains
are assigned in terms of Laplace transform. For the specific test case under analysis, the current source
IΔ in (25) is implemented by a GLAPLACE part with trans-admittance [according to (25)]

YΔ(s) =
IΔ

Vdm(0)
∼= 14.4 sinh (s TD) μΩ−1, (29)

where TD = �/v0 = 10/3 ns, and controlled by the DM voltage at the left termination of the DM TL.
Conversely, since ABM current-controlled sources are not available in SPICE, the voltage source VΔ

in (24) is implemented by an ELAPLACE part controlled — instead of by the DM current Idm(0) — by
the voltage drop across the series impedance ZD at the left DL end. According to this implementation,
and in line with (24), the dimensionless gain of the involved ELAPLACE part takes the expression:

KΔ(s) =
VΔ

ZDIdm(0)
∼= −4 · 10−3 sinh (s TD) . (30)



6.1. Worst-Case Analysis

Based on previous analysis, the SPICE schematic in Figure 11(a) can be conveniently exploited to
predict worst-case CM voltages at DL terminations due to specific degrees of imbalance affecting the
line cross-section and the DL terminal networks.

As an explicative example, let’s assume that the imbalance coefficients may randomly vary (uniform
distribution) within the intervals: −d/2 ≤ Δh ≤ d/2, and −0.05ZD/2 ≤ ΔZL, ΔZR ≤ 0.05ZD/2.
Predictions for the CM voltages at the left termination obtained by 1000 repeated simulations based on
exact solution of MTL equations are plotted (colored curves) in Figure 11(b). In spite of the wide spread
of results, upper bounds to these curves can be readily obtained by running the SPICE schematic twice,
and by summing (for each simulation) the magnitude of the contributions due to line and termination
imbalance. In the former simulation, the unitary gains of the voltage-controlled voltage sources have the
same sign as in Figure 11(a), in the latter, they have opposite signs. The obtained results are plotted in
Figure 11(b) by dashed- and solid-black curves, respectively, that effectively upper-bound the colored
curves in the considered frequency range.

7. INHOMOGENEOUS MEDIA

In this section, the weak-imbalance assumption and the superposition principle are exploited to extend
the prediction model and associated SPICE schematic to the practically relevant case of DLs in
inhomogeneous media. To this end, a dielectric coating with relative dielectric permittivity εr �= 1
is assumed to surround the two wires in the cable cross-section in Figure 2, and DM-to-CM conversion
is investigated by driving the DL by a pure DM source VS1 = −VS2 = 1/2VS connected at the left
terminal section (see Figure 1). The main steps of the derivation will be briefly reviewed, with the
objective to outline analogies and differences with respect to the homogeneous case.

7.1. Model Extension

In the presence of inhomogeneous media, the line p.u.l. inductance and capacitance matrices take the
same expressions in (3), with the difference that the p.u.l. capacitance matrix cannot be obtained any
longer from the p.u.l. inductance matrix by the relationship C = v−2

0 · L−1, but requires numerical
evaluation. Particularly, in the modal domain defined by the transformation matrices in (5), these p.u.l.
matrices can still be written as a perturbation of those associated with the corresponding balanced
structure as

Lm = T−1
V · L · TI

∼= Lbal
m +

[
0 ΔL

ΔL 0

]
; Lbal

m =
[
�cm 0
0 �dm

]
(31)

Cm = T−1
I ·C ·TV

∼= Cbal
m +

[
0 ΔC

ΔC 0

]
; Cbal

m =
[
ccm 0
0 cdm

]
(32)

where �cm, ccm and �dm, cdm denote the CM and DM p.u.l. inductance and capacitance associated
with the balanced structure, whereas inductive and capacitive coefficients ΔL = (�1 − �2)/2 and
ΔC = (c1 − c2)/2 account for the effects due to line imbalance. In line with (14), as long as these
imbalance coefficients satisfy the inequalities ΔL2 � �cm�dm, ΔC2 � ccmcdm, the back-interaction
of the CM on the DM can be neglected, and the p.u.l. modal matrices in (31)–(32) can be further
simplified to

Lm
∼= Lbal

m +
[
0 ΔL
0 0

]
; Cm

∼= Cbal
m +

[
0 ΔC
0 0

]
. (33)

By virtue of (33) and in analogy to the homogeneous case, the DM circuit can be preliminary solved
assuming the wiring structure to be perfectly balanced. Notice that the only difference with respect to
the homogeneous case is related to the DM characteristic impedance and propagation velocity, here given
by Zdm =

