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1. Introduction

Given a real interval I = [0, L], we consider the thermoelastic Bresse system with Gurtin–
Pipkin thermal dissipation
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ1ϕtt − k(ϕx + ψ + lw)x − k0l(wx − lϕ) = 0,

ρ2ψtt − bψxx + k(ϕx + ψ + lw) + γ θx = 0,

ρ1wtt − k0(wx − lϕ)x + kl(ϕx + ψ + lw) = 0,

ρ3θt − k1

∞∫
0

g(s)θxx(t − s)ds + γψtx = 0,

(1.1)

in the unknowns variables

ϕ,ψ,w, θ : (x, t) ∈ I× [0,∞) �→R.

Here, ρ1, ρ2, ρ3 as well as b, l, γ, k, k0, k1 are strictly positive fixed constants, while g is a 
bounded convex summable function on [0, ∞) of total mass

∞∫
0

g(s)ds = 1

having the explicit form

g(s) =
∞∫
s

μ(r)dr,

where μ : R+ = (0, ∞) → [0, ∞), the so-called memory kernel, is a nonincreasing absolutely 
continuous function such that

μ(0) = lim
s→0

μ(s) ∈ (0,∞).

In particular, μ is summable on R+ with

∞∫
0

μ(s)ds = g(0),

and the requirement that g has total mass 1 translates into

∞∫
0

sμ(s)ds = 1.

Moreover, the kernel μ is supposed to satisfy the additional assumption

μ′(s) + νμ(s) ≤ 0 (1.2)



for some ν > 0 and almost every s ∈ R+. The system is complemented with the Dirichlet 
bound-ary conditions for ϕ and θ

ϕ(0, t )  = ϕ(L, t) = θ(0, t )  = θ(L,  t )  = 0,

and the Neumann ones for ψ and w

ψx (0, t )  = ψx(L, t) = wx (0, t )  = wx(L, t) = 0.

From the physical viewpoint, system (1.1) describes the vibrations of a linear planar and shear-
able thermoelastic beam of Bresse type [2,19,20]. Accordingly, the functions ϕ, w, ψ denote 
the vertical, longitudinal and shear angle displacements, respectively, while θ stands for the 
relative temperature, that is, the temperature variation from an equilibrium reference value.

In recent years, the asymptotic properties of Bresse systems without thermal effects, i.e. 
when the fourth equation of system (1.1) is omitted, have been widely investigated (see e.g. 
[1,4,12,28, 29] and the references therein). In particular, it has been pointed out that the 
exponential stability of the associated solution semigroups is highly influenced by the 
structural parameters of the problem. Roughly speaking, we may summarize the current results 
as follows: in the presence of frictional dissipation acting for instance on the shear angle 
displacement, the related contraction semigroup is exponentially stable1 if and only if the wave 
speeds of the first three hyperbolic equations are equal, namely,

k

ρ1
= b

ρ2
and k = k0.

Actually, as shown in [13,21], the same conclusions can be drawn for the thermoelastic Bresse 
system with Fourier-type thermal dissipation, that is, when the fourth equation of system (1.1) 
is replaced by the classical parabolic heat equation

ρ3θt − k1θxx + γψtx  = 0.

Nevertheless, such an equation (which predicts instantaneous propagation of thermal signals) has 
encountered some criticisms in the scientific community, mainly due to the increasing evidence, 
also supported by physical experiments, that thermal motion is indeed a wave-type mechanism. 
Therefore, through the years, several alternative “nonclassical” heat conduction theories have 
been proposed. Among the others, we mention the so-called Maxwell–Cattaneo approach [3] and 
the heat flux history models of Coleman and Gurtin [5] and Gurtin and Pipkin [17].

Currently, several results on the stability properties of simplified versions of the thermoelas-tic 
system (1.1) are available in the literature, for instance regarding Timoshenko-type systems where 
the longitudinal motion is neglected [11,14,22,27,30]. On the contrary, the picture con-cerning the 
full model accounting for longitudinal movements is essentially poorer. In particular, to the best 
of our knowledge, no results have been obtained for nonclassical variants of the Bresse 

1 A linear semigroup Σ(t) acting on a Banach space X is said to be exponentially stable if there exist ω > 0 and K ≥ 1
such that ∥∥Σ(t)z

∥∥
X ≤ Ke−ωt‖z‖X , ∀z ∈ X .



 

 
 
 
 

 
 
 
 

 
 

 

system studied in [13]. Motivated by these considerations, in the present paper we analyze the
stability properties of the thermoelastic Bresse system (1.1) with Gurtin–Pipkin thermal dissi-
pation. In contrast to the classical situation, we show that the hyperbolic character of the heat
conduction law reflects on the stability conditions. More precisely, exploiting the history
frame-work of Dafermos [10], we show that system (1.1) generates a contraction semigroup
S(t) = etA acting on a suitable Hilbert space H accounting for the presence of the memory.
Then, introduc-ing the new stability number

χg =
(

ρ1

ρ3k
− 1

g(0)k1

)(
ρ1

k
− ρ2

b

)
− 1

g(0)k1

ρ1γ
2

ρ3bk

we can state our main theorem as follows.

Theorem 1.1. The semigroup S(t) = etA : H → H generated by the thermoelastic Bresse–
Gurtin–Pipkin system (1.1) is exponentially stable if and only if

χg = 0 and k = k0.

Going beyond a mere study of the Gurtin–Pipkin case, Theorem 1.1 actually provides a
com-plete stability characterization of Bresse systems with Fourier, Maxwell–Cattaneo and
Coleman–Gurtin thermal dissipation (see Section 2). It also subsumes the aforementioned
achievements in the asymptotic properties of Timoshenko systems with classical and
nonclassical heat conduction (see Section 3).

