
Analysis of Gene Regulatory Networks
Inferred from ChIP-seq Data

Eirini Stamoulakatou(B), Carlo Piccardi, and Marco Masseroli

Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, 20133 Milan, Italy

{eirini.stamoulakatou,carlo.piccardi,marco.masseroli}@springer.com

Abstract. Computational network biology aims to understand cell
behavior through complex network analysis. The Chromatin Immuno-
Precipitation sequencing (ChIP-seq) technique allows interrogating the
physical binding interactions between proteins and DNA using Next-
Generation Sequencing. Taking advantage of this technique, in this study
we propose a computational framework to analyze gene regulatory net-
works built from ChIP-seq data. We focus on two different cell lines:
GM12878, a normal lymphoblastoid cell line, and K562, an immortalised
myelogenous leukemia cell line. In the proposed framework, we prepro-
cessed the data, derived network relationships in the data, analyzed their
network properties, and identified differences between the two cell lines
through network comparison analysis. Throughout our analysis, we iden-
tified known cancer genes and other genes that may play important roles
in chronic myelogenous leukemia.

Keywords: Biomolecular networks · Transcription factors ·
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1 Introduction

In biological sciences, network analysis is becoming one of the main tools to study
complex systems. Networks used to represent the regulation of gene expression
are known as Gene Regulatory Networks (GRNs) [1]. In network biology, partic-
ularly in disease/cancer research, comparisons are often performed on GRNs [2]
and DNA co-methylation networks [3], obtained from the gene expression and
DNA methylation profiles of healthy and disease tissues.

Here, we focus on normal and cancer GRNs that, differently from other works,
we inferred from Chromatin Immuno-Precipitation sequencing (ChIP-seq) data.
ChIP-seq is a Next-Generation Sequencing (NGS) technique designed to study,
map and understand protein-DNA interactions on a genome-wide scale. It pro-
vides measurements of epigenetic (transcription factor and histone) regulation
of genes, retaining all the advantages of the NGS technology thanks to its cover-
age, high resolution and cost-effectiveness. Our goal is to study the relationship
between gene-related epigenetic factors and genes in a normal vs. disease case,
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possibly leading towards the discovery of novel molecular diagnostic and prog-
nostic signatures. Particularly, we focused on two immortalized human cell lines,
K562 and GM12878; they are both from blood tissue, the first one (K562) from
chronic myelogenous leukemia, whereas the second one (GM12878) from normal
lymphoblastoid cells.

A major contribution of this work is the study of the relation between
epigenetic transcription factors and human protein-coding genes in K562 and
GM12878 cell lines in the view of complex network comparison. This was pos-
sible by defining relationships between transcription factors and protein-coding
genes to create gene regulatory networks. Another major aspect of this study is
the creation of a computational framework with appropriate network compari-
son methods, according to our network characteristics, to extract differences and
similarities of the compared networks. The defined comparison models are fully
“data-driven”, as they do not take into consideration any form of prior biologi-
cal knowledge. Finally, using our analytic framework, we highlighted behaviours
directly emerging from the data, drawing insights that could drive further bio-
logical investigations.

2 Used Data Sets

Among the numerous publicly accessible available genomic databases, we chose
the following two: the ENCyclopedia Of DNA Elements (ENCODE) and GEN-
CODE [4]; the former one as source for the NGS experimental data, the second
one for the gene annotations we used. GENCODE genomic samples are orga-
nized as General Feature Format (GTF) text files, whose structure is described
in [4]. Each of their lines refers to a genomic feature annotation and is made up
of several tab-separated fields. The first eight fields are standard GTF fields that
convey information about the feature chromosome, annotation source, feature
type, start and stop genomic coordinates, score, strand, and genomic phase. The
ninth field is actually a sequence of key-value pairs made up of further informa-
tion about the feature.

Biosamples involved in the sequencing experiments generating our considered
data came from two immortalized cell lines, namely K562 and GM12878. These
two cell lines are among the most investigated ones in the ENCODE project [5],
being the object of a large number of sequencing experiments from research labs
all over the world, each identifying thousands of epigenetic events through the
whole genome. Both cell lines belong to human blood tissue, in particular: K562
cell line consists in a chronic myeloid leukemia (CML) cell line [6], GM12878 cell
line is made up of lymphoblastoid cells [7].

