
Performance Prediction of GPU-based
Deep Learning Applications

Eugenio Gianniti
Politecnico di Milano

Milan, Italy
Email: eugenio.gianniti@polimi.it

Li Zhang
IBM T. J. Watson Research Center

Yorktown Heights, NY, Unites States
Email: zhangli@us.ibm.com

Danilo Ardagna
Politecnico di Milano

Milan, Italy
Email: danilo.ardagna@polimi.it

Abstract—Recent years saw an increasing success in the
application of deep learning methods across various domains and
for tackling different problems, ranging from image recognition
and classification to text processing and speech recognition. In
this paper we propose and validate an approach to model the
execution time for training convolutional neural networks (CNNs)
deployed on GPGPUs. We demonstrate that our approach is
generally applicable to a variety of CNN models and different
types of GPGPUs with high accuracy, aiming at the preliminary
design phases for system sizing.

Index Terms—Convolutional neural networks; deep learning;
performance prediction; general purpose GPUs.

I. INTRODUCTION

Nowadays, convolutional neural networks (CNNs) find ap-
plication across industries, most notably for image recognition
and classification tasks, which represented the first successful
adoption of the technique [1]. Ranging from medical diagnosis
to public security, deep learning (DL) methods are fruitfully
exploited in a wide gamut of products. There is ongoing work
on the technique’s adaptation for other use cases, like speech
recognition [2] and machine translation [3].

Over time, many frameworks have been developed to pro-
vide high level APIs for CNN design, learning, and deploy-
ment. Among the most well known, we recall Torch, PyTorch,
TensorFlow, and Caffe. Usually DL models are trained by
relying on GPGPU systems (even in experimental clusters [4]),
which allow to achieve from 5 up to 40x time improvement
when compared to CPU deployments [5].

In spite of the widespread adoption of DL systems, still
there are few studies taking a system perspective which aim
at investigating how, e.g., the training time changes when
running on different GPGPUs or by varying the number of
training iterations or the batch size [5], [6]. DL applications are
characterized by a large number of design choices that often do
not apply readily to other domains or hardware configurations,
up to the point that even advanced users with considerable DL
expertise fail at identifying optimal configuration settings [6].
The time required to train a new DL model is generally
unknown in advance. Because of this, performance analysis is
usually done empirically through experimentation, requiring
a costly setup [5]. Performance modeling can help, e.g., to
establish service level agreements with end users or to predict
the budget to train or run production DL models in the cloud.

In this paper, we present a method to learn performance
models for CNNs running on a single GPGPU. Our goal is to
lead new users with limited previous experience from an initial
test deployment to real scale applications. We propose a gray
box per layer approach where modeling is performed layer by
layer and the only explanatory variable is computational com-
plexity. This technique allows for a great deal of generality,
since partial layer predictions are easy to sum, thus obtaining
an overall performance estimate for the full CNN, even if the
specific network schema has never been considered as part
of the training set. Due to this, the approach is preeminently
interesting during the initial design stages, for instance to
compare different alternative CNNs and deployments in terms
of performance. What is more, designers can get a feeling of
the resulting performance without ever needing to hit a cluster
or the cloud for experiments, which is advantageous regarding
both saved work hours and plain monetary savings.

In our experimental campaign, we considered three popular
DL models implemented with the Caffe framework. Yet our
methodology is not constrained in any way neither to a specific
framework, nor to a GPGPU model. The outcomes show
that we can obtain per layer models general enough to yield
relative errors below 10% on average across different CNN
architectures and below 23% in the worst case.

II. PER LAYER MODEL

All CNNs comprise a number of layers belonging to a
limited collection of basic categories. Building upon this
observation, we propose to learn several linear regression
models, in order to characterize common layer types. In this
way, it is possible to estimate the performance of a wide range
of CNNs even without previous experience with the specific
structure, just relying on these low level layer models. Our
approach is based on two basic assumptions, in order to make
the problem easily tractable and improve model generality.