In order to discuss the mathematical difficulties encountered in the analysis, let us briefly 
recall two widely used techniques for the investigation of exponential stability in linear semi-
groups. The first one is the classical strategy based on energy-type estimates which, although
successfully employed in the study of Timoshenko-type systems (see e.g. [11,22]), seems not
applicable to the complete model (1.1). Another possibility is to take advantage of linear tech-
niques, for instance exploiting the following famous result due to Prüss [26] (but see also
[9,15] for the statement used here).

Lemma 1.2. Let A be the infinitesimal generator of a contraction semigroup Σ(t)  acting on a 
complex Hilbert space X . Then, the following are equivalent:

(i) Σ(t) is exponentially stable.

(ii) There exists ε > 0 such that

inf
λ∈R‖iλz − Az‖X ≥ ε‖z‖X , ∀z ∈ D(A).

(iii) The imaginary axis iR is contained in the resolvent set ρ(A) of the operator A and

sup
λ∈R

∥∥(iλ − A)−1
∥∥

L(X )
< ∞.

∥∥ ∥∥
In light of Lemma 1.2 above, once one has proved that iR ⊂ ρ(A)  to reach the desired 

expo-nential stability it is sufficient to show that the (real-variable and continuous) function

λ �→ (iλ − A)−1 
L(X )



is bounded outside a compact set. In the typical situation, arising for example in the models 
analyzed in [13,22,27], when the infinitesimal generator A has compact inverse, the inclusion 
iR ⊂ ρ(A)  can be obtained simply demonstrating that no eigenvalues of A lie on the imaginary 
axis, due to a well-known result of Kato [18, Theorem 6.29]. Still, for the semigroup S(t) = 
etA generated by system (1.1), this strategy cannot be applied, since the inverse A−1 is not 
compact due to the memory component (see [24] for a counterexample). Therefore, in 
principle, the spec-trum of the operator A can be a complicated object, not simply made by 
(isolated) eigenvalues. We will overcome these difficulties by applying a suitable contradiction 
argument, together with some specific estimates in Sobolev spaces with negative exponent, in 
order to achieve exponential stability without making use of any a priori information on the 
spectrum of A.

Plan of the paper. In the next Sections 2–3 we discuss the aforementioned implications of 
Theorem 1.1 on thermoelastic systems of Bresse and Timoshenko type. In the subsequent Sec-
tions 4–5 we introduce the functional setting of the problem and we establish the existence of 
the solution semigroup. The final Sections 6–7 are devoted to the proof of the main result.

2. Implications of Theorem 1.1 on Bresse systems

2.1. Bresse systems with Fourier heat conduction
According to the article [13], the classical thermoelastic Bresse–Fourier system

⎧⎪⎪⎨
⎪⎪⎩

ρ1ϕtt − k(ϕx + ψ + lw)x − k0l(wx − lϕ) = 0,

ρ2ψtt − bψxx + k(ϕx + ψ + lw) + γ θx = 0,

ρ1wtt − k0(wx − lϕ)x + kl(ϕx + ψ + lw) = 0,

ρ3θt − k1θxx + γψtx = 0,

(2.1)

is exponentially stable if and only if

ρ1

k
= ρ2

b
and k = k0. (2.2)

Actually, system (2.1) can be (formally) obtained from (1.1) in the singular limit when the 
memory kernel g collapses into the Dirac mass at zero δ0. More precisely, introducing the 
family of rescaled kernels

gε(s) = 1

ε
g

(
s

ε

)
, ε > 0,

we have the convergence gε → δ0 in the distributional sense, and thus system (1.1) with g re-
placed by gε reduces to (2.1) for ε → 0. On the other hand, since

χgε =
(

ρ1

ρ3k
− ε

g(0)k1

)(
ρ1

k
− ρ2

b

)
− ε

g(0)k1

ρ1γ
2

ρ3bk
,

exploiting Theorem 1.1 and letting ε → 0 we  recover (2.2). This formal argument can be 
made rigorous within the proper functional setting, in the same spirit of [7].



2.2. Bresse systems with Maxwell–Cattaneo heat conduction

The thermoelastic Bresse–Maxwell–Cattaneo system reads as follows

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ1ϕtt − k(ϕx + ψ + lw)x − k0l(wx − lϕ) = 0,

ρ2ψtt − bψxx + k(ϕx + ψ + lw) + γ θx = 0,

ρ1wtt − k0(wx − lϕ)x + kl(ϕx + ψ + lw) = 0,

ρ3θt + qx + γψtx = 0,

τk1qt + q + k1θx = 0.

(2.3)

Here, the additional variable

q : (x, t) ∈ I × [0, ∞) �→ R

represents the so-called heat flux vector, satisfying the Maxwell–Cattaneo thermal law [3]

τk1qt + q + k1θx = 0, τ > 0. (2.4)

Arguing in a standard way, one can prove that system (2.3) generates a contraction semigroup 
of solutions V (t). To the best of our knowledge, no results are currently available in the 
literature concerning the stability properties of such a semigroup. Nevertheless, the Bresse–
Maxwell–Cattaneo model above can be obtained as a particular instance of the Bresse–
Gurtin–Pipkin system (1.1), when

g(s) = gτ (s) = 1

τk1
e
− s

τk1 .

Indeed, setting

q(x, t) = −k1

∞∫
0

gτ (s)θx(x, t − s)ds

and integrating by parts, it is immediate to see that (2.4) holds. In conclusion, substituting the 
explicit value gτ (0) = 1/τ k1 in the condition of Theorem 1.1, we obtain

Theorem 2.1. The semigroup V (t)  generated by Bresse–Maxwell–Cattaneo system (2.3) is 
ex-ponentially stable if and only if(

ρ1

ρ3k
− τ

)(
ρ1

k
− ρ2

b

)
− τ

ρ1γ
2

ρ3bk
= 0 and k = k0.