3 Analysis Framework

Networks provide a theoretical framework that allows a convenient conceptual
representation of interrelations among a large number of elements. Furthermore,
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they usually allow framing questions about the behavior of the underlying repre-
sented system, by applying well-established analyses on the network representing
the considered data. Here, we focus on cell line specific gene regulatory net-
works, where source nodes represent genes encoding transcription factors (TFs),
whereas target nodes are any genes. A link exists between a source TF encoding
gene and a target gene if the encoded TF binds the target gene promoter; the
links are weighted, and the weight represents the power of the binding.

We propose a network analysis framework to characterize commonalities and
differences in behavior across normal GM12878 cells and cancerous K562 cells,
using ChIP-seq datasets. We evaluate if some genes display extreme behaviors,
and whether or not such behaviors highlight aspects of the underlying biology.
The proposed framework includes the following steps: (1) High quality data
extraction from NGS and genomic annotation datasets, through the GenoMet-
ric Query Language (GMQL); (2) Transformation of the extracted metadata
and genomic region data to adjacency matrixes, representing the most valu-
able information and the data relationships extracted; (3) Numeric characteriza-
tion of each network structure through 8 topological measures; (4) Application
of comparison methodologies to identify the most common and different gene
connections.

3.1 Data Acquisition and Preprocessing

For the data acquisition and preprocessing, we chose GMQL [8] as the most suit-
able tool. GMQL is a high-level declarative query language, specifically designed
for genomic data retrieval and processing. The GMQL portal1 publicly pro-
vides reasonably high computational and storage capabilities and, moreover, it
hosts up-to-date GENCODE and ENCODE data, among others. This last aspect
allowed us to just write a GMQL query to perform the complete extraction and
filtering of the genes’ epigenetic status data described below, without the need
to download the related data files from the GENCODE and ENCODE pub-
lic repositories and write specific programs to extract the relevant data. In the
following paragraphs we describe the usage of GMQL to filter and extract the
highest quality epigenetic status data from ENCODE.

The goal of the defined GMQL query is to map transcription factors of the
two cell lines on each gene promoter region. Thus, the first step is the selection
of the transcription factors and the promoter regions. The ENCODE consortium
has defined and implemented a system of ‘audits’, i.e., flags meant to give addi-
tional, yet essential, quality information about the provided experimental data
to the research community. To extract high-quality data, we did not consider
all the experiment data files labeled with at least one of the following audits:
extremely low read depth, extremely low read length, or insufficient read depth.
Furthermore, to consider only data from higly reproducible NGS ChIP-seq exper-
iments, we selected only the called peak data files labeled as conservative IDR
threshold peaks. Finally, in the case of more replicate data files from the same

1 http://www.gmql.eu/.

http://www.gmql.eu/
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transcription factor targeting experiments, we chose to only consider one data
file for each transcription factor, the one with the largest number of called peaks.
By choosing the peak set with the highest cardinality, we retain a larger amount
of information, still being confident of its reasonably good quality thanks to the
foregoing audit-based and reproducibility-aware filtering performed.

In our study we are exclusively interested in promoter regions of human
known protein-coding genes, i.e., genomic regions around the starting position
of a gene transcript. Therefore, an important aspect is to consider the right posi-
tion along the human genome of each transcript of all genes of interest. The pro-
cess of identifying and designating locations of individual genes and transcripts
on the DNA sequence is called genome annotation. One of the most important
active projects about human genome annotation is GENCODE.2 Thus, for the
promoter region extraction we chose GENCODE repository annotations, specif-
ically the GENCODE v24 release version and the annotation type transcript;
so, an annotation file for transcript isoforms was selected, reporting all the tran-
script start sites (TSSs) of each human gene. In order to build the promoter
regions from the transcript isoforms, we used the typical −2k/+1k base interval
around their first base. All the selected transcription factor binding regions are
then mapped to the considered gene promoters. As a gene can have more than
one promoters, we selected for every TF only the gene with the highest signal
value. The dataset created by the performed GMQL mapping operation provides
a matrix-like structured outcome, ideal for subsequent data analysis. In partic-
ular, we created such a dataset/matrix for each considered cell line, where the
matrix rows represent transcription factors, columns represent genes, and each
matrix cell contains a value that represents the maximum binding signal of a TF
in a gene promoter. To create the gene regulatory network from the above data,
we finally considered each TF as representing its encoding gene, thus obtaining
a gene adjacency matrix for each cell line.