When working with GPUs, applications attain their best
performance when they fully leverage the data parallel archi-
tecture, hence we expect CNN designers, as well as users,
to tune networks accordingly. Such a consideration means
that, mostly, the execution of different layers will not overlap,
whence follows that layer running time predictions can just be
summed to obtain an estimate of the overall execution time:

t̂CNN = I
∑
l∈L

t̂l, (1)



Table I
OPERATIONS PER OUTPUT PIXEL

Layer Forward Backward

Conv HfWfCinCout (2HfWfCin + 1)Cout
FC HinWinCinCout 2HinWinCinCout

Loss 4Cout − 1 Cout + 1
Norm 5Cout + Cn − 2 8Cout + Cn − 1
Pool HfWfCout (HfWf + 1)Cout

ReLU 3Cout 4Cout

where I is the total number of iterations.
The second aspect to take care of is the choice of features

to feed into the regression models. A simplistic idea could
be using all the various hyper-parameters as features, but this
would make for a difficult to interpret and hardly generalizable
formulation. On the other hand, we propose to summarize all
the relevant characteristics in a single feature: layers compu-
tational complexity in terms of simple primitives available on
GPGPUs, a good metric for layer workload.

To exemplify the derivation of computational complexity
from network hyper-parameters, here we discuss the method
for convolutional layers. The convolutional part operates on 3D
tensors. Let us denote with C the number of channels, H the
number of rows or height, W the number of columns or width.
The amount of zero padding on each side of the matrices is
P , whilst the stride is S. Subscripts distinguish properties of
the input, output, and filters, e.g., Hin, Hout, Hf. Cardinalities
are used as a shorthand for index sets, as in i ∈ Hin.

Some layers just apply predetermined operations, possi-
bly depending on hyper-parameters under users’ control. In
contrast, convolutional and fully connected layers have a set
of learnable weights that evolve during the training phase
via back propagation. The number of weights depends on
their hyper-parameters. Each output channel is obtained by
convolving a different filter with the input tensor, hence the
count of learnable parameters is given by:

(HfWfCin + 1)Cout. (2)

Convolution entails multiplying filters of size HfWfCin
element-wise with input activations and producing as output
the sum of all these partial products and an additive bias, hence
there are Cout filter-bias pairs that contribute all the entries in
the tensor plus one coefficient.

The 3D tensors involved in CNNs contain all the par-
tial values, called activations, obtained via the incremental
transformations operated by filters. In practice, layers take an
input tensor and apply a filter to its entries, thus yielding an
output tensor with a possibly different layout. It is possible
to compute output dimensions given layer hyper-parameters,
specifically filter sides, padding around the edges, and stride.
Tensor sizes are relevant because they appear in the formulas
for computational complexity, since every output activation
comes from one of the several applications of the filter to its
inputs: it is common to consider complexity per pixel, as the
overall layer operations count is always directly proportional to
HoutWout. In particular, continuing our example, convolutional
layers can be formalized as the following expression for all
(i, j, k) ∈ Hout ×Wout × Cout:

yijk = bk +
∑
t∈Hf

∑
u∈Wf

∑
l∈Cin

wtulkxı̃̃l, (3)

where ı̃ = ϕ (i, t) and ̃ = ψ (j, u), while x and y are,
respectively, input and output activations. ϕ and ψ associate
output and filter indices to the input needed to convolve
each activation and their specific functional forms depend on
the CNN and its hyper-parameters, in particular padding and
stride, but they do not affect the derivation of complexity.
Overall, you multiply all the weights times the input activa-
tions and accumulate the products on the bias once per output
channel, hence convolutional layers require O (HfWfCinCout)
operations per output pixel. Similar considerations enable de-
termining the computational complexity for back propagation.
Without spelling out the full details for space limitations, note
that propagating deltas to biases requires one operation per
channel, whilst doing so for parameters and inputs costs twice
as much as the forward pass, because it fundamentally amounts
to following the convolution backwards once for weights and
once for activations. All in all, each output pixel requires
O ((2HfWfCin + 1)Cout).