Again, this formal argument can be made rigorous. Indeed, denoting by U(t)  the 
solution semigroup generated by (1.1) for the particular choice g(s) = gτ (s), arguing as in 
[11, Sec-tion 8] it is possible to show that U(t)  is exponentially stable if and only if V (t)  is 
exponentially stable. Observe also that, in the limit situation when τ = 0, system (2.3) reduces 
to (2.1) and the condition of Theorem 2.1 collapses into (2.2). In other words, the Fourier case 
is fully recovered in the limit τ → 0.



2.3. Bresse systems with Coleman–Gurtin heat conduction

Finally, we discuss the implications of Theorem 1.1 on the so-called Bresse–Coleman–
Gurtin system

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ1ϕtt − k(ϕx + ψ + lw)x − k0l(wx − lϕ) = 0,

ρ2ψtt − bψxx + k(ϕx + ψ + lw) + γ θx = 0,

ρ1wtt − k0(wx − lϕ)x + kl(ϕx + ψ + lw) = 0,

ρ3θt − (1 − �)k1θxx − �k1

∞∫
g(s)θxx(t − s)ds + γψtx = 0,

(2.5)

0

where � ∈ (0, 1) is a fixed constant. The limit cases � = 0 and � = 1 correspond to the 
parabolic Fourier model (2.1) and the hyperbolic Gurtin–Pipkin model (1.1), respectively. 
Once more, system (2.5) can be shown to generate a contraction semigroup of solutions T (t) 
for which no stability results have been obtained so far. Still, as a corollary of Theorem 1.1, 
we obtain the following necessary and sufficient condition.

Theorem 2.2. The semigroup T (t)  generated by the Bresse–Coleman–Gurtin system (2.5) is 
exponentially stable if and only if (2.2) is satisfied.

Theorem 2.2 can be deduced from Theorem 1.1 considering the kernel

gε(s) = 1 − �

ε
g

(
s

ε

)
+ �g(s), ε > 0.

Indeed, since

gε → (1 − �)δ0 + �g

in the distributional sense as ε → 0, we obtain the convergence

∞∫
0

gε(s)θxx(t − s)ds → (1 − �)θxx + �

∞∫
0

g(s)θxx(t − s)ds.

On the other hand, in light of Theorem 1.1, exponential stability occurs if and only if

(
ρ1

ρ3k
− ε

(1 − � + �ε)g(0)k1

)(
ρ1

k
− ρ2

b

)
− ε

(1 − � + �ε)g(0)k1

ρ1γ
2

ρ3bk
= 0

and

k = k0.

We end up with (2.2) in the limit ε → 0. It is worth noting that here the picture is the same as 
in the Fourier case due to the partial parabolic character of the heat conduction law. A similar 
feature was observed in [27] in the context of thermoelastic systems of Timoshenko type.



 
 
 

3. Implications of Theorem 1.1 on Timoshenko systems

As shown in [11], the Timoshenko–Gurtin–Pipkin system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ1ϕtt − k(ϕx + ψ)x = 0,

ρ2ψtt − bψxx + k(ϕx + ψ) + γ θx = 0,

ρ3θt − k1

∞∫
0

g(s)θxx(t − s)ds + γψtx = 0,

(3.1)

is exponentially stable if and only if

(
ρ1

ρ3k
− 1

g(0)k1

)(
ρ1

k
− ρ2

b

)
− 1

g(0)k1

ρ1γ
2

ρ3bk
= 0. (3.2)

This result subsumes and generalizes the ones obtained in the papers [14,22,27], concerning
Timoshenko systems with Fourier and Maxwell–Cattaneo heat conduction. In turn, system
(3.1) can be seen as a particular instance of (1.1), in the limit case when l = 0. Indeed, in this
situation, the Bresse–Gurtin–Pipkin system formally reduces to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ1ϕtt − k(ϕx + ψ)x = 0,

ρ2ψtt − bψxx + k(ϕx + ψ) + γ θx = 0,

ρ3θt − k1

∞∫
0

g(s)θxx(t − s)ds + γψtx = 0,

ρ1wtt − k0wxx = 0,

(3.3)

where the last wave equation is decoupled from the others, and hence can be neglected. As a 
consequence, the condition k = k0 provided by Theorem 1.1 is no longer relevant; the other 
one, namely χg = 0, is exactly (3.2). This argument can be made rigorous taking l = 0 and 
revisiting the proof of Theorem 1.1. The details are left to the reader.

4. Functional setting and notations

Along the paper, 〈· , ·〉 and ‖ · ‖ will denote the standard inner product and norm on the Hilbert
space L2(I). We also consider the Hilbert subspace of zero-mean functions

L2∗(I) =
{

f ∈ L2(I) :
L∫

0

f (x)dx = 0

}
,

along with the Hilbert spaces

H 1(I) and H 1(I) = H 1(I) ∩ L2(I),
0 ∗ ∗



both endowed with the gradient norm (due to the Poincaré inequality). Moreover, we introduce 
the so-called memory space

M = L2
μ

(
R

+;H 1
0 (I)

)
of square summable H 1

0 -valued functions on R+ with respect to the measure μ(s)ds, equipped
with the weighted inner product

〈η, ξ〉M =
∞∫

0

μ(s)
〈
ηx(s), ξx(s)

〉
ds,

along with the infinitesimal generator of the right-translation semigroup on M

T η = −η′ with domain D(T ) =
{
η ∈ M : η′ ∈M, lim

s→0

∥∥ηx(s)
∥∥= 0

}
,

the prime standing for weak derivative. Finally, we define the phase space

H = H 1
0 (I) × L2(I) × H 1∗ (I) × L2∗(I) × H 1∗ (I) × L2∗(I) × L2(I) ×M

endowed with the (equivalent) product norm

∥∥(ϕ,Φ,ψ,Ψ,w,W,θ, η)
∥∥2
H = ρ1‖Φ‖2 + ρ2‖Ψ ‖2 + ρ1‖W‖2 + b‖ψx‖2

+ k‖ϕx + ψ + lw‖2 + k0‖wx − lϕ‖2 + ρ3‖θ‖2 + k1‖η‖2
M.