3.2 Gene Regulatory Network Analysis

A primary aspect in gene regulatory networks is to capture the interactions
between molecular entities from high-throughput data. The GRNs that we
constructed are weighted directed networks, where nodes represent genes and
links between nodes exist solely if the regulatory element, a transcription factor
encoded by a source gene, binds a target gene promoter.

The problem of detecting significant dissimilarities in paired biological net-
works is different from popular graph theory problems, like graph isomorphism
or subgraph matching, for which various graph matching and graph similarity
algorithms exist and have been also applied on biological networks [9,10]. Several
approaches to compare gene regulatory networks constructed from healthy and
disease samples have been developed [11,12]. The majority of them focuses on the
comparison of the entire networks, using statistics that describe network global
properties [13]; but these statistics are not sensitive enough to detect smaller,

2 https://www.gencodegenes.org/.

https://www.gencodegenes.org/
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yet important, differences. On the other hand, there are numerous alignment-
based methods that compare networks using the properties of the individual
nodes, e.g., local similarity [14]. The aim of these methods is to identify match-
ing nodes, and use these nodes to identify exact subnetwork matches. These
approaches are computational intensive, as exact graph matching is NP-hard.
In addition, alignment-free comparison methods exist, which have been used to
identify evolutionary relationships [15]. These methods are based on the fact
that differences in network structure is essential, as structural properties of bio-
logical networks can bring important biological insights, such as determining the
relationships between protein functions from protein interaction network topol-
ogy. To achieve network structure comparison, they count the occurrences of
subgraph shapes in the local neighbourhoods of all nodes in a network [16].

Our created networks have a peculiar structure, mainly due to the fact that
ChIP-seq experiment data exist only for a limited set of TFs; thus, in our GRNs
the number of source nodes (TFs) is much lower (about 100) than the number of
the target nodes (human protein-coding genes, about 19,000). This makes diffi-
cult to directly apply reliably the methodologies mentioned above. On the other
hand, motifs and modules have long been identified as important components
of biological networks [3]; thus, we focused on looking for strongly connected
components (SCCs) in each considered network, and on evaluating the one-step
ego-nets in each SCC. So, we avoid comparing the entire networks, and concen-
trate on their most informative nodes. The one-step ego-net of a node/gene g is
the (sub)network consisting of all the nodes within one edge distance from g, also
including all the edges between those nodes. For directed graphs, as in our case,
a node g ego-net contains the g “out” neighborhood, i.e., in our case the genes
where g points to and their connections. To analyse the ego-nets of each SCC
of the two networks under comparison, we applied standard approaches such as
pairwise (on matching nodes) metrics to quantify similarity based on network
properties, discover specific features, and detect anomalous nodes/genes.

The state-of-the-art offers a well-established set of graph metrics for com-
plex networks. The most important metrics for a detailed analysis of a weighted
directed network have been previously described in [2]; they are used in the cur-
rent study and here summarized. The degree of a node is the total number of
edges incident to it. Thus, the average value of the network degrees, measured
over all network nodes, is called the average degree of the network, as we han-
dle directed graph we computed in and out degrees. For the total weight, we
sum the weights of all the edges of the graph. The diameter of a network is
the maximal distance between any pair of nodes in the network. The modular-
ity measures to what extent the network is structured in communities. It takes
values between 0 and 1; a higher modularity means a stronger division between
well-delimited communities, i.e., subnetwotks with large internal edge density
but weakly connected each other, while a lower modularity means that no such
subnetwork exist. The metric that quantifies the degree correlation, i.e. to what
extent nodes with large degree are connected to nodes with large degree, is called
assortativity. The network’s heterogeneity can be measured by the degree distri-
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bution entropy. As principal eigenvalue we denote the largest eigenvalue of the
weighted adjacency matrix of the network. For each node/gene, the connectivity
is defined as the sum of the connection strengths with the other nodes/genes of
the network.