Table I shows formulas for all the kinds of layers, with the
computational complexity per output pixel for both the forward
and backward passes. Now, using these formulas it is possible
to build a dataset where the operations count is associated
with the measured execution times of both passes: given this
data, we can build a series of models where computational
complexity is the only explanatory variable. For every layer
category and direction we learn, following the theory for linear
regression, a model of the form:

tl = β0l + β1lcl + εl, (4)

is considered, where tl is the execution time, cl the complex-
ity, and εl ∼ N

(
0, σ2

l

)
random errors. With the estimated

coefficients β̂ it is possible to predict both forward and
back propagation time, then all the relevant contributions are
added to obtain the time taken for one iteration. Multiplying
by the overall number of iterations and summing the terms
due to each layer, as in (1), yields a prediction for the
full run. In particular, it is possible to predict both training
and deployment execution times, depending on whether back
propagation terms are included in the sum.

The choice of using only computational complexity as inde-
pendent variable confers a lot of generality, allowing to learn a
set of models on data coming from a limited selection of CNNs
and to apply it nonetheless to different networks. Anyhow,
not adding explicitly any contribution related to hardware in
the formulation makes every trained model specific of the
deployment where data is extracted.

III. EXPERIMENTAL RESULTS

In this section we report numerical results to support
and validate our proposed modeling techniques. In order
to provide a reproducible experimental setting, we consider
AlexNet [1], GoogLeNet [7], and VGG-16 [8] as CNNs,
while the training and validation datasets are the ones released



for ILSVRC2012.1 We collected data from a GPU-equipped
computational node, which has an Intel Xeon E5-2680 v2
2.80 GHz 10-core processor, an NVIDIA Quadro M6000
GPU, and runs CentOS 6.8. The considered GPU boasts 3072
CUDA cores, 12GB dedicated RAM with a 317GB/s band-
width, overall amounting to 7.0TFLOPS.

We performed several runs of the three CNNs with varying
batch sizes and iterations numbers. In every configuration
we collected mainly two logs, one for the regular learning
procedure and one for timing runs. The Caffe framework is
instrumented to record the precise execution times for all
the layers when the timing flag is set. Datasets for the per
layer models associate the average layer running times and
the complexity determined via the formulas in Table I. On
the other hand, we extracted from ordinary execution logs the
time taken to perform both the training and testing phases of
the CNNs, thus obtaining validation data.

A. Preliminary Observations

Since per layer models can be considered gray box ap-
proaches, they provide not only a performance prediction
device, but also some interesting insight about the way CNNs
work. Some layers, though different, can be merged into a
single category without degrading the goodness of fit. Con-
volutional and fully connected layers are an intuitive example
of this behavior. A less obvious similarity was found between
rectified linear units and dropout layers. Likely the similar
performance behavior is due to the fact that both need to loop
through activations and act based on a point-wise condition.

Pooling, in contrast, requires the adoption of multiple
categories based on stride. In order to highlight this as-
pect, in the following we report some preliminary results on
GoogLeNet from the GPGPU deployment described in detail
in Section III-B. In these plots, different markers represent
data coming from timing runs with different batch sizes,
the solid line is the model of layer execution times against
complexity obtained via linear regression, and the dotted lines
are the boundaries of the 95% confidence interval around
the predicted mean layer time. Figure 1a clearly shows two
different behaviors for layers operating at S = 1, which
mostly lay on the smaller slope line, and for the ones with
S > 1, aligned on greater times. On the other hand, Figures 1b
and 1c prove that separate linear models can effectively fit the
measurements. Our interpretation of this phenomenon is that
the change in stride affects GPGPUs’ memory access patterns,
causing a degradation in performance.