5. The contraction semigroup

We recast (1.1) in the history space framework devised by Dafermos [10]. To this end, 
intro-ducing the auxiliary variable

η = ηt (x, s) : (x, t , s)  ∈ I × [0, ∞) × R+ �→ R

formally defined as

ηt (x, s) =
s∫

0

θ(x, t − r)dr,

we rewrite system (1.1) in the form

ρ1ϕtt − k(ϕx + ψ + lw)x − k0l(wx − lϕ) = 0, (5.1)

ρ2ψtt − bψxx + k(ϕx + ψ + lw) + γ θx = 0, (5.2)

ρ1wtt − k0(wx − lϕ)x + kl(ϕx + ψ + lw) = 0, (5.3)



ρ3θt − k1

∞∫
0

μ(s)ηxx(s)ds + γψtx = 0, (5.4)

ηt = T η + θ. (5.5)

Next, introducing the state vector z(t) = (ϕ(t), Φ(t), ψ(t),  Ψ (t),  w(t), W(t ),  θ(t),  ηt ), we 
view (5.1)–(5.5) as the abstract ODE in H

d

dt
z(t) =Az(t), (5.6)

where the (linear) operator A is defined as

A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ

Φ

ψ

Ψ

w

W

θ

η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ
k
ρ1

(ϕx + ψ + lw)x + k0l
ρ1

(wx − lϕ)

Ψ
b
ρ2

ψxx − k
ρ2

(ϕx + ψ + lw) − γ
ρ2

θx

W
k0
ρ1

(wx − lϕ)x − kl
ρ1

(ϕx + ψ + lw)

k1
ρ3

∫∞
0 μ(s)ηxx(s)ds − γ

ρ3
Ψx

T η + θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with domain

D(A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ϕ,Φ,ψ,Ψ,w,W,θ, η) ∈ H

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ ∈ H 2(I)

Φ ∈ H 1
0 (I)

ψx ∈ H 1
0 (I)

Ψ ∈ H 1∗ (I)

wx ∈ H 1
0 (I)

W ∈ H 1∗ (I)

θ ∈ H 1
0 (I)

η ∈ D(T )∫∞
0 μ(s)η(s)ds ∈ H 2(I)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Theorem 5.1. The operator A is the infinitesimal generator of a contraction semigroup

S(t) = etA : H → H.

Theorem 5.1 above can be proved by means of the classical Lumer–Phillips theorem [25]. 
Indeed, for every η ∈ D(T ), the nonnegative functional

Γ [η] = −
∞∫

0

μ′(s)
∥∥ηx(s)

∥∥2 ds

satisfies the identity

2〈T η,η〉M = −Γ [η]



(see e.g. [16]). Therefore, for every fixed z ∈ D(A), the equality

〈Az, z〉H = k1〈T η,η〉M = −k1

2
Γ [η] ≤ 0, (5.7)

implies that A is dissipative. Moreover, arguing in a standard way (see e.g. [8]), one can 
show that the operator

1 − A : D(A) ⊂ H → H

is onto, and the conclusion of Theorem 5.1 follows. As a consequence, for every initial datum

z0 = (ϕ0,Φ0,ψ0,Ψ0,w0,W0, θ0, η0) ∈ H,

the unique solution at time t > 0 to  (5.6) reads

z(t) = S(t)z0 = (
ϕ(t), ϕt (t),ψ(t),ψt (t),w(t),wt (t), θ(t), ηt

)
.

Remark 5.2. The choice of the spaces of zero-mean functions for the variables ψ and w and 
their derivatives is consistent. Indeed, setting

Θ(t) =
L∫

0

ψ(x, t)dx and Σ(t) =
L∫

0

w(x, t)dx

and integrating (5.2) and (5.3) on I, we obtain the differential system

{
ρ2Θ̈(t) + kΘ(t) + klΣ(t) = 0,

ρ1Σ̈(t) + kl2Σ(t) + klΘ(t) = 0.

Thus, if Θ(0) = Θ̇(0) = Σ(0) = Σ̇(0) = 0, it follows that Θ(t) ≡ Σ(t) ≡ 0.

6. Proof of Theorem 1.1 (sufficiency)

Along the section, C ≥ 0 will stand for a generic constant depending only on the structural
quantities of the problem, while εn will indicate a generic complex sequence εn → 0. Besides, 
we will tacitly use several times the Hölder, Young and Poincaré inequalities, as well as the 
inequality

∞∫
0

μ(s)
∥∥ηx(s)

∥∥ds ≤√
g(0)‖η‖M,

and the control

ν‖η‖2 ≤ Γ [η], ∀η ∈ D(T ), (6.1)
M



ensured by (1.2). It is also understood that A and S(t) denote the complexifications of the 
oper-ator A and the semigroup S(t), respectively.