Our proposed analysis method compares not the networks themselves, but
instead the ensemble of all gene neighborhoods (ego-nets) in each SCC of the
networks, through a pairwise approach. This idea of using the content of sub-
graphs to build a comparison method between networks arises from the fact that
modules are important biological network components.

The statistical comparison measures we used in our method are the following:

– The cosine similarity (CS ), a measure of similarity between two vectors: it
expresses the cosine of the angle between them, not from the perspective of
magnitude, but from that of orientation. The resulting similarity between
the two vectors ranges from −1, meaning exactly opposite directions, to 1,
meaning exactly the same direction, with 0 usually indicating independence.
This measure is applied in our context by building a vector with elements
consisting of each metric of interest measured on the graph.

– The Jaccard index (J ), a statistic used for comparing the similarity of sample
sets. It measures similarity between finite sample sets, defined as the size of
the intersection divided by the size of the union of the sample sets. The
Jaccard index always gives a value between 0, which means no similarity, and
1, for identical sets. In our study we used the Jaccard similarity pairwise for
each matching node of the SCCs of the two compared networks. For each
node we built a set of its ego-net edges, with the edges being represented
as an object (source node, target node) since the networks are directed. This
measure gave us the percentage of similarity between the matched genes based
on their interactions with the other genes, and ranges from 0 to 100.

– The fidelity metric φ, another network similarity measure, computed following
the approach proposed in [17]. It is a statistical formula that generates a single
value to summarize the similarity between two sets of properties/topological
features (which characterize two entities of the same nature).

Additionally, in our network comparison analysis we included the identifica-
tion of patterns for neighborhoods (ego-nets) of the normal and cancer networks,
and the report of deviations, if any, as proposed in [18]. The detection of outliers
is intimately related with the pattern discovery: only if the majority of nodes
closely obey to a pattern, we can then confidently consider as outliers the few
nodes that deviate. In order to detect the patterns and the outliers of the SCCs
of the normal and cancer networks, we selected and grouped the topological
features of the ego-nets into pairs, where we expect to find patterns of normal
behavior and point out anomalies that deviate from the patterns. All methods
presented here were implemented using Python programming language and its
pyGMQL [28] and Networkx [29] packages.
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4 Results

Here, we present and discuss the results obtained for our considered normal
and cancer cell line networks, using two distinct network analysis approaches:
single-network analysis and differential network analysis, which answer different
questions. In our context, the single-network analysis aims at identifying both
the key genes (i.e., hub genes) and the similarities in the binding behavior of
the TFs present in a given data set. Conversely, the differential network analysis
aims to uncover similarities and differences in the TFs of the two data sets. More
specifically, using feature vectors with the aforementioned statistical measures,
we evaluated the similarity of the TFs present in both data sets, and also we
identified common behavior trends and outlier nodes for the two cell lines.

4.1 Single Network Analysis

The two weighted directed networks constructed, one for the normal GM12878
and one for the cancer K562 cell line, were individually analyzed. Both resulted
having a single giant strongly connected component (SCC), with only TF encod-
ing genes (source nodes), and a single out-component, i.e., a set whose nodes are
reachable with a directed path from the SCC, with about 90% of the network
nodes, including a few TF encoding genes not in the SCC. Table 1 reports the
topological feature values measured for the two networks and their SCCs.