Table II reports the linear regression coefficients by cate-
gory, both for the forward pass and back propagation. Fol-
lowing the notation established in equation (4), this table
shows the estimated intercepts and slopes. Convolutional and
fully connected layers achieve the best marginal efficiency,
followed by normalization and, on a similar level, all the other
categories. Our statement is motivated by the lower slopes
needed to fit the data: this means that, when the complexity

1http://www.image-net.org/challenges/LSVRC/2012/

Table II
LINEAR REGRESSION MODELS, NVIDIA QUADRO M6000

Category β̂fw
0 [ms] β̂fw

1

[
ms
op

]
β̂bw
0 [ms] β̂bw

1

[
ms
op

]
Conv/FC 1.83E−1 3.43E−10 3.15E−1 3.65E−10

Norm 1.64E−2 7.11E−9 1.01E−1 6.87E−9
Pool S = 1 2.23E−2 1.27E−8 1.52E−1 1.93E−8
Pool S > 1 1.44E−2 1.45E−8 6.11E−3 5.67E−8
ReLU/Drop 8.91E−3 1.17E−8 1.18E−2 1.33E−8

Table III
PER LAYER MODEL VALIDATION, NVIDIA QUADRO M6000

Network Batch Iterations T [ms] ε1r [%] εGN
r [%]

AlexNet 16 100 3427 −0.71 −21.30
AlexNet 16 150 4880 4.60 −17.10
AlexNet 16 230 7488 4.52 −17.16
AlexNet 32 100 4914 1.20 0.68
AlexNet 32 150 6987 6.77 6.22
AlexNet 32 230 10719 6.72 6.16
AlexNet 64 100 8209 −1.16 15.10
AlexNet 64 150 11555 5.34 22.65
AlexNet 64 230 17790 4.91 22.16
GoogLeNet 16 100 7666 2.93 2.93
GoogLeNet 16 150 10823 9.36 9.36
GoogLeNet 16 230 16578 9.47 9.47
GoogLeNet 32 100 13201 −7.19 −7.19
GoogLeNet 32 150 18874 −2.63 −2.63
GoogLeNet 32 230 28542 −1.27 −1.27
GoogLeNet 64 100 24299 −13.68 −13.68
GoogLeNet 64 150 34088 −7.70 −7.70
GoogLeNet 64 230 52468 −8.05 −8.05
VGG-16 8 100 18440 −2.98 −15.96
VGG-16 8 150 26157 2.60 −11.13
VGG-16 8 230 39954 2.99 −10.79
VGG-16 16 100 33283 −2.07 −9.41
VGG-16 16 150 46621 4.87 −2.99
VGG-16 16 230 72084 4.00 −3.79
VGG-16 32 100 62875 −1.40 −5.43
VGG-16 32 150 88732 4.81 0.52
VGG-16 32 230 136685 4.32 0.06

increases by a fixed amount, the convolution/fully connected
category suffers a relatively smaller impact in comparison to
other layer kinds. Such effect corroborates the observations
previously discussed with respect to the operations and time
breakdowns.

B. Per Layer Model Validation

In this section the accuracy which can be achiaved by
our proposed per layer modeling approach is discussed. As
accuracy metric we consider signed relative errors:

εr =
t̂− T

T
, (5)

where T denotes the measured time and t̂ is the predicted time,
so that negative values highlight too conservative predictions,
which can be helpful if these models are to be used to enforce
a deadline. Both the measured times T and the predictions t̂
refer to the total time taken for CNN training.

Table III lists the achieved accuracy, alongside CNN, batch
size, number of iterations, measured time T . For comparison,
we report both the relative errors obtained by predicting with
models learned on same CNN timing runs, in column ε1r , and
the ones gotten when using the models for GoogLeNet across

http://www.image-net.org/challenges/LSVRC/2012/


50 100 150 200 250 300
0
0

5

10

15

20

Millions of operations

T
im

e
[m

s]

(a) All strides

50 100 150 200 250 300
0
0

5

10

15

20

Millions of operations

T
im

e
[m

s]

(b) S = 1

50 100 150 200 250 300
0
0

5

10

15

20

Millions of operations

T
im

e
[m

s]

(c) S > 1

Figure 1. GoogLeNet pooling layers, backward pass

all the considered networks, in column εGN
r . In this way we

underline the generalization capabilities of this approach.
Following a common practice, the batch size varied accord-

ing to a geometric progression of ratio 2, ranging from 16
to 64, except for VGG-16, which could not run at batch size 64
due to memory constraints. As far as accuracy is concerned,
when using GoogLeNet’s models errors in most cases remain
below 20% and the average is 9.29%. When considering CNN-
specific models, instead, errors generally remain below 10%
and the average settles at 4.75%.