Suppose by contradiction that S(t) is not exponentially stable. Then, in light of Lemma 1.2, 
there exist two sequences λn ∈ R and

zn = (ϕn,Φn,ψn,Ψn,wn,Wn, θn, ηn) ∈ D(A) with ‖zn‖H = 1

such that

iλnzn −Azn → 0 in H. (6.2)

Writing (6.2) componentwise, we obtain the system

iλnϕn − Φn → 0 in H 1
0 (I), (6.3)

iλnρ1Φn − k(ϕnx + ψn + lwn)x − k0l(wnx − lϕn) → 0 in L2(I), (6.4)

iλnψn − Ψn → 0 in H 1
� (I), (6.5)

iλnρ2Ψn − bψnxx + k(ϕnx + ψn + lwn) + γ θnx → 0 in L2
�(I), (6.6)

iλnwn − Wn → 0 in H 1
� (I), (6.7)

iλnρ1Wn − k0(wnx − lϕn)x + kl(ϕnx + ψn + lwn) → 0 in L2
�(I), (6.8)

iλnρ3θn − k1

∞∫
0

μ(s)ηnxx(s)ds + γΨnx → 0 in L2(I), (6.9)

iλnηn − T ηn − θn → 0 in M. (6.10)

Our aim is to reach a contradiction by showing that, up to a subsequence, every single component 
of zn goes to zero in its norm. To this end, the boundedness in H of the sequence zn will be 
used without explicit mention. Assuming λn �→ 02 we infer that, up to a subsequence,

inf
n∈N |λn| > 0. (6.11)

(6.12)

Next, taking the inner product in H of (6.2) with zn and making use of (5.7), we have

k1Γ [ηn] = −2Re〈Azn, zn〉H = 2Re〈iλnzn − Azn, zn〉H → 0 which, 

together with (6.1), yields the convergence

lim
n→∞‖ηn‖M = 0. (6.13)

The remaining part of the proof will be carried out in a number of lemmas.

2 
When λn → 0 the  argument is much simpler (see Remark 6.7).



Lemma 6.1. Up to a subsequence,

lim
n→∞‖θn‖ = 0.

Proof. First, by the triangle inequality and (6.9),

ρ3|λn|‖θn‖H−1(I) ≤
∥∥∥∥∥iλnρ3θn − k1

∞∫
0

μ(s)ηnxx(s)ds + γΨnx

∥∥∥∥∥
H−1(I)

+
∥∥∥∥∥k1

∞∫
0

μ(s)ηnxx(s)ds − γΨnx

∥∥∥∥∥
H−1(I)

≤ εn + C‖ηn‖M + C‖Ψn‖

and hence we have the estimate

sup
n∈N

|λn|‖θn‖H−1(I) < ∞.

Then, introducing θ̂n such that

{
θ̂nxx = −θn,

θ̂n(0) = θ̂n(L) = 0,

we infer from (6.13) and the uniform bound above that

∣∣iλn〈ηn, θ̂n〉M
∣∣≤ C|λn|‖θn‖H−1(I)

∞∫
0

μ(s)
∥∥ηnx(s)

∥∥ds ≤ C‖ηn‖M → 0.

On the other hand, rewriting (6.10) as

iλnηn − T ηn − θn = ζn

with ζn → 0 in  M, we find the explicit expression

ηn(s) = 1

iλn

(
1 − e−iλns

)
θn +

s∫
0

e−iλn(s−r)ζn(r)dr.

Therefore, setting

an =
∞∫

μ(s)
(
1 − e−iλns

)
ds,
0



bn = iλn

∞∫
0

μ(s)

s∫
0

e−iλn(s−r)
〈
ζnx(r), θ̂nx

〉
dr ds,

we obtain the convergence

an‖θn‖2 + bn = iλn〈ηn, θ̂n〉M → 0. (6.14)

Exploiting now the control

μ(r + s) ≤ e−νrμ(s), ∀r ≥ 0 and s > 0

provided by (1.2), we get

|bn| ≤ |λn|‖θn‖H−1(I)

∞∫
0

√
μ(s)

s∫
0

e− ν
2 (s−r)

√
μ(r)

∥∥ζnx(r)
∥∥dr ds ≤ C‖ζn‖M,

and thus bn → 0. Moreover, let λ� ∈ [−∞, ∞] \ {0} such that λn → λ� up to a subsequence. If 
λ� ∈ {−∞, ∞}, the Riemann–Lebesgue lemma yields

an →
∞∫

0

μ(s)ds > 0,

whereas, if λ� ∈ R \ {0},

Rean →
∞∫

0

μ(s)(1 − cosλ�s)ds > 0.

In both cases, up to a subsequence, the real part of an is away from zero for large n, and the 
desired convergence ‖θn‖ → 0 follows from (6.14). 

Lemma 6.2. Up to a subsequence,

lim
n→∞‖ψn‖ = lim

n→∞‖Ψn‖ = 0.

Proof. Setting

Ψ̂n(x) =
x∫

0

Ψn(y)dy ∈ H 1
0 (I)

and integrating (6.6) on [0, x], one can easily see that

sup |λn|‖Ψ̂n‖ < ∞. (6.15)

n∈N



Next, taking the inner product in L2(I) of (6.9) with Ψ̂n we get

γ ‖Ψn‖2 − k1

∞∫
0

μ(s)
〈
ηnx(s),Ψn

〉
ds − iλnρ3〈θn, Ψ̂n〉 → 0.

In light of (6.13), it is immediate to see that

∞∫
0

μ(s)
〈
ηnx(s),Ψn

〉
ds → 0.

Moreover, thanks to (6.15) and Lemma 6.1,

∣∣−iλnρ3〈θn, Ψ̂n〉
∣∣≤ ρ3|λn|‖Ψ̂n‖‖θn‖ → 0

forcing

‖Ψn‖ → 0.

Finally, an application of (6.5) and (6.11) completes the proof. 

Lemma 6.3. Up to a subsequence,

lim
n→∞‖ψnx‖ = 0.

Proof. Multiplying in L2(I) relation (6.6) by ψn and making use of (6.5) we have

b‖ψnx ‖2 − ρ2‖Ψn‖2 + k〈ϕnx + ψn + lwn,ψn〉 − γ 〈θn,ψnx〉 → 0.

The claimed convergence is then a direct consequence of Lemmas 6.1 and 6.2. 

The equality χg = 0, not used so far, will play a crucial role in the next lemma. 