Curiously, in both networks the most important (hub) nodes, identified using
the page-rank algorithm [19], were mitochondrial genes. The TFs with largest
degree were identified using the reverse page-rank algorithm (applying page-
rank to the networks obtained by reversing the directions of all links). For the
cancer network they were ATF7, RBFOX2, ATF1, NFIC, NRF1, PKNOX1,
RFX1, VEZF1 and L3MBTL2, whereas for the normal network they were IKZF1,
ELF1, FOXK2, PKNOX1, ZNF143 and BHLHE40. IKZF1 is a leukemia tumor
suppressor associated with chromatin remodeling, with also increasing evidence
that IKZF1 loss also affects signaling pathways that modulate therapy response
[20]. Also ELF1 is a key transcription factor in the regulation of genes involved

Table 1. Topological feature values for the two networks and their SCCs.

Features K562 GM12878 K562-SCC GM12878-SCC

Nodes 18,732 18,732 230 111

Isolated nodes 2,312 4,305 - -

Source nodes 238 115 230 111

Edges 923,025 481,704 20,320 5,556

Average degree in/out 56.261 33.384 88.343 55.051

Assortativity −0.054 −0.043 −0.021 −0.011

Diameter 4 4 4 3

Modularity 0.29 0.34 0.27 0.33
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(a) GM12878 (b) K562

Fig. 1. Heatmaps showing the cosine similarity between TFs in the two cell lines.

in hematopoiesis [21]. PKNOX1 is a Hox co-factor, whose function alteration
is directly linked to hematopoiesis and leukemia. ZNF143 is also involved in
leukemia development [22].

Using the cosine similarity function pairwise, we identified the TFs with
similar behavior in each network, i.e., that bind the same genes with similar
strength. Figure 1 reports the cosine similarity heatmaps we created for some
of such TFs; values closer to 1 show greater similarity. The heatmaps clearly
show some clusters with high similarity in each network. For the GM12878 one,
LARP7, MAX, MXI1 and POLR2A were the TFs with greatest similarity; con-
versely, ATF7, SKIL and WHSC1 had totally different bindings with respect
to the other TFs. In the K562 cancer network, HDAC1, MAX, PHF8, PML,
RBFOX2 and POLR2A created a cluster of similarity, and SMARCA4, TAL1
and TCF12 another one. The first cluster TFs resulted enriched in the Homo
sapiens transcriptional misregulation in cancer KEGG pathway. TSC22D4 and
ZNF354B resulted the TFs with the greatest dissimilarities to the others.

Table 2. Topological features for ego-nets of normal and cancer cell line SCCs.

Features GM12878 K562

Average Range (min; max) Average Range (min; max)

Nodes 33 (2; 67) 34 (4; 67)

Edges 798 (1; 2,153) 855 (8; 2,287)

Average degree in/out 18 (0.5; 32) 19.5 (2; 34)

Total weight 215,000 (21; 532,000) 273,000 (316; 618,000)

Density 0.633 (0.471; 1.500) 0.600 (0.511; 1.150)

Degree entropy 3.121 (0.630; 4.101) 3.330 (1.307; 4.105)

Assortativity −0.212 (−0.500; −0.011) −0.188 (−0.370; −0.060)

Principal eigenvalue 9,869 (0; 14,899) 29,290 (69; 39,138)

Connectivity 15,872 (1,002; 126,000) 18,389 (1,578; 164,000)
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4.2 Differential Network Analysis

For the network comparison analysis we focused on the single SCC in each of the
two networks, considering only the TFs whose data were available for both cell
lines, i.e., 68 TFs. The average, minimum and maximum values of the ego-net
features extracted for such TFs are reported in Table 2; no relevant differences
in the global features were found between the two cell lines.

The obtained global results led us to apply the comparison methods at local
level in order to highlight differences, if existing. As a first approximation, we
simply checked which were the most different TFs between the normal and can-
cer cell lines. Using the Jaccard, cosine and fidelity similarity measures, we com-
puted pairwise similarity scores for every pair of TFs. Despite the global topo-
logical features showed relatively similar values in both cell lines, at local level
we discovered interesting dissimilarities (data not shown). To further explore the
topological differences among the two cell lines, we characterized the structure
of the ego-net extracted for each TF using the same 9 standard measures for net-
work topology as in Table 2. These measures capture important characteristics
of a network structure, which in part determines its functionality. In particular,
we sought to detect the structural heterogeneity among TFs. For each ego-net
of a TF, we created a feature vector with these feature values, which we used
for pairwise cosine and fidelity similarity between each pair of TF/ego-nets. The
cosine similarity, however, proved to be not a good metric, as all results were
close to 1 (identical). In addition, we applied Jaccard similarity using as input
the TF/ego-nets edges, this metric demonstrated to be a good method. Most
different TFs found, according Jaccard similarity, are in Table 3.