√
�dm/cdm and vdm = 1/

√
�dmcdm. Once the DM current Idm(z) and the DM voltage Vdm(z)

are known at each line position z, the first-order TL equations for the CM circuit can be re-written as:
dVcm(z)

dz
+ jω�cmIcm(z) = −jωΔL Idm(z);

dIcm(z)
dz

+ jωccmVcm(z) = −jωΔC Vdm(z); (34)



where the right-hand side contributions act as infinitesimal voltage and current sources, respectively,
distributed along the CM line. Integration of these infinitesimal sources along the line length allows
representing DM-to-CM conversion by lumped current and voltage sources connected at the right
termination of the CM circuit as shown in Figure 5(b). After some cumbersome algebra (not reported
here for the sake of brevity), the dependent sources driving the CM circuit can be cast in closed form
as:

VΔ = −jω [ΔL Sh1 + ΔC ZcmZdm Sh2] Idm(0) + jω
[
ΔLZ−1

dmCh1 + ΔCZcmCh2

]
Vdm(0), (35)

IΔ = jω
[
ΔL Z−1

cm Ch2 + ΔC Zdm Ch1

]
Idm(0) − jω

[
ΔLZ−1

cmZ−1
dmSh2 + ΔC Sh1

]
Vdm(0), (36)

where:

Sh1
2

= v−1
dm
cm

sinh (jω�/vdm)
jω

(
v−2
dm − v−2

cm

) − v−1
cm
dm

sinh (jω�/vcm)
jω

(
v−2
dm − v−2

cm

) , (37)

Ch1
2

= v−1
dm
cm

cosh (jω�/vdm) − cosh (jω�/vcm)
jω

(
v−2
dm − v−2

cm

) , (38)

and Zcm =
√

�cm/ccm, vcm = 1/
√

�cmccm denote the CM characteristic impedance and propagation
velocity, respectively.

Conversely, mode conversion due to termination imbalance is not influenced by medium un-
homogeneity. Hence, the circuit interpretation in Figure 5(a), as well as the analytical expressions
in (20), (21) are still valid.

7.2. Implementation in SPICE

As an explicative example for circuit implementation in SPICE, the 1m-long DL characterized by
the geometrical parameters in Subsection 3.2 and imbalance coefficients in Section 6 (i.e., Δh = d/2,
ΔZL = ΔZR = 0.05ZD/2) is here re-considered with the two wires surrounded by a dielectric jacket with
thickness t = 0.3 mm and relative dielectric permittivity εr = 2.5. For this wiring structure, numerical
evaluation [22] of the modal p.u.l. inductance and capacitance parameters in (31)–(32) yields the
values: �cm = 894.8 nH/m, ccm = 12.88 pF/m, �dm = 626.6 nH/m, cdm = 22.33 pF/m, ΔL = 2.3 nH/m,
ΔC = −0.05 pF/m, hence: Zdm = 167.5Ω, Zcm = 263Ω, vdm = 2.67 · 108 m/s, vcm = 2.945 · 108 m/s.

The obtained SPICE schematic is shown in Figure 12(a). Likewise in Figure 11(a), separate
evaluation of the contributions to the overall CM voltages due to line and termination imbalance
is achieved by the use of three two-conductor TLs here implemented by TLOSSY parts with p.u.l.
parameters �dm, cdm, �cm, ccm. The loads at the terminations of the DM circuit (TL in the middle) are
matched, that is: ZD = Zdm = 167.5Ω. The CM circuits (upper and lowest TLs) are terminated by
CM impedances ZGL(R) + ZD/4 ≈ 1 kΩ.

The contribution due to termination imbalance is predicted by the lowest CM circuit, which is here
driven by current-controlled voltage sources with gain |ΔZL| = ΔZR| = 4.188Ω.