Lemma 6.4. Up to a subsequence,

lim
n→∞‖ϕnx + ψn + lwn‖ = 0.

Proof. We divide the proof into three steps.

Step 1. Multiplying in L2(I) relation (6.6) by ϕnx + ψn + lwn we infer that

k‖ϕnx + ψn + lwn‖2 + γ 〈θnx,ϕnx + ψn + lwn〉 + Pn + Qn = εn (6.16)

where



Pn = b
〈
ψnx, (ϕnx + ψn + lwn)x

〉
,

Qn = iλnρ2〈Ψn, ϕnx + ψn + lwn〉.

Next, exploiting (6.4), (6.5) and (6.8),

Pn = bk0l

k

〈
ψn, (wnx − lϕn)x

〉− iλnρ1b

k
〈ψnx,Φn〉 + εn

= bl2〈ψn,ϕnx + ψn + lwn〉 − bρ1l

k
〈Ψn,Wn〉 + bρ1

k
〈Ψn,Φnx〉 + εn.

In light of Lemma 6.2,

bl2〈ψn,ϕnx + ψn + lwn〉 − bρ1l

k
〈Ψn,Wn〉 → 0

and thus

Pn = bρ1

k
〈Ψn,Φnx〉 + εn. (6.17)

Concerning Qn, invoking (6.3), (6.5) and (6.7) we can write

Qn = −ρ2〈Ψn,Φnx + Ψn + lWn〉 +  εn

which, applying Lemma 6.2 once more, reduces to

Qn = −ρ2〈Ψn,Φnx〉 + εn.

Plugging (6.17) and the identity above into (6.16) we end up

k‖ϕnx + ψn + lwn‖2 + γ 〈θnx,ϕnx + ψn + lwn〉 =
(

ρ2 − bρ1

k

)
〈Ψn,Φnx〉 + εn. (6.18)

Step 2. Our next goal is to prove the equality

g(0)k1〈θnx,ϕnx + ψn + lwn〉 = iλnρ3〈θn,Φn〉 − γ 〈Ψn,Φnx〉 + εn. (6.19)

To this end, setting

m̂n(x) =
x∫

0

(
ϕnx(y) + ψn(y) + lwn(y)

)
dy ∈ H 1

0 (I)

and taking the inner product in M of (6.10) with m̂ n, we have

g(0)〈θnx,ϕnx + ψn + lwn〉 = Kn + Hn + εn, (6.20)

where



Kn =
∞∫

0

μ(s)
〈
iλnηnx(s), ϕnx + ψn + lwn

〉
ds,

Hn =
∞∫

0

μ(s)
〈
T ηn(s), (ϕnx + ψn + lwn)x

〉
ds.

An exploitation of (6.3), (6.5) and (6.7), together with (6.13), entails

Kn = −
∞∫

0

μ(s)
〈
ηnx(s),Φnx + Ψn + lWn

〉
ds + εn =

∞∫
0

μ(s)
〈
ηnxx(s),Φn

〉
ds + εn.

Moreover, recalling (6.9),

∞∫
0

μ(s)
〈
ηnxx(s),Φn

〉
ds = iλnρ3

k1
〈θn,Φn〉 − γ

k1
〈Ψn,Φnx〉 + εn,

and hence (6.20) turns into

g(0)〈θnx,ϕnx + ψn + lwn〉 = iλnρ3

k1
〈θn,Φn〉 − γ

k1
〈Ψn,Φnx〉 + Hn + εn.

In order to reach (6.19), we are left to show that Hn → 0. To this aim, integrating by parts in s 
(as shown in [16] the boundary terms vanish)

|Hn| =
∣∣∣∣∣−

∞∫
0

μ′(s)
〈
ηnx(s), ϕnx + ψn + lwn

〉
ds

∣∣∣∣∣≤ C

∞∫
0

−μ′(s)
∥∥ηnx(s)

∥∥ds

≤ C
√

Γ [ηn],

and an application of (6.12) completes the argument.

Step 3. First observe that, in light of (6.4) and Lemma 6.1,

iλnρ1〈θn,Φn〉 = k〈θnx,ϕnx + ψn + lwn〉 + εn. (6.21)

Then, calling3

σg = k − g(0)k1ρ1

ρ3
,

3
 It is readily seen that χg = 0 ⇒ σg �= 0.



we multiply (6.19) by ρ1γ
σgρ3

and (6.21) by γ
σg

. Summing up with (6.18), we finally obtain the 
identity

k‖ϕnx + ψn + lwn‖2 = χg

g(0)k1bk

σg

〈Ψn,Φnx〉 + εn,

and since χg = 0 by assumption the conclusion follows. �
Lemma 6.5. Up to a subsequence,

lim
n→∞‖ϕn‖H−1(I) = 0.

Proof. Setting

Ŵn(x) =
x∫

0

Wn(y)dy ∈ H 1
0 (I)

and making use of Lemma 6.4, we deduce from relations (6.4) and (6.8) that

iλnρ1Φn − k0l(wnx − lϕn) → 0 in H−1(I),

iλnρ1lŴn − k0l(wnx − lϕn) → 0 in H−1(I).

Taking the difference

iλnρ1(Φn − lŴn) → 0 in H−1(I)

and then, exploiting (6.3) and (6.7), together with (6.11),

ϕn − lŵn → 0 in H−1(I),

where

ŵn(x) =
x∫

0

wn(y)dy ∈ H 1
0 (I).

On the other hand, in light of Lemmas 6.2 and 6.4,

ϕn + lŵn → 0 in H−1(I).

Summing up the two relations above we are finished. �
Lemma 6.6. Up to a subsequence

lim
n→∞‖Φn‖ = 0.