IV. RELATED WORK
DL popularity is steadily increasing thanks to its impact

on many application domains (ranging from image and voice
recognition to text processing) and has received a lot of interest
from many academic and industry groups. Advances are
boosted by enhancements of the deep networks structure and
learning process (e.g., dropout [9], network in network [10],
scale jittering [11]) and by the availability of GPUs, which
allows to gain up to 40x improvement over CPU systems.
The work in [5] provides a comparative study of several
frameworks, namely, Caffe, Neon, Theano, and Torch, by
analyzing their extensibility and performance and considering
both CPUs and GPUs.

The authors in [6] present solutions to minimize the total
training time of CNNs, given the network architecture of the
DL model, the target dataset, and the available computational
resources. The authors of [12] profile and build models for
a range of applications, run either on CPUs or GPUs. They
exploit principal component analysis and regression to inves-
tigate performance on heterogeneous processors. Along the
same lines, the authors of [13] describe Qilin, a technique
for adaptively mapping computation onto CPUs or GPUs,
depending on application as well as system characteristics.

The contribution closest to this work can be found in [14],
where the authors focus on the deployment of CNNs on mobile
devices. According to this consideration, they focus on the
forward pass and predict the overall execution time based
on an estimate of the time taken for matrix multiplications.
This approach entails extracting tensor sizes from network
specifications and associating them to their expected response
times, according to platform-specific benchmarks.

V. CONCLUSION

In this paper we proposed a modeling approach to predict
the performance of CNNs. Our models enable prediction with
less than 10% on average and 23% worst case relative error
even when applied to networks never seen during training. On
top of their generalization capability, these models also provide
insights into the performance characteristics of CNNs.

ACKNOWLEDGMENT

Eugenio Gianniti and Danilo Ardagna’s work has been
partially funded by the ATMOSPHERE project under the
European Horizon 2020 grant agreement 777154.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in NIPS, 2012.

[2] T. N. Sainath, B. Kingsbury, G. Saon, H. Soltau, A. Mohamed, G. E.
Dahl, and B. Ramabhadran, “Deep convolutional neural networks for
large-scale speech tasks,” Neural Networks, vol. 64, 2015.

[3] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” CoRR, vol. abs/1409.0473, 2014.

[4] Y. Wang, L. Zhang, Y. Ren, and W. Zhang, “Nexus: Bringing efficient
and scalable training to deep learning frameworks,” in MASCOTS, 2017.

[5] S. Bahrampour, N. Ramakrishnan, L. Schott, and M. Shah, “Comparative
study of Caffe, Neon, Theano, and Torch for deep learning,” CoRR, vol.
abs/1511.06435, 2015.

[6] S. Hadjis, C. Zhang, I. Mitliagkas, and C. Ré, “Omnivore: An opti-
mizer for multi-device deep learning on CPUs and GPUs,” CoRR, vol.
abs/1606.04487, 2016.

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in CVPR. IEEE, 2015.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in ICLR, 2015.

[9] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” JMLR, vol. 15, 2014.

[10] M. Lin, Q. Chen, and S. Yan, “Network in network,” CoRR, vol.
abs/1312.4400, 2013.

[11] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” JMLR, vol. 11, 2010.

[12] A. Kerr, G. Diamos, and S. Yalamanchili, “Modeling GPU-CPU work-
loads and systems,” in GPGPU-3. ACM, 2010.

[13] C.-K. Luk, S. Hong, and H. Kim, “Qilin: Exploiting parallelism on
heterogeneous multiprocessors with adaptive mapping,” in MICRO.
ACM, 2009.

[14] Z. Lu, S. Rallapalli, K. Chan, and T. La Porta, “Modeling the resource
requirements of convolutional neural networks on mobile devices,” in
MM. ACM, 2017.


	Introduction
	Per Layer Model
	Experimental Results
	Preliminary Observations
	Per Layer Model Validation

	Related Work
	Conclusion
	References