As regards line imbalance (upper CM circuit), implementation in SPICE of the voltage and current
sources VΔ, IΔ in (35)–(38) is achieved by the use of two ABM parts (e.g., ELAPLACE or GLAPLACE [21])
for each source [instead of only one as in Figure 11(b)]. To this end, (35)–(38) are re-written in terms
of Laplace transform as:

VΔ(s) = zΔ(s) Idm(0) + αΔ(s)Vdm(0), IΔ(s) = βΔ(s) Idm(0) + yΔ(s)Vdm(0), (39)
where zΔ(s), yΔ(s), αΔ(s), βΔ(s) denote the frequency-dependent gains of the involved voltage- and
current-controlled voltage and current sources. To ease SPICE implementation, expressions for such
gains are further reworked, and cast as function of two numerical coefficients only, i.e.,

kΔ,1
Δ,2

=
vdmvcm

v2
cm − v2

dm

(
vcm
dm

ΔL + vdm
cm

ZcmZdmΔC

)
, (40)

as
zΔ(s) = −kΔ,1 sinh(s�/vdm) + kΔ,2 sinh(s�/vcm),

αΔ(s) = Z−1
dmkΔ,1 [cosh(s�/vdm) − cosh(s�/vcm)] ,

βΔ(s) = Z−1
cmkΔ,2 [cosh(s�/vdm) − cosh(s�/vcm)] ,

yΔ(s) = Z−1
cmZ−1

dm [kΔ,1 sinh(s�/vcm) − kΔ,2 sinh(s�/vdm)] ,

(41)
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Figure 12. Inhomogeneous medium: (a) SPICE schematic of the unbalanced DL excited by a DM
source. (b) SPICE predictions (black curves) vs 1000 repeated simulations obtained by exact solution
of MTL equations (left TL end).

which can be assigned as gains of the involved ABM parts more easily than those in (35)–(38).
Note that, due to the lack of current-controlled ABM sources, the current-controlled sources in (39)
were implemented as voltage-controlled ABM sources dependent on the voltage drop across the series
impedance ZD. Accordingly, the gains of these sources — i.e., coefficients zΔ(s), βΔ(s) — were further
divided by Zdm = 167.5Ω.

7.3. Worst-Case Analysis

Use of the SPICE schematic in Figure 12(a) for worst-case prediction of the CM voltages at DL
terminations is here exemplified by assuming imbalance coefficients randomly spread within the intervals:
−d/2 ≤ Δh ≤ d/2, and −0.05ZD/2 ≤ ΔZL, ΔZR ≤ 0.05ZD/2 (as in Section 6.1).

Likewise for the homogeneous case, only two runs of the SPICE schematic can suffice to this
purpose. However, since the contribution due to line imbalance [see Eq. (40)] is now depending on an
inductive and a capacitive coefficient (ΔL, ΔC, respectively), which are (a) always opposite in sign
and (b) not related each other by straightforward relationships (as in the homogeneous case), the two
simulations have to be run in either one of the following two sets of conditions. If ΔC is assumed to be
positive, one simulation shall be run with ΔZL > 0 and ΔZR > 0, the other (simulation leading to the
flat frequency response at low frequency) with ΔZL < 0 and ΔZR > 0. Vice versa, if ΔC is assumed
to be negative (and, as a consequence, ΔL is positive), one simulation requires ΔZL < 0 and ΔZR < 0,
the other involves ΔZL > 0 and ΔZR < 0.

Effectiveness of the obtained upper bounds (dashed- and solid-black curves, respectively) is proven
in Figure 12(b), by comparison versus 1000 repeated simulations based on exact solution of MTL
equations (colored curves) with imbalance coefficients randomly selected within the intervals under
analysis.

8. CONCLUSION

Based on the assumption of weak imbalance, a SPICE model has been developed, which allows
prediction of modal voltages/currents at the terminations of a DL-circuit affected by undesired
imbalance due to asymmetries in the line cross-section (line imbalance) and/or in the terminal networks
(termination imbalance). Model accuracy has been validated versus exact solution of MTL equations,
and suitable guidelines have been derived and discussed to enable worst-case prediction of the involved
modal quantities by a limited number of simulations. The model has been derived in detail for



DM-to-CM conversion, at the basis of REs, and then extended to CM-to-DM conversion, which is
responsible for radiated [6] and conducted susceptibility [8]. Duality between the two conversion
mechanisms has been verified in the case of ground impedances equal to zero, which corresponds to the
measurement conditions foreseen by International Standards for experimental evaluation of Longitudinal
and Transverse Conversion Loss parameters (LCL and TCL, respectively) [11, 13].

Although derived for a canonical DL structure, the proposed model can be extended to handle more
complex wiring harnesses and terminal networks (e.g., terminal networks characterized at the input pins
by measurement can be easily included into the model). Additionally, the proposed modeling approach,
based on the representation of the unbalanced line as a perturbation of the corresponding balanced
structure, can be efficiently exploited to perform sensitivity analysis of undesired modal quantities to
the inherently uncertain and uncontrolled parameters at the basis of mode conversion.
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