Proof. Multiplying in L2(I) relation (6.4) by ϕn and invoking (6.3) we obtain

−ρ1‖Φn‖2 + k〈ϕnx + ψn + lwn,ϕnx〉 + k0l〈wn,ϕnx〉 + k0l
2‖ϕn‖2 → 0

which, by means of Lemma 6.4, improves to

−ρ1‖Φn‖2 + k0l〈wn,ϕnx〉 + k0l
2‖ϕn‖2 → 0. (6.22)

Besides, by interpolation and Lemma 6.5,

‖ϕn‖2 ≤ C‖ϕn‖H−1(I) → 0.

Moreover, since

k0l〈wn, ϕnx〉 = k0l〈wn, ϕnx + ψn + lwn〉 − k0l〈wn,ψn〉 − k0l
2‖wn‖2,

appealing to Lemma 6.2 and invoking once more Lemma 6.4, we conclude from (6.22) that

ρ1‖Φn‖2 + k0l
2‖wn‖2 → 0.

The lemma is proven. 

In light of (6.13) and Lemmas 6.1–6.6, the desired contradiction is attained once we prove the 
convergence (up to a subsequence)

lim
n→∞‖wnx − lϕn‖ = lim

n→∞‖Wn‖ = 0, (6.23)

provided that k = k0. To this aim, multiplying in L2(I) relation (6.4) by wnx − lϕn and 
exploiting (6.3) and (6.7), together with Lemma 6.6, we are led to

k0l‖wnx − lϕn‖2 − k
〈
ϕnx + ψn + lwn, (wnx − lϕn)x

〉+ ρ1〈Φn,Wnx〉 → 0. (6.24)

Next, with the aid of (6.8) and Lemma 6.4, we rewrite the second term as

−k
〈
ϕnx + ψn + lwn, (wnx − lϕn)x

〉= iλnρ1k

k0
〈ϕnx + ψn + lwn,Wn〉 + εn

which, by means of (6.3), (6.5), (6.7) and Lemma 6.2, yields

−k
〈
ϕnx + ψn + lwn, (wnx − lϕn)x

〉= −ρ1k

k0
〈Φn,Wnx〉 + ρ1kl

k0
‖Wn‖2 + εn.

Plugging the equality above into (6.24) and recalling that k = k0 we arrive at (6.23).  

Remark 6.7. When λn → 0, in addition to (6.12) and (6.13) we deduce from (6.2) that

lim ‖Φnx‖ = lim ‖Ψnx‖ = lim ‖Wnx‖ = 0.

n→∞ n→∞ n→∞



 

Moreover, relations (6.4), (6.6), (6.8) and (6.10) turn into

k(ϕnx + ψn + lwn)x + k0l(wnx − lϕn) → 0 in L2(I), (6.25)

bψnxx − k(ϕnx + ψn + lwn) − γ θnx → 0 in L2
�(I), (6.26)

k0(wnx − lϕn)x − kl(ϕnx + ψn + lwn) → 0 in L2
�(I), (6.27)

T ηn + θn → 0 in M. (6.28)

Introducing again θ̂n such that

{
θ̂nxx = −θn,

θˆ
n(0) = θ̂n(L) = 0,

the inner product in M of (6.28) with θ̂n gives

g(0)‖θn‖2 + 〈T ηn, θ̂n〉M → 0.

Integrating by parts as in the proof of Lemma 6.4, one can see that the second term above goes 
to zero, and hence

lim
n→∞‖θn‖ = 0.

At this point, multiplying in L2(I) relation (6.25) by ϕn, (6.26) by ψn, (6.27) by wn and 
summing up we conclude that

lim
n→∞‖ϕnx + ψn + lwn‖ = lim

n→∞‖ψnx‖ = lim
n→∞‖wnx − lϕn‖ = 0.

The sought contradiction follows.

Remark 6.8. Actually, hypothesis (1.2) can be relaxed: the proof carried out in this section 
holds even if μ satisfies for some C ≥ 1 and ν > 0 the  weaker condition

μ(r + s) ≤ Ce−νr μ(s),

for every r ≥ 0 and s > 0. Observe that the latter inequality boils down to (1.2) when C = 1. 
However, in this case, the argument becomes much more involved, as one cannot deduce 
the convergence (6.13) directly from (6.12). As a consequence, an additional reasoning is 
needed, in the same spirit of [6,23].

7. Proof of Theorem 1.1 (necessity)

Without loss of generality, we will assume along the section that L = π . The strategy
consists in showing that the necessary and sufficient condition (ii) of Lemma 1.2 fails to hold.
To this end, for every n ∈ N, we consider the vector

ζn = (0, α  sin nx, 0, 0, 0, β  cos nx, 0, 0) ∈ H



for some constants α, β ∈ R to be fixed later in such a way that

‖ζn‖2
H = π

2ρ1
, (7.1)

and we study the resolvent equation

iλnzn − Azn = ζn

for some real λn → ∞  to be suitably chosen in a second moment, in the unknown variable

zn = (ϕn,Φn,ψn,Ψn,wn,Wn, θn, ηn) ∈ D(A).

Due to (7.1), our conclusion is reached if we show that zn is not bounded in H, up to a 
subse-quence.

Reformulating the resolvent equation above componentwise and performing straightforward 
calculations, we obtain the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1λ
2
nϕn + k(ϕnx + ψn + lwn)x + k0l(wnx − lϕn) = −αρ1 sinnx,

ρ2λ
2
nψn + bψnxx − k(ϕnx + ψn + lwn) − γ θnx = 0,

ρ1λ
2
nwn + k0(wnx − lϕn)x − kl(ϕnx + ψn + lwn) = −βρ1 cosnx,

iλnρ3θn − k1

∞∫
0

μ(s)ηnxx(s)ds + iλnγψnx = 0,

iλnηn − T ηn − θn = 0.