All these TFs, except of BACH1, appeared to have greater activity in K562
than in GM12878 cell line (data not shown). Interestingly, CTBP1 appeared
to bind strongly in the cancer cell line, but it had only a bond in the normal
cell line data. An explanation of this behavior may be that, according to KEGG,
CTBP1 is a leukemia cancer gene. In the same context, ZBTB33 and CEBPB are

Table 3. Similarity values, from three different statistical measures of the most differ-
ent TFs in the compared SCCs according to Jaccard similarity.

Transcription factors Jaccard (%) φ CS

CTBP1 0.0 0.56 0.99

ZBTB33 0.22 0.58 0.99

CEBPB 0.37 0.57 0.99

NR2C2 0.41 0.55 0.99

KDM1A 0.52 0.52 0.97

BACH1 0.80 0.17 0.99

BCLAF1 1.19 0.34 0.96
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(a) GM12878 (b) K562

Fig. 2. Graphical representation of the compared SCCs. Colors denote the community
[26]; node size is according to node degree.

responsible for cancer-driven myelopoiesis, which promotes cancer progression
[23,24]. KDM1A plays an important role in hematopoiesis and was identified as
a dependency factor in leukemia stem cell populations [25]. BCLAF1 is in the
6q23.3 cytogenetic location, a genomic region that has been reported to exhibit
a high frequency of deletions in tumors such as lymphomas and leukemias. The
relation of NR2C2 and BACH1 functions to cancer progression remains unclear.

We also performed pathway enrichment analysis of the communities we iden-
tified in the SCCs (Fig. 2) using the Louvain algorithm [26]. In the two largest
communities in K562, which include 70% of the SCC nodes, the enriched KEGG
pathways were the Homo sapiens p53 signaling pathway and chronic myeloid
leukemia pathway. In the largest community of the GM12878 SCC, it was the
MAPK signaling pathway ; according to [27], the activation of this pathway is
essential for the antileukemic effects of dasatinib, a target therapy used to treat
certain cases of chronic myeloid leukemia.

Finally, using the approach of [18] we tried to identify TFs with significant
anomalous behavior in the two SCCs. Using the number of nodes and edges, we
were able to detect if the ego-nets of the TFs had a star or connected (complete)
shape, i.e., minimal or maximal density. Upper diagrams in Fig. 3 show that, in
both cell lines, all TFs created almost complete ego-nets, except CTBP1 that
bound only one TF gene. The total weight and the number of edges detected
TFs with considerable higher total edge weight compared to the number of
edges in their ego-net. As shown in Fig. 3 (lower diagrams), PKNOX1, ZBTB40,
NR2C1/2, FOXK2 and BCLAF1 bound with stronger connections other TF
genes in both cell lines. Interesting result from this analysis is that the number
of nodes and the number of edges of the ego-nets as well as the number of edges
and the total weight follow power-law, as we can observe from the linear function
in log-log scale.
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Fig. 3. (a) Ego-net edge count (|E|) vs. node count (|N |). Red line: linear function
fit on median values; blue line: (N-1) function, star graphs, whereas orange line is the
N(N-1) function, complete graphs, where n is the number of nodes. (b) Total weight
(|W |) vs. total count (|E|) of edges in the ego-nets for all nodes. (Color figure online)

5 Conclusions

In this manuscript we have shown how to build gene regulatory networks from
ChIP-seq data, and how to evaluate them individually or comparatively when
built from a normal and a cancer cell line. Through our analysis, we explored the
characteristics of the two compared cell lines and identified differences in their
transcription factor functions. As a future work, we will explore further the
biological meaning of our results trying to evaluate them using gene expression
data and we will extend our analysis to more cell lines.
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