Next, looking for solutions (compatible with the boundary conditions) of the form

ϕn = An sinnx,

ψn = Bn cosnx,

wn = Cn cosnx,

θn = Dn sinnx,

ηn = φn(s) sinnx,

for some An, Bn, Cn, Dn ∈ C and some complex function φn ∈ L2
μ(R+) with φn(0) = 0, we

draw the set of equations

(
ρ1λ

2
n − kn2 − k0l

2)An − knBn − ln(k + k0)Cn = −αρ1, (7.2)

knAn − (
ρ2λ

2
n − bn2 − k

)
Bn + klCn + γ nDn = 0, (7.3)

ln(k + k0)An + klBn − (
ρ1λ

2
n − k0n

2 − kl2)Cn = βρ1, (7.4)

iλnρ3Dn + k1n
2

∞∫
μ(s)φn(s)ds − iλnγ nBn = 0, (7.5)
0



(7.6)iλnφn + φ′
n − Dn = 0.

An integration of (7.6) yields

φn(s) = Dn

iλn

(
1 − e−iλns

)
which, substituted into (7.5), entails

Dn = λ2
nγ nBn

λ2
nρ3 − k1n2g(0) + k1n2F(λn)

where

F(λn) =
∞∫

0

μ(s)e−iλns ds

denotes the Fourier transform4 of μ. Plugging the equality above into (7.3), we arrive at⎧⎪⎨
⎪⎩

p1(n)An − knBn − ln(k + k0)Cn = −αρ1,

knAn + (
q(n) − p2(n)

)
Bn + klCn = 0,

ln(k + k0)An + klBn − p3(n)Cn = βρ1,

(7.7)

having set

p1(n) = ρ1λ
2
n − kn2 − k0l

2,

p2(n) = ρ2λ
2
n − bn2 − k,

p3(n) = ρ1λ
2
n − k0n

2 − kl2,

and

q(n) = γ 2n2λ2
n

λ2
nρ3 − k1n2g(0) + k1n2F(λn)

.

At this point, we shall consider two cases separately.

Case 1: k �= k0. Choosing

λn =
√

k0n2 + kl2

ρ1
∼
√

k0

ρ1
n, (7.8)

we find the explicit expressions

4 Since μ is continuous nonincreasing and summable, it is easy to see that F(λn) �= 0 for every n.



p1(n) = (k0 − k)n2 + l2(k − k0),

p2(n) =
(

ρ2k0

ρ1
− b

)
n2 + ρ2l

2k

ρ1
− k,

p3(n) = 0,

and

q(n) = γ 2k0n
2 + γ 2l2k

ρ3k0 − g(0)k1ρ1 + k1ρ1F(λn) + l2kρ3n−2
.

We now claim that, up to a subsequence,

lim
n→∞

∣∣q(n) − p2(n)
∣∣= ∞. (7.9)

Indeed, by direct computations and in light of the Riemann–Lebesgue lemma which tells that 
F(λn) → 0, we have

q(n) − p2(n) = ξgn
2 + k1(bρ1 − ρ2k0)n

2F(λn) + O(1)

ρ3k0 − g(0)k1ρ1 + o(1)

where

ξg = γ 2k0ρ1 + (bρ1 − ρ2k0)(ρ3k0 − g(0)k1ρ1)

ρ1
.

If ξg �= 0 relation (7.9) is plain. On the other hand, when ξg = 0 it  is evident that

bρ1 − ρ2k0 �= 0 and ρ3k0 − g(0)k1ρ1 �= 0.

Since (7.8) implies that

n2
∣∣F(λn)

∣∣→ ∞,

we end up again with (7.9). Setting now α = 0 and β = ρ1
−1, and solving system (7.7) with

respect to Cn, we find

Cn = p1(n)(q(n) − p2(n)) + k2n2

l2n2(k + k0)2(q(n) − p2(n)) + O(n2)
.

Then, on account of (7.9) and the explicit expression of p1(n), we get the convergence

lim
n→∞Cn = k0 − k

l2(k + k0)2
�= 0.

As a consequence, for some c > 0,

‖zn‖H ≥ c‖wnx‖ = cn|Cn|
( π∫

0

sin2 nx dx

) 1
2

= c
√

π√
2

n|Cn| → ∞,

and the conclusion follows.



Case 2: k = k0 and χg �= 0. Choosing

λn =
√

kn2 + k0l2 + 2kln

ρ1
=
√

k

ρ1
(n + l),

we infer that

p1(n) = 2kln,

p2(n) =
(

ρ2k

ρ1
− b

)
n2 + O(n),

p3(n) = 2kln,

and

q(n) = γ 2k(n + l)2

ρ3σg + k1ρ1F(λn) + o(1)

where, as before,

σg = k − g(0)k1ρ1

ρ3
.

Setting α = ρ1
−1 and β = 0, and solving system (7.7) with respect to An, we find

An = ρ2

k2

(
k

ρ1
− b

ρ2

)(
n

n + l

)2

− γ 2

kρ3σg + kρ1k1F(λn) + o(1)
+ o(1).

If σg �= 0, an application of the Riemann–Lebesgue lemma yields the convergence

lim
n→∞An = ρ2

k2

(
k

ρ1
− b

ρ2

)
− γ 2

kρ3σg

= g(0)k1b

ρ1σg

χg �= 0

and hence, for some c > 0,

‖zn‖H ≥ c‖ϕnx‖ = cn|An|
( π∫

0

cos2 nx dx

) 1
2

= c
√

π√
2

n|An| → ∞.

If otherwise σg = 0, exploiting the Riemann–Lebesgue lemma once more we obtain the asymp-
totic expression as n → ∞

An ∼ − γ 2

,

kρ1k1F(λn) + o(1)



and again

‖zn‖H ≥ c
√

π√
2

n|An| → ∞.

The proof is finished. 